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Abstract
One of the fundamental issues in analyzing microarray data is to determine which genes are expressed
and which ones are not for a given group of subjects. In datasets where many genes are expressed
and many are not expressed (i.e., underexpressed), a bimodal distribution for the gene expression
levels often results, where one mode of the distribution represents the expressed genes and the other
mode represents the underexpressed genes. To model this bimodality, we propose a new class of
mixture models that utilize a random threshold value for accommodating bimodality in the gene
expression distribution. Theoretical properties of the proposed model are carefully examined. We
use this new model to examine the problem of differential gene expression between two groups of
subjects, develop prior distributions, and derive a new criterion for determining which genes are
differentially expressed between the two groups. Prior elicitation is carried out using empirical Bayes
methodology in order to estimate the threshold value as well as elicit the hyperparameters for the
two component mixture model. The new gene selection criterion is demonstrated via several
simulations to have excellent false positive rate and false negative rate properties. A gastric cancer
dataset is used to motivate and illustrate the proposed methodology.
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1. Introduction
Statistical methodologies for differential gene expression have been rapidly developing in
recent years, both from a frequentist and Bayesian framework. Recent frequentist methods
include Tusher et al. (2001), Storey and Tibshirani (2003), Kerr et al. (2000), Dudoit et al.
(2002), Lonnstedt and Speed (2002), Olshen and Jain (2002), Chen et al. (1997), and Lee et
al. (2002). Bayesian approaches include Efron et al. (2001), Baldi and Long (2001), Ibrahim
et al. (2002), Parmigiani et al. (2002), Newton et al. (2001, 2004),Newton and Kendziorski
(2003),West (2003), Ishwaran and Rao (2003, 2005), Tadesse et al. (2003), Mueller et al.
(2004), Liu et al. (2004), Do et al. (2005), and Hein et al. (2005). An excellent review article
on statistical methods in genomics is Sebastiani et al. (2003). An recent edited book on the
analysis of microarray data is Parmigiani et al. (2003). We refer the reader to the book and the
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review article for more detailed discussions on various methodologies and additional
references.

One of the fundamental issues in analyzing microarray data is trying to determine which genes
are expressed and which ones are not, and in particular, determining a threshold value for which
any expression level above the threshold value will be deemed as expressed and any expression
value below the threshold value would be deemed not expressed, hence underexpressed. In
datasets where many genes are expressed and many are not expressed, a bimodal distribution
for the gene expression levels often results. Two component mixture distributions can be quite
useful for this type of modeling problem. A related problem, which can be viewed as a
generalization of the bimodal problem, is to also model genes that are under expressed,
expressed, and over expressed, leading to a three component mixture. Bayesian model-based
methods for DNA microarray analysis are now becoming quite popular since complex models
can be fit in a relatively straightforward fashion and Bayesian hierarchical models can be
especially useful for this type of problem.

To motivate the proposed modeling, we consider a cDNA dataset in gastric cancer published
in Chen et al. (2003). Gastric cancer, which is a form of stomach cancer, is the second most
common cause of cancer death worldwide (Parkin et al., 1999). The dataset contains 90 tumor
samples and 22 normal samples. A total of 6688 genes were available for analysis. The goal
for these data is to determine which genes are differentially expressed between the two groups.
An exploratory analysis of these data shows that for each group, the distribution of gene
expression appears to be bimodal. For example, Fig. 1 shows nonparametric density estimates
for nine selected genes in the tumor sample group. The horizontal axis in Fig. 1 corresponds
to the logarithm of the red to green channel, log(R/G), which is the measure of gene expression.
The vertical axis corresponds to the density value. Each plot represents a gene, and the
nonparametric density estimate for each gene is based on the n1 = 90 tumor samples. We see
from Fig. 1 the apparent bimodality in the gene expression distribution. This bimodality may
be due to the fact that certain genes are expressed for certain subjects and not expressed for
other subjects, thereby creating the bimodality.

To model this bimodality, a threshold value can be defined such that all gene expression levels
above this threshold value are deemed expressed and all expression values below the threshold
are classified as underexpressed. One of the big challenges in this approach is how to determine
the threshold value and whether the threshold value should be treated as fixed or random.
Towards these goals, we develop a new class of mixture models that utilize a random threshold
value for accommodating bimodality in the gene expression distribution, such as that
encountered in Fig. 1. The model is then used to determine which genes are differentially
expressed between the two groups (tumor vs. normal). The random threshold value can be
viewed as a latent variable in the modeling process, in which a novel distribution is specified
for it. Then the joint posterior distribution of the parameters and the threshold value is used for
inference. Specification of this threshold mixture model has several advantages over a standard
two component mixture model, as discussed in Sections 2 and 3. One of its greatest advantages
is that it leads to an identifiable two component mixture model and it facilitates a
straightforward prior elicitation scheme via empirical Bayes methodology. Prior elicitation
using empirical Bayes methods (see Ibrahim et al., 2002;Efron et al., 2001) is now widely
recognized as critical in parametric modeling of DNA microarray data since such models are
highly parameterized and conventional prior elicitation strategies using noninformative or
improper priors lead to either weakly or nonidentifiable models as well as computational
instability. These issues are elaborated upon in Sections 2 and 3. The proposed methodology,
in some sense, generalizes previous work by Ibrahim et al. (2002) in that (i) the threshold
parameter is assumed unknown and random, and a distribution is specified for it using a
multiple imputation technique, (ii) a probability model is posited for the underexpressed genes
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as well as the expressed genes, and (iii) we allow general classes of distributions for the gene
expression data, in which the log-normal, Box–Cox transformations of a normal random
variable, and several others are special cases. We mention that other approaches for dealing
with low expression levels include left censoring the gene expression data at the truncation
value as in Tadesse et al. (2003). However, such methods assume that the threshold value at
which to censor is known, and thus are not a general as the methodology considered here.

In addition to the new threshold mixture model, prior distributions for the model parameters
are proposed as well as a new criterion for determining which genes are differentially
expressed. This new criterion is demonstrated through several simulations to have excellent
false positive rate and false negative rate properties. The proposed methodology is also
compared to a fully frequentist procedure called PERMAX developed by Mutter et al.
(2001), the static significance analysis of microarray (SAM) model, proposed by Tusher et al.
(2001), and the parametric empirical bayes methods for microarray data (EBarrays), proposed
by Kendziorski et al. (2003).

The rest of this article is organized as follows. In Section 2, we present a new mixture model
for modeling expressed and underexpressed genes using a single threshold value. In Section
3, we introduce a class of hierarchical priors for the random threshold parameter as well as the
other parameters. Since the threshold value is random, we propose an algorithm for eliciting
prior distributions via a standard multiple imputation technique. In Section 4, a new criterion
for determining which genes are differentially expressed is developed. In Section 5, we present
extensive simulation results illustrating the operating characteristics of the proposed
methodology, and in Section 6, we illustrate the methodology on the gastric cancer dataset,
and carry out prediction analysis of microarrays (PAM), which is a procedure for cross-
validation proposed by Tibshirani et al. (2002).We conclude the article with a brief discussion
in Section 7.

2. New threshold mixture model
The proposed model is constructed as follows: Let j = 1, 2 index the tissue type (normal vs.
tumor) and let yjgi denote the gene expression random variable for the jth tissue type and the
gth gene for the ith individual, i = 1, 2, …, njg and g =1,…, G. Let pjg = probability that the
gth gene is not expressed for tissue type j. Here, we do not assume that the raw gene expression
levels yjgi follow a particular distribution, but rather Assume that h(yjgi) is a known
differentiable transformation of yjgi to achieve normality. For example, h(.) could be the Box–
Cox class of transformations in which

h(.) can also represent other classes of parametric transformations that achieve normality.
Consider the model,

(2.1)

where

Chen et al. Page 3

J Stat Plan Inference. Author manuscript; available in PMC 2009 August 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and

Note that in (2.1),  are the distributions for yjgi for the
underexpressed and expressed genes, respectively.

One of the potential disadvantages with (2.1) is that it is virtually impossible to develop data-

based prior specifications for  since one does not know in advance
which group each gene expression level belongs to. In order to solve this dilemma, we can
construct a cut-off value, or threshold, in the prior elicitation strategy so that all gene expression
levels below a certain threshold belong to one group and all gene expression levels above this
threshold belong to the other group. Once a threshold value is defined, empirical Bayes prior
elicitation would proceed in a straightforward fashion.

In our model development, we wish to introduce a threshold while at the same time retaining
the two component structure of (2.1). Towards this goal, we consider an alternative but
equivalent model of (2.1). Let cjgi denote a random threshold parameter such that the gene is
not expressed if yjgi ≤cjgi for the j th tissue type, the ith individual, and the gth gene. Assume
that the cjgi ’s are i.i.d. with distribution

(2.2)

Let Ajgi = {y: y≤cjgi} and  denotes the complement of Ajgi. We consider the following joint
distribution for (yjgi, cjgi):

(2.3)

where . Now we are led to a useful identity which relates (2.3) to
(2.1).

Identity 2.1

The marginal distribution of (2.3) for yjgi reduces to the distribution, 
given in (2.1). That is,

Proof—Given yjgi, we have
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which establishes the identity.

The main purpose of (2.3) and (2.1) is that by introducing the latent variable cjgi, we are able
to (i) obtain an identifiable model and (ii) construct the same two-component mixture model
(2.1) such that once cjgi is given, we then immediately know which genes belong to which
group, and this is what facilitates a straightforward data-based prior elicitation scheme. We
note that model (2.1) as it stands is not identifiable since the labels of all of the parameters are
arbitrary. However, by introducing the threshold parameter cjgi, we induce an ordering in the
parameters of the two component mixture model that immediately yields an identifiable model.
We mention here that there are alternative approaches to the model development and inference
scheme proposed here. One such approach is to deal with the two component mixture model
directly and make it identifiable by placing constraints on the means, and then estimate the
parameters using the EM algorithm. In this framework, however, estimation of standard errors
would be much more difficult than the fully Bayesian approach we adopt here. Identity 2.1
also demonstrates that (2.1) and (2.3) are indeed equivalent.

Let δjgi = 1 if yjgi ≤cjgi and 0 otherwise. Since cjgi is random, δjgi is an unobserved latent variable.
However, given the value of cjgi and yjgi, the value of δjgi is completely known. We present
another useful identity which relates pjg to the event {yjgi ≤cjgi}.

Identity 2.2
The probability pjg in (2.1) is the probability that the gene is not expressed, that is, yjgi ≤cjgi
under the mixture distribution (2.3). Specifically, we have

(2.4)

Proof—It is sufficient to show P(δjgi = 1) = P (yjgi ≤cjgi) = pjg. Based on the definition of the
joint distribution of (yjgi, cjgi), we obtain

which establishes the identity.

Identity 2.2 shows the relationship between pjg and the threshold parameter cjgi, and thus we
see that pjg simply corresponds to the probability that the gene expression level is below the
threshold in (2.3).

We now construct the likelihood as follows. Let δ=(δ 111,…, δ2,G,n2G), c= (c111,…, c2,G,n2G),
c0=(c011, c021,…,c01G, c02G), α = (α11, α21,…, α1G, α2G)

,
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 , p = (p11, p21,…, p1G, p2G), and θ = (α, τ2, µ, σ2, c0, ς2, p). Let D =
(y111,…, y2,G,n2G, c) denote the complete data and Dobs = (y111,…, y2,G,n2G) denote the
observed data.

The likelihood function for θ based on the complete data D = (y111,…, y2,G,n2G, c) is thus given
by

(2.5)

An interesting special case of the general model (2.5) is obtained by taking cjgi = cjg, that is to
let the random threshold parameter be free of the sample (subject). This special case is
attractive, since (i) the yjgi’s share the same random threshold parameter cjg for the same tissue
type and the same gene, and (ii) the yjgi’s are correlated across the same tissue type and the
same gene.

3. Prior specifications
Following Ibrahim et al. (2002), the empirical Bayes methodology is carried out by specifying
a data-based guide value for all of the hyperparameters of the priors. We first elicit the

parameters  given in (2.2). The guide values for c0jg and  are

and κ0 is a fixed parameter. A default choice of κ0 is 1. Here, cjgi is an unobserved latent

variable. Using multiple imputation, we independently generate  from (2.2) for b = 1, 2, …,

B. For each b, let  and 0 otherwise,  for b = 1, 2,
…, B. We then take

for k = 1, 2.

We follow the same ideas as in Ibrahim et al. (2002) for specifying priors for the rest of the
parameters. For αjg, we take

where τ0 > 0 is a specified scalar, and

where (aj01, bj01) are hyperparameters, for j = 1, 2. Similarly, we take
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where σ0 >0 is a specified scalar and

where (aj02, bj02) are hyperparameters, for j = 1, 2. We further take

, j = 1, 2, and we take aj0k fixed and bj0k random for our
hierarchical prior. Specifically, we take a gamma prior for bj0k, i.e., bj0k ~  (qj0k, tj0k), where
(qj0k, tj0k) are specified hyperparameters for k = 1, 2 and j = 1, 2.

For the pjg’s, we specify the prior as follows. We first let

and then specify a normal prior on the ejg’s, therefore inducing a prior on the pjg’s. Thus, we
take

and for the prior for ejg, we take

The hyperparameters k0 = (k10, k20), h0 = (h10, h20), and , j = 1, 2, are prespecified.

The guide values for all the hyperparameters are specified as follows. For mj0k, we take

where , for k = 1, 2 and j = 1, 2. For  we take

where
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, for k = 1, 2 and j = 1, 2, and η0 = (η101, η201, η102, η202) is a vector

of chosen scalers. A guide value for tj0k is  where

for k = 1, 2 and j = 1, 2, and d0 = (d101, d201, d102, d202) is a vector of chosen scalars. We see
that MSEjk is just the mean square error for the expressed or underexpressed gene expression
levels for tissue type j. Finally, we elicit the guide values based on the sample proportion of

underexpressed gene expression values for ûj0 and . For ûj0, we propose a guide value of

where p̂jg is the sample proportion of underexpressed gene expression values over all of the
individuals for the jth tumor type in the bth imputed sample. This guide value for ûj0 seems

quite suitable based on the definition of ejg. Finally, for , we take a guide value of the form

Thus we see that the guide value for  is just the frequentist variance of

.

To gain a better understanding of the prior distributions and their associated hyperparameters,
a directed acyclic graph (DAG) of the prior elicitation scheme is given in Fig. 2.

4. Gene selection criteria
To discriminate between the normal and tumor tissues, we follow Ibrahim et al. (2002) and let

where y = (y111, …, y2,G,n2G), and the expectation is with respect to the joint distribution of
y. Thus, we have

Chen et al. Page 8

J Stat Plan Inference. Author manuscript; available in PMC 2009 August 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4.1)

If h(yjgi) = log(yjgi), then

(4.2)

The primary reason why we focus on  as a gene selection
criterion is that this quantity provides combined information on both the location and scale
parameters in the specified model for yjgi. In contrast, if for example, yjgi has a log-normal
distribution and we consider the expected value of log(yjgi) as the gene selection criterion, we
can immediately see that this expectation is simply the weighted average of the location
parameters. Thus, the expected value of log(yjgi) is not as informative as the expected value of
yjgi since it does not use information on both the location and scale parameters.

To compare the gene expression level means between the normal and tumor tissues, we follow
Ibrahim et al. (2002) and define

(4.3)

Then, we propose the following algorithm for determining which genes are differentially
expressed between the two groups:

Step 1. We first compute the posterior distributions of all the ξg’s, g = 1, 2, …, G, and for
each ξg, we compute γg21 = P (ξg > 2|D) or γg22 = P(ξg < 0.5|D) (the 2-criterion), as well
as γg31 = P (ξg > 3|D) or ξg32 = P(ξg < 1/3|D) (the 3-criterion).

Step 2. We select a cut-off value, denoted γ0, for γgjk for determining which genes are
different. Possible values of γ0 might be γ0 = 0.7, γ0 = 0.8, and γ0 = 0.9.

Step 3. We declare gene g different for the two tissue types if γg21≥γ0 or γg22≥γ0 (the 2-
criterion), or if γg31≥γ0 or γg32≥γ0 (the 3-criterion).

We note that computing P(ξg > 2|D) (or P(ξg > 3|D)) is quite straightforward since it is a by-
product of Markov chain Monte Carlo (MCMC) sampling. Specifically, suppose

 is an MCMC sample from the posterior distribution. Then, an Monte Carlo
estimate of P (ξg > 2|D) is simply

where  is the indicator function. In using (4.3), Ibrahim et al. (2002) only considered the
“one-criterion” for determining which genes are differentially expressed, that is, P(ξg>1|D).
Our experience shows that the 2 and 3-criteria yield much better false positive and false
negative rates as opposed to the 1-criterion, and thus we use these for determining which genes
are differentially expressed.
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5. A simulation study
We conducted a simulation study to investigate the operating characteristics of the threshold
mixture model in (2.5) in the context of differential gene expression, and to also compare the
performance of the proposed model to frequentist methods for differential gene expression
based on Significance Analysis of Microarrays (SAM, Tusher et al., 2001), parametric
empirical bayes methods for microarray data (EBarrays, Kendziorski et al., 2003), and
permutation methods based on t statistics (PERMAX, Mutter et al., 2001). Towards these goals,
we simulated data from the log-normal model in (2.1). The simulation assumes two groups, in
which n1 = n2 = 25 and G = 1000 genes. The data was simulated so that 50 genes are in truth
“differentially expressed” (i.e., the expression levels are simulated from two different log-
normal distribution with different location and scale parameters), and 950 genes are in truth
“not differentially expressed” (i.e., the gene expression levels are generated from identical log-
normal distributions). Specifically, the data was simulated from the log-normal (h(y) = log

(y)) mixture model in (2.1) with pjg = 0.4, αjg =1, , µjg = 4, and , j = 1, 2, for the

950 “similar” genes, and, pjg = 0.4, α1g = 1, α2g = 1.5, , j = 1, 2, µ1g = 3, µ2g = 7, and

, j = 1, 2, for the 50 “different genes”.

Table 1 summarizes the false positive rates (FPR) and false negative rates (FNR) based on
three different priors: (I) noninformative with (η0, d0, k0, h0) = (100, 100, 50, 50), (II)
moderately informative with (η0, d0, k0, h0) = (1, 1, 1, 1), or (III) informative with (η0, d0, k0,
h0) = (0.01, 0.01, 0.01, 0.01). The results shown in Table 1 are based on 500 simulations. We
see from Table 1 that the performance of the proposed 2-criterion and 3-criterion is quite good,
and appears to behave best with γ0≥0.80. For example, for γ0 =0.80 under noninformative
priors, the mean FPR is 0.038 and 0.007 and the mean FNR is 0.0003 and 0.001 under the 2-
criterion and the 3-criterion, respectively. Moreover, the FPR and FNR are quite robust with
respect to the choice of the prior. We see that we get essentially the same rates for all three
priors for several different values of γ0. These results are very encouraging and show that our
gene selection algorithm described in Section 4 along with both the 2-criterion and the 3-
criterion have good properties.

Table 2 shows the false positive and false negative rates based on the noninformative prior and
various combinations of (n1, n2). In Table 2, the results are based on the 3-criterion. We also
compared our procedure to PERMAX, SAM, and EBarrays. In PERMAX, standard pooled
variance t statistics for comparing normal tissues to tumor tissues are computed for each gene.
We let tg denote the t statistic for the gth gene. To nonparametrically determine the significance
of each gene while controlling the overall error rate, the permutation distribution of the most
extreme statistics over all genes is used. Since the distributions of the t statistics are not
symmetric with unequal group sizes, this is done separately in each tail. Assuming positive
values of tg indicate higher values in normal tissues, and letting t(p) be the maximum statistic
over all genes for the pth permutation, the p-value for gene g in the direction of higher
expression in normal tissues is the proportion of permutations where the observed tg is ≥t(p),
with a similar calculation in the opposite tail for differences in the opposite direction. SAM is
now a well known statistical technique for finding significant genes in a set of microarray
experiments. It uses repeated permutations of the data to determine if the expression of any
genes are significantly related to the response variable (the grouping variable in the context of
this paper). EBarrays assumes a hierarchical mixture model to account for differences among
genes in their average expression levels, differential expression for a given gene among groups,
and measurement fluctuations. Posterior probabilities of patterns of differential expression
across groups can be computed and used to determine significant genes.
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Table 2 shows the PERMAX procedure based on 50,000 permutations, as well as the SAM
model based on 20,000 repeated permutations. We see from Table 2 that our method provides
more satisfactory false negative and false positive rate results compared to the other three
approaches. For a given γ0 and criterion (2 or 3-criterion) based on our approach, both the false
positive and negative rates increase as the two sample size decreases. Although the PERMAX
procedure gives an excellent FPR, the false negative rates based on the PERMAX procedure
are extremely high. For example, for (n1, n2) = (25, 25) using a significance level of 0.05, the
false negative rate is 0.715. The false negative rates based on the PERMAX procedure increase
as the sample size decreases. Based on controlling the false discovery rate (FDR), SAM yields
reasonably good false positive and false negative rates; however, the false negative rate
increases substantially when (n1, n2) = (5, 5). Like the PERMAX procedure, the false negative
rates increase as the sample size decreases. For the EBarrays results, we assume a log-normal
mixture model, and use either 0.5 or 0.7 as the threshold posterior probability to identify genes
that are differentially expressed. We can clearly see that under almost all simulation scenarios,
EBarrays produces the highest false positive rates. An exception occurs when (n1, n2)=(5, 5)
and the threshold posterior probability is 0.7; however, in this case, the false negative rate is
extremely high.

In addition, we conducted a study of the robustness of the log-normal distribution. We
simulated data from a gamma mixture model with all shape parameters equal to 3 and means
matching the ones specified for the log-normal models in the simulation design discussed
earlier. Again, the data were simulated so that 50 genes are in truth differentially expressed
and 950 genes are in truth not differentially expressed. The results shown in Table 3 are based
on noninformative priors and the 3-criterion. Our proposed 3-criterion outperforms the
PERMAX, SAM and EBarrays procedures. Although SAM gives impressive results as shown
in Table 2, it is far less robust with respect to model assumptions compared to our log-normal
hierarchical model in (2.5). Overall, these simulation results show that our mixture model (2.5)
along with the 3-criterion (or 2-criterion) gene selection algorithm is very promising.

6. Analysis of gastric cancer data
In this section, we revisit the gastric cancer dataset of Chen et al. (2003). The dataset contains
90 tumor and 22 normal examples, and a total of 6688 genes were available for analysis. Here,
we carry out an analysis of these data with the proposed model and compare it to the analysis
of Chen et al. (2003), which is reported on the website
(http://genome-www.stanford.edu/Gastric_Cancer2), and SAM. Table 4 shows the number of
selected genes under the 2 and 3 criteria, respectively. As expected, we see that as γ0 increases,
the number of differentially expressed genes becomes smaller, and also the 3-criterion yields
fewer differentially expressed genes than the 2-criterion. Table 4 also lists the percentage of
differentially expressed genes that matched between our list and Chen et al.’s (2003) list, as
well as the number of matches between our list and the list from SAM. We see that our list and
Chen et al.’s list matched for at least 80% of the genes for all combinations of γ0 and type of
criterion (2 or 3-criterion), with the highest percentage of matches occurring for γ0 = 0.90 along
with the 2-criterion. Chen et al. (2003) identified 3329 genes as differentially expressed using
a “nonparametric t-test” with a p-value cutoff of 0.001 or 0.002 based on 10,000 random
“column permutations”. Further details of this statistical procedure can be found in
Troyanskaya et al. (2002). The percentage of matched genes identified as differentially
expressed between our method and SAM is at least 96%. Despite this high percentage, the
number of genes identified by SAM as differentially expressed is substantially larger than our
approach. We also note that the gastric cancer dataset consists of a substantial number of
missing gene expression measurements. From the 90 tumor samples, only 8.49% of the genes
are completely observed, and up to 35.36% of the genes have more than five missing gene
expression measurements. As for the 22 normal samples, only 43.26% of the genes are fully
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observed and 7.64% of the genes are missing at least five gene expression measurements. Our
proposed mixture model intrinsically allows for unbalanced data, and is capable of handling
the missing data properly, whereas the SAM method naively imputes missing values via a k-
nearest neighbor algorithm. This ad-hoc method of handling of missing data may yield
misleading results and makes SAM less appropriate as a tool in analyzing microarray data
when there is a significant amount of missing data. We mention here that EBarrays cannot
handle missing data. More specifically, in the presence of missing gene expression data, the
number of genes for each subject becomes different and EBarrays is not able toaccommodate
this setting, and hence not applicable for non-rectangular data. Therefore, EBarrays cannot be
applied to the gastric cancer data.

Fig. 3 shows nonparametric density estimates for nine genes for the tumor and normal samples
that were deemed differentially expressed by our proposed method as well as Chen et al.
(2003). From Fig. 3, we see the clear separation in distributions, thereby correctly identifying
the genes as differentially expressed, as well as the apparent bimodality in each distribution.
Fig. 4 shows nine genes that were not deemed differentially expressed by Chen et al. (2003)
but were deemed differentially expressed by us using either the 2 or 3 criteria or γ0≥.70. Fig.
4 is striking. Although it appears that there is much overlap between the distributions in each
panel, we see that there are great differences in the tails between the two distributions in each
panel, and in particular, there is often bimodality in the tails. Chen et al.’s method cannot pick
up these differences as this method is primarily aimed at detecting differences in location, and
is unable to detect bimodality or large differences in the tails. In contrast, (2.3) is very well
suited to pick up these types of differences. The nine genes reported in Fig. 4 are identified by
SAM as differentially expressed. Fig. 5 shows a plot of the posterior probability for the 3-
criterion (see Step 1 in Section 4) versus the posterior mean of log(ξg) for the 3329 genes that
were deemed differentially expressed by Chen et al. (2003). We see from Fig. 5 that many such
genes have small posterior probability (less than 0.70) as well as a small log(ξg) according to
our proposed criterion, and thus such genes might be inaccurately claimed to be differentially
expressed. Similarly, Fig. 6 shows a plot of the posterior probability for the 3-criterion versus
the posterior mean of log(ξg) for the 3329 genes that were not deemed differentially expressed
by Chen et al. (2003).We see from Fig. 6 that many such genes actually have a large log(ξg)
as well as a large posterior probability according to our proposed method, implying that Chen
et al. may be inaccurately declaring certain genes as not differentially expressed, when in reality
they may be. Again, these false declarations may be due to the inability of the nonparametric
t-test to detect differences in tail behavior and bimodality in the gene expression distributions.

In addition, we have done extensive sensitivity analyses to examine the robustness of the
proposed methodology. For the gastric cancer dataset, we considered analyses using κ0 = 0.5,
1, 2, with the 2 and 3-criteria, along with γ0 = 0.70, 0.80, 0.90. The results were remarkably
consistent with each other and for a given γ0 and criterion, the number of differentially
expressed genes were nearly identical for all three values of κ0. Table 4 is based on κ0 = 1,
yielding for example, 762, 613, and 411 differentially expressed genes for κ0=0.7, 0.8, 0.90
based on the 2-criterion. For κ0 = 0.5, the number of differentially expressed genes was 76,
611, and 408, corresponding to a matching percentage rate (with κ0 = 1) of 99.74%, 99.67%,
and 99.50%, respectively. Similar results were obtained for κ0 = 2 and the 3-criterion. In fact,
the matching percentage was always at least 99.32% for any combination of γ0, type of criterion
(2-or 3-criterion) and κ0 = 0.5, 2.

Finally, we compared both the classification and predictive accuracy of our proposed model
via cross-validation using the genes selected by our method and the genes selected by SAM.
Cross-validation was carried out using the PAM, proposed by Tibshirani et al. (2002).We use
10-fold cross-validation, and determine the degree of shrinkage in the calculation of the nearest
shrunken centroids by minimizing the cross-validated and test errors. The results show that
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both our method and SAM are quite capable of producing excellent classification and predictive
power.

7. Discussion
We have proposed a useful two component mixture model for analyzing gene expression data.
The proposed model is especially useful in situations where bimodality exists in the gene
expression distributions. Such bimodality is common when there are many non-expressed as
well as expressed genes for a given tissue type. The proposed methodology has been shown to
outperform other well known methods for detecting differentially expressed genes. Future
work includes further evaluations of this methodology on real datasets to see if the proposed
methods can uncover differentially expressed genes when the biological truth is known.
Another point of further evaluation is to apply the proposed methodology on the affymetrix
Latin square database to see if one can further recover genes that are known to be differentially
expressed in various settings.

Extensions of our proposed model to 3 or more components is straightforward, accommodating
situations involving underexpressed, expressed, and overexpressed genes in a given dataset.
For example, suppose we consider the following three component mixture:

(7.1)

and

In (7.1), , , and  are the distributions for yjgi for
the underexpressed, expressed, and over expressed genes, respectively. An equivalent model
to (7.1) with random threshold parameters can be constructed as follows. Let cjgi = (c1jgi,
c2jgi)′ denote a vector of two random threshold parameters such that the gene is underexpressed
if yjgi ≤c1jgi and expressed if c1jgi < yjgi ≤ c2jgi for the jth tissue type, ith individual, and the
gth gene. Assume that the cjgi ’s are i.i.d. with a continuous bivariate distribution p (cjgi|c0cjg,
Σ0cjg) with support Ωc = {0<c1jgi < c2jgi < ∞}. Let A1jgi = {y: y≤c1jgi}, A2jgi = {y: c1jgi < y ≤
c2jgi}, and A3jgi = {y: y > c2jgi}, and suppose (yjgi, cjgi) have the following joint distribution:

(7.2)
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where q1yjgi = ∫ yjgi ≤ c1jgi<c2jgi p(cjgi |c0jg,Σ0cjg) dcjgi, q2yjgi = ∫c1jgi < yjgi ≤ c2jgi p(cjgi|
c0jg,Σ0cjg) dcjgi, and q3yjgi = ∫c1jgi< c2jgi< yjgi p(cjgi |c0jg,Σ0cjg) dcjgi. Following the proof of
Identity 2.1, we can show that (7.2) reduces to (7.1) after integrating out cjgi. Similar to the
two component mixture model (2.1), we take

where h(cjgi)=(h(c1jgi), h(c2jgi))′ and h (c0jg)=(h(c01jg), h(c02jg))′. We then elicit the

hyperparameters c0jg and  using the summary statistics of the quantiles of the yjgi’s.
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Fig 1.
Densities for nine selected genes.
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Fig 2.
Graphical display in prior specification. Elements in circles are stochastic, while elements in
squares are empirically specified hyperparameters. Shaded circles indicate parameters of
interest. Double squares correspond to prespecified scalar hyperparameters.
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Fig 3.
Densities for nine genes deemed differentially expressed by the proposed methodology as well
as by Chen et al. (2003) (solid: tumor, dashed: normal).
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Fig 4.
Densities for nine genes that were deemed differentially expressed by the proposed
methodology but not deemed differentially expressed by Chen et al. (2003) (solid: tumor,
dashed: normal).
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Fig 5.
Posterior probability (max{γg31, γg32}) versus the posterior mean of log(ξg) for 3329 genes
selected by Chen et al. (2003).
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Fig 6.
Posterior probability (max{γg31, γg32}) versus the posterior mean of log(ξg) for genes that were
not selected by Chen et al. (2003).
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Table 4
Number of genes differentially expressed using κ0 = 1

γ 0 = 0.70 γ 0 = 0.80 γ 0 = 0.90

2-criterion

Number of genes selected 762 613 411

Number of genes matched with Chen et al. (2003) 695 563 379

Matched percentage 91.21% 91.84% 92.21%

Number of genes matched with SAM (FDR ≤ 0.05) 739 598 403

Matched percentage 96.98% 97.55% 98.05%

Number of genes matched with SAM (FDR ≤ 0.10) 744 602 406

Matched percentage 97.64% 98.21% 98.78%

3-criterion

Number of genes selected 188 145 98

Number of genes matched with Chen et al. (2003) 160 123 79

Matched percentage 85.11% 84.83% 80.61%

Number of genes matched with SAM (FDR ≤ 0.05) 183 141 96

Matched percentage 97.34% 97.24% 97.96%

Number of genes matched with SAM (FDR ≤ 0.10) 186 143 97

Matched percentage 98.94% 98.62% 98.98%

Note that when FDR ≤ 0.05, 4511 genes were identified differentially expressed, while when FDR≤0.1, 5082 genes were identified different
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