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Abstract
Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression
analysis where both the response and predictors are not directly observed (Şentürk and Müller,
2005). The available data has been distorted by unknown functions of an observable confounding
covariate. CAR provides consistent estimators for the coefficients of the regression between the
variables of interest, adjusted for the confounder. We develop a broader class of partial covariate
adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/
unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and
demographic variables, which are common in the analysis of biomedical and epidemiological data.
The available estimation and inference procedures for CAR are shown to be invalid for the proposed
PCAR model. We propose new estimators and develop new inference tools for the more general
PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and
propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed
estimators are investigated using simulation studies and the method is also illustrated with a Pima
Indians diabetes data set.
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1 Introduction
Covariate adjusted regression has been recently proposed to adjust for the distorting effects of
a confounder in a regression setting. It was motivated by a common adjustment method in
medical and health related studies. The adjustment entails normalization by anthropometric
measurements, such as body mass index (BMI) and/or other measures of body configuration,
as confounding variables that affect the primary variables of interest. For example, in a study
involving haemodialysis patients, it is of interest to examine the relationship between elevated
plasma fibrinogen level (a risk factor for cardiovascular disease in haemodialysis patients) and
other predictors, such as serum transferrin protein level (Kaysen et al., 2003; Şentürk and
Müller, 2005). However, both primary variables, fibrinogen and transferrin protein levels, are
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known to depend on body mass index, which exerts a confounding effect on the protein
measurements. A common approach to adjust for the confounders, like BMI, is to normalize
the primary variables of interest by simply dividing (by BMI). Note that this adjustment by
division implies that the assumed contamination is of a multiplicative form. Let Ỹ, X̃, and U
denote the observed fibrinogen concentration, serum transferrin level, and confounder BMI,
respectively. Using these notations, the adjusted primary variables that are thought to be free
from the confounding effect of BMI are,

The basic motivation for the above adjustment is to obtain normalized versions of the observed
primary variables by removing the confounder effects, so that the measurements are
comparable across patients. Other examples include normalizations by BMI in studies on
diabetes, and division of brain volumetric structures by total brain volume in neurological
studies (Pinter et al., 2001).

Şentürk and Müller (2005, 2006) proposed a more flexible adjustment, by modeling the
confounding through unknown functions of the confounder instead of the confounder itself.
This reflects the uncertainty encountered in many applications about the precise nature of the
commonly assumed multiplicative relation between the confounder and the variables. For the
case of p predictors, Şentürk and Müller model the underlying variables as

where they are defined to be the parts of the observed variables, Ỹ, X̃1,…, X̃p, that are
independent of the observable confounder U. In the haemodialysis data example, the latent
variables would be defined to be serum protein levels adjusted for body mass index. Here,
ϕ1(·),…, ϕp(·) and ψ(·) denote unknown smooth contaminating functions of U. CAR gives
consistent estimators of the coefficients in the unobserved regression model which can be
expressed as

where e is the error term, assumed to be independent of  and U. The estimation procedure

is based on the observed data: the distorted response, Ỹ, distorted predictors, , and
confounder U.

The main goal of this paper is to construct estimation and inference procedures needed to allow
some of the variables as unadjusted/undistorted predictors, denoted by Z1,…, Zs. The proposed
underlying regression model is then of the form

(1)

where X̃r = ϕ(U)Xr and Ỹ = ψ(U)Y denote the adjusted/distorted predictors and response,
respectively, and Zs denotes the unadjusted predictors. The observed data is Ỹ, X̃r, Zs and U.
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Furthermore, the confounding covariate, U, is allowed to depend on the unadjusted predictors
{Zs}. The flexibility of allowing both distorted and undistorted predictors is needed,
particularly in the regression analysis of biomedical data. In many of these applications, which
motivated our current work, the researcher is directly interested in the effects of Zs = age,
gender, obesity measures and/or ethnicity on Y. Therefore, the predictors Zs are unadjusted/
undistorted. A specific example is the study of Kaysen et al. (2002) where albumin turnover
and protein catabolic rate were adjusted for body surface area (U) via division, while age and
gender were among the unadjusted variables. This is an example of model (1) above, where
an adjustment method is needed that allows for unadjusted predictors. In this example, model
(1) is used to reflect (a) the known dependence of albumin turnover and protein catabolic rate
on U and (b) the specific interest in the direct effects of age and gender in the regression
relationship. This issue is further discussed in Section 3 in the context of estimation as well as
in Section 8.

Under the more general partial covariate adjusted regression (PCAR) setting, formally
presented in Section 2, the original CAR estimators (Şentürk and Müller, 2005) for  are
inconsistent and may have an arbitrarily large asymptotic bias as shown in Section 3. We
propose alternative estimators that are consistent under this extended CAR setting where the
issues of estimation are discussed in Section 3. The proposed PCAR methodology, like CAR,
provides consistent estimators not only under multiplicative but also under additive distortion
as discussed also in Section 3. The inference procedures developed for the CAR modeling are
not valid for the PCAR setting, mainly due to the different dependence structure needed for
PCAR. This new structure is explained in detail in Section 2 and Section 3. Thus, we develop
new theoretical tools for valid inference in the PCAR model. We derive the asymptotic
distributions of the proposed estimators, and present them in Section 4. Consistent estimators
of the asymptotic variance are also derived in Section 4. Simulation studies to characterize the
finite sample properties of the proposed estimators are summarized in Section 6. The method
is further illustrated with a Pima Indians diabetes data set given in Section 5. The proofs of the
main results are assembled in Section 7, where some technical conditions and auxiliary results
are deferred to the Appendix. We conclude with a brief discussion in Section 8.

We note here that an advantage of CAR and PCAR is that, under the identifiability conditions
introduced in Section 2, it yields consistent estimates whether the distortion is multiplicative
or additive, i.e. Y = Ỹ − ψ(U) and Xr = X̃r − ϕr(U). (A more detailed discussion of the additive
distortion case is given in Section 3.) Additive distortions can be handled by the method of
nonparametric partial regression; however, there existed no consistent estimation procedure
targeting the γ’s under multiplicative distortion of both the response and the predictors. Also,
the proposed distortion setting has similarities with measurement error modeling if one views
ψ(U) and ϕr(U) as unobserved errors affecting the response and predictors. There is an
extensive literature on additive measurement error modeling, which dates back to Berkson
(1950). See Carroll et al. (2006) and references therein for a comprehensive overview. A key
difference between the proposed framework and traditional measurement error is that, in the
proposed distortion setting, the error is a function of an observable covariate U. Also, since
U is observable this information is incorporated into the estimation. While much work is
devoted to additive measurement error, work on multiplicative measurement errors is limited.
Relevant work includes Hwang (1986) and Iturria, Carroll and Firth (1999) who proposed
estimation procedures targeting the regression coefficients under multiplicative measurement
error in the predictors. However, the case of multiplicative measurement errors that affect both
the predictors and the response has not been considered previously to our knowledge.
Therefore, the method and theory presented here may potentially be of interest to the area of
measurement error modeling, despite the differences in the methodological motivation.
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2 Partial covariate adjusted regression models
We consider the underlying (unobserved) regression model

(2)

where Yni, eni, χni = (1, Xn1i,…, Xnpi, Zn1i,…, Znqi)T and α = (γ0,…, γp, δ1,…, δq)T are the
response, error, p + q predictors and unknown regression coefficients, respectively. The error
variable e has mean zero, variance σ2 and a finite moment that is higher than the 4th moment.
The goal is estimation and inference for the parameter vector α of the unobserved regression
model (2). Estimation is based on available distorted predictor and response data, namely

, where

(3)

The unknown distorting functions  are assumed to be smooth functions of the
confounder, U.

Some constraints on the unknown smooth distortion functions are needed for the identifiability
of the estimation problem. A set of reasonable constraints for ψ(·) and {ϕr(·)} is implied by the
natural assumption that the mean distorting effect should correspond to no distortion (Şentürk
and Müller, 2005), i.e. the means of adjusted variables are the same as the means of the observed
variables, E(X̃r) = E(Xr) and E(Ỹ) = E(Y). These conditions directly imply that

(4)

We consider the following dependence structure. The underlying predictors Xr and the
undistorted predictors Zs are allowed to be dependent. The error, e, is assumed to be mutually
independent of Xr, Zs, and U. We depart from the original CAR model (Şentürk and Müller,
2005), where U is independent of all the latent predictors, by allowing U to depend on Zs, while
still being independent of Xr. We will elaborate further on this important difference of the
proposed setting from CAR at the end of Section 3. This is an important flexibility of the
proposed method, since the common confounder correlates with all the observed variables in
these distortion settings. This is consistent with the assumption that the observed predictors
X̃r and Zs are dependent on the confounder U, and that the latent variable Xr is defined to be
the part of X̃r that is independent of U.

The assumption that the underlying predictors, , and response, Y, are independent of the
contaminating variable U is a fundamental assumption for the estimation procedure. It defines
the proposed contamination setting through defining the unobserved, underlying variables.
This independence assumption cannot be checked in practice since Xr and Y are unobservable.
Instead, the question of more relevance in practice is whether the independence conditions help
define interpretable latent variables of interest from their observable counterparts. In the
haemodialysis data example, the latent variables are defined to be serum protein levels adjusted
for body mass index, which are commonly used in medical studies.
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We refer to the model described by (2)–(4) as the partial covariate adjusted regression (PCAR)
model, since only a partial set of the predictors are adjusted for the confounder. Note also that
the CAR model is a special case of the PCAR model.

For the estimation, note that it follows from (2) and the mutual independence of {e and U},
{e and (Xr,Zs)}, and {U and Xr}, for r = 1,…, p, s = 1,…, q, that the regression of Ỹ on χ̃ = (1,
X̃1,…, X̃p,Z1,…, Zq)T leads to a fully observable varying coefficient model (Cleveland, Grosse
and Shyu, 1991;Hastie and Tibshirani, 1993),

(5)

where

(6)

and ϵ(Uni) = ψ(Uni)eni. For an extensive overview of the estimation procedures proposed for
varying coefficient models, see Wu and Yu (2002). Note that in (6), the varying coefficient
functions, , are proportional to the quotient of the original distorting functions, {ψ(·)/
ϕr(·)}; both the intercept function, β0(·), and the functions  are proportional to ψ(·).
The constants of proportionality are precisely the underlying regression parameters, {γr, δs},
of interest. These connections allow estimation of the underlying model through the varying
coefficient functions. In Section 3 below, we describe an estimation procedure which targets
{γr, δs} and mitigates the effects of the distorting functions {ψ(·), ϕr(·)}.

3 Estimation procedure

The estimation of the regression coefficients, γ0, , in the underlying regression

model  is a two-step procedure. The first step involves
estimation of the varying coefficient functions in model (5), namely β0(·),

 using a binning approach. These varying functions are estimable because
Ỹ, X̃r, Zs, and U are all observable. The underlying regression coefficients are targeted in the
second step, with weighted averages of the estimated β0(·), βr(·) and ηs(·) for γ0, γr and δs,
respectively. The estimation makes use of the relations between the varying coefficient
functions and the regression coefficients given by (6) and the identifiability conditions (4), as
will be described next.

The binning approach for the estimation of the varying coefficient functions involves dividing
the support of U into m equidistant bins and then fitting linear regressions of Ỹ on χ̃ using the
data falling within each bin. The observed data is the collection of n samples:

. It is assumed that the confounding covariate, U, is bounded below and above,
a ≤ U ≤ b, where a < b are real numbers. In practice a and b would be taken to be mini Uni and
maxi Uni, respectively. The estimation procedure initially divides the interval [a, b] into m
equidistant intervals, denoted Bn1,…, Bnm and referred to as bins. Let Lnj be the number of

Uni’s falling into bin j. Furthermore, let  be the kth data
element in the jth bin, Bnj, where k = 1,…, Lnj. Data elements in any given bin are marked by
a prime.
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After the initial binning of the data, a linear regression is fitted to the data observed within each
bin Bnj, j = 1,…, m. The least squares estimator of the multiple regression of the data in the
jth bin is

(7)

where the response vector is  is the Lnj × (p
+q+1) data matrix in bin j, with the kth observation

. The estimated regression coefficients in each bin
(7) are the estimators of the varying coefficient functions.

In the second step of the estimation procedure, the estimators of the targeted regression
parameters, γ0, , are obtained as weighted averages of the estimators

 from the m bins. The proposed PCAR estimators for γ0,
 are

(8)

where . The weights in (8) depend on the number
of data points in each bin, namely Lnj for j = 1,…, m. Note that the estimators proposed in (8)
are method of moments estimators targeting E{β0(U)}, E{βr(U)X̃r}/E(X̃r) and E{ηs(U)},
respectively. It follows then that they are consistent for the underlying parameters, formally
stated in Section 4, since E{β0(U)} = γ0, E{βr(U)X̃r}/E(X̃r) = γr and E{ηs(U)} = δs, by the
relations in (6) and the identifiability conditions.

We note that the estimators γ̂n0 and γ̂nr have the same form as the CAR estimators (Şentürk
and Müller, 2005), whereas δ ̂ns are different. Furthermore, a straightforward application of the
CAR algorithm yield inconsistent estimators for δs under the more general PCAR model. To
see this, denote the original CAR estimators for δs by . It follows from Şentürk and
Müller (2005), that

where . The estimators  do not target δs, instead
they target E{ηs(U)Zs}/E(Zs) = δsE{ψ(U)Zs}/E(Zs) = δsCs, where Cs ≡ E{ψ(U)Zs}/E(Zs) =
[cov{ψ(U),Zs}/E(Zs)]+1 can get arbitrary large as E(Zs) approaches zero. Note here that since
Zs is correlated with U, one can argue that a latent variable can also be created for Zs that would
be independent of U, similar to the construction of Xr and Y. An argument can be made that
the dependence structure suggests , for some latent variable  that is independent
of U, which can be ed as . In this case, Cs further simplifies to equal

 (This insight was provided by a reviewer.) From this last form of Cs, it
follows immediately that if (1) the response is not distorted by U, i.e. ψ(U) = 1, or if (2) Zs is

Şentürk and Nguyen Page 6

J Stat Plan Inference. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



independent of U, i.e. , in which case the CAR estimator for δs would be
consistent. For the latter mentioned case (2) of assuming Zs is independent of U, this is not
realistic in most data applications, since U is the common confounder that correlates with all
the observed variables in these distortion settings. In the data examples given in the
Introduction, the undistorted predictor age is not independent of the confounders like body
mass index, body weight or height.

For the former mentioned case (1) when the response is undistorted, simpler adjustments given
by Hwang (1986) and Iturria et al. (1999), for multiplicative measurement error only in the
predictors, would also be applicable. Hwang (1986) proposes a consistent estimator for the
regression coefficients by estimating and adjusting for the bias of the regular least squares
estimator. The estimation assumes that consistent estimates of the moments of the measurement
error are available. Iturria (1999) proposes two estimation methods, where the first considers
specific distributional forms for the measurement error and the second also models the
distribution of the unobserved predictors. The two approaches of Hwang and Iturria are similar
to PCAR in assuming that the error is independent of the unobserved predictors and that it has
a mean of one. The difference of PCAR from the previous two approaches is that no knowledge
of the distributional forms or the specific moments are assumed. Instead, information from the
observed covariate U, of which the measurement error ϕr(U) is a function of, is utilized in the
proposed estimation procedure.

The CAR estimators are biased for only the case of undistorted predictors. In other words, if
all variables are considered as distorted then CAR provides consistent estimators. This is the
difference between CAR and PCAR. While the PCAR set-up allows researchers the choice to
consider a subset of predictors as distorted, the CAR set-up requires that all predictors are
considered as distorted in order to yield consistent estimates.

As the PCAR set-up allows researchers to consider a subset of predictors as distorted, an
important issue is how to determine whether a predictor should be considered as distorted or
undistorted. Note that this distinction cannot be made using a statistical/analytical approach
via studying the dependence or the relations between the observed variables and U. This is
because all observed variables are dependent on U in the model (correlate with U) whether
they are distorted or undistorted. Hence, this decision instead should be made by considering
the duality between (a) the decision/assumption on undistorted (distorted) variables and (b) the
specification of the underlying model; more specifically, the consideration of the predictor
choice in the underlying model.

More precisely, determining to include a predictor as distorted or undistorted corresponds to
two completely different underlying models of interest, one involving Zs and the other
involving , respectively. Specification of the underlying model will depend on the specific
interest of the researcher and the specific context of the application. For example, in the data
analysis presented in Section 5, the goal is to uncover the relation between a diabetes marker
and diastolic blood pressure adjusted for body mass index. Hence, the diabetes marker and
diastolic blood pressure are considered as adjusted/distorted variables. On the other hand, age
and triceps skin fold thickness are considered unadjusted/undistorted, as we are interested in
the direct effects of age and triceps skin fold thickness on the BMI-adjusted diabetes markers.

We also note here that the PCAR estimators given in (8) are consistent for the parameters of
the underlying model (2) also under additive distortion. More precisely, consider the simple
case of one distorted and one undistorted predictor. The regression model in (2) simplifies to
Y = γ0+γ1X +δ1Z+e, where the multiplicative error structure is replaced by the additive error
structure, given by Ỹ = Y + ψa(U) and X̃ = X + ϕa(U). The proposed PCAR estimators given in
(8) are consistent even when the multiplicative error is replaced by additive error as described
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above. The above additive error model leads to the following specific varying coefficient
model: E(Ỹ|X̃,Z,U) = β0(U) + β1(U)X̃ + η1(U)Z, where β0(U) = γ0 − γ1ϕa(U) + ψa(U), β1(U) =
γ1 and η1(U) = δ1. The PCAR estimators given in (8), namely γ̂0, γ̂1 and δ ̂1, target

respectively. This holds regardless of the specific error structure, whether it be additive or
multiplicative. Furthermore, under the additive distortion model, we have that

This follows since E{ψa(U)} = E{ϕa(U)} = 0 in the additive distortion model, under the
identifiability condition of no average distortion, i.e. E(Ỹ) = E(Y) and E(X̃) = E(X). Thus, the
PCAR estimators proposed in (8) are consistent for parameters of the underlying model also
under additive distortion structure.

4 Asymptotic properties
We present the asymptotic distribution of the estimators γ ̂n0, γ ̂nr and δ̂ns in (8) when the number
of subjects n tends to infinity. As in typical smoothing applications, the number of bins m = m
(n) is required to satisfy m → ∞, n/(m log n) → ∞ and  as n → ∞. We denote
convergence in distribution by  and convergence in probability by . Also let

(9)

denote the least squares estimators of the multiple regression of the unobserved data falling

into Bnj, where the vectors  are defined the same way as , with
 replacing , respectively. This quantity is not estimable, but will be

used in the proof of the main results.

For the PCAR estimators given in (8) to be well defined, the least squares estimators given in

(7) must exist for each bin Bnj, i.e. . Correspondingly, the estimators in (9) will

exist under the condition that . The following theorems are given under event
En, explicitly defined in the Appendix, which summarizes the above outlined conditions for
the PCAR estimators to be well defined.

For the following theorems, we define the following notations: λψ = E{ψ2(U)}, λϕ = E

{ϕ2(U)}, λψϕr = E{ψ(U)ψr(U)}, , χT = (1, X1,…, Xp,Z1,…, Zq),
Γ = E(χχT|U), ℳ = Γ−1χχTΓ−1,

 for l = 1,…, p + s + 1
and k = 1,…, Lnj.

Theorem 1
Under the technical conditions (C1)–(C7) in Section 6, on event En with pr(En) → 1 as n →
∞,

Şentürk and Nguyen Page 8

J Stat Plan Inference. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where

Theorem 1 establishes the asymptotic normality of the proposed PCAR estimators. The
following theorem provides consistent estimators of the asymptotic variances given in Theorem
1.

Theorem 2
Under the technical conditions (C1)–(C7) in Section 6, on event En with pr(En) → 1 as n →
∞,

where

Normalizing by the above consistent variance estimators, it holds that
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Therefore, the approximate (1−α)100% asymptotic confidence intervals for γr and δs have the
endpoints

(10)

where zα/2 is the (1 − α/2)th quantile of the standard Gaussian distribution.

Remark—These proposed variance estimators are motivated by the identifiability conditions,
the definition of the smooth varying coefficients functions given in (6), Lemma 3 and Lemma
4 (a.). Using the consistency of β̂nrj and η̂nsj for the values of the functions βr and ηs at the
midpoint of the jth bin and the definitions of , we target the quantities

 with the estimators

, respectively. Furthermore, relying mainly on Lemma 3 and Lemma 4 (a.), we target

and , respectively.

5 Application to the Pima Indians diabetes data
We illustrate the proposed partial covariate adjusted regression methodology with an
application to the Pima Indians diabetes data set, available at
http://www.ics.uci.edu/~mlearn. Obesity is an important contributing factor to diabetes and
has been widely studied in the Pima Indians population (Smith et al., 1988; Knowler et al.,
1991; Hansen et al., 1998). One-half of adult Pima Indians have diabetes and 95% of those
with diabetes are overweight (National Institute of Diabetes and Digestive and Kidney
Diseases, http://diabetes.niddk.nih.gov). The available data comes from a larger database,
where the subgroup used consists of n = 524 females at least 21 years old and of Pima Indian
heritage. (The population lives near Phoenix, Arizona, U.S.A.) An oral glucose tolerance test
is one of the diagnostic tests for type II diabetes. The goal is to uncover the underlying, BMI
adjusted, regression relation, PGC = γ0 + γ1DBP + δ1Age + δ2TSFT + e, based on the observed
plasma glucose concentration ( ; from a oral glucose tolerance test), diastolic blood
pressure ( ), triceps skin fold thickness (TSFT), age and body mass index. We chose to
adjust only the main relation of interest, namely the one between plasma glucose concentration
(the response) and diastolic blood pressure for body mass index, and included age and triceps
skin fold thickness as unadjusted predictors as they are commonly accounted factors in studies
on diabetes.

Table 1 gives the regression coefficient estimates for (γ0, γ1, δ1, δ2) using the proposed PCAR
method, CAR method, the ordinary least squares (OLS) estimates from regressing the observed

 on ( , Age, TSFT) without adjusting for the confounder BMI, and adjustment via
division, i.e. regressing  on ( , Age, TSFT). The approximate 95%
asymptotic confidence intervals for the regression parameters obtained through all three
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methods are also displayed. The approximate confidence intervals for PCAR estimates were
obtained as proposed in (10).

The implementation of the binning algorithm allows for merging of sparsely populated bins.
Bin widths were chosen such that there are at least (p + q + 1) points, enough to fit the linear
regression with (p + q) predictors in each bin. If there were bins with less than (p + q + 1)
elements, such bins were randomly merged with neighboring bins. The merging algorithm is
randomized to avoid the introduction of any additional bias. It starts by merging bins with no
points. If there are more than one such bin, it randomly picks one and merges it with its neighbor
of smallest number of points. After merging all the bins with no points, the bins with one point
and eventually bins with p + q points are merged. For this example with n = 524 (after the
removal of outliers), the average number of points per bin was 15, yielding a total of 34 bins
after merging. Note that CAR estimates have been shown to be sufficiently robust regarding
different choices of m, under the rate conditions given in Section 4 (Şentürk and Müller,
2006). We have found this property to hold for the proposed PCAR estimates as well, where
the range of m values yielding robust estimates for different sample sizes is given explicitly in
the next section.

Note that coefficients obtained by adjustment via division are quite different from the other
three methods applied. In this adjustment the coefficient of DBP becomes quite pronounced
compared to the other two predictors. This is most likely due to the pseudo dependence created
between  and  via division by the common variable BMI. This is an
example of the misleading conclusions that adjustment by division may suggest. In other words,
if the original contamination is not exactly multiplication by the confounder (BMI in this
example), then normalization by division may create further confounding, or “coupling” (as
defined in Archie, 1981), creating a pseudo dependence that does not exist in the original data.

Even though OLS estimates for blood pressure and age are different from the PCAR and CAR
estimates, all are found statistically significant at the usual 5% level. Thus, diastolic blood
pressure and age are still important predictors of PGC even after adjusted for body mass index.
However, using OLS, TSFT is a significant predictor of PGC, but it is not significant using
PCAR and CAR at the 5% significance level. This result is not too surprising, since both
TSFT and body mass index are indicators of obesity. They are positively correlated (Pearson
correlation 0.67). Thus, adjusting for one, the other becomes an insignificant factor for
predicting plasma glucose concentration. We note that even though estimation via CAR leads
to the same conclusion as PCAR on the significance of the predictors for this analysis, the
estimates from these two methods are different for TSFT. This is again to be expected, since
CAR estimates are shown to be biased for the undistorted predictors.

6 Numerical studies
To examine the numerical properties of the estimators, we implemented the following
simulation studies. The underlying multiple regression model is

(11)

where the parameters of interest are (γ0, γ1, γ2, δ)T = (4,−1, 0.3, 3). The error variable is e ~ N
(0, .5), and the confounder variable U is generated from a uniform distribution on [2, 6]. We
considered the joint distribution of the predictors to be multivariate normal: (X1,X2,Z)T ~
N3(µ,Σ), with a general covariance structure
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The mean vector is µ = (0.7, 1.2, |U| − 3.5)T, so that the undistorted predictor Z is dependent
on U. To simulate the distorted (observed) data, we consider the following distorting functions,
ψ(U) = (U + 3)/7, ϕ1(U) = (U + 1)2/26.3333, and ϕ2(U) = (U + 10)/14, satisfying the
identifiability constraints that E{ψ(U)} = 1 and E{ϕr(U)} = 1. The distorted response and
predictors are Ỹ = ψ(U)Y, X̃1 = ϕ1(U)X1, and X̃2 = ϕ2(U)X2. Under this simulation setting, we
examine (1) the confidence interval coverage levels based on the asymptotic results and (2)
the finite sample bias of the estimators, as well as comparing CAR and PCAR estimators in
terms of variance and MSE.

We conducted 1000 Monte Carlo simulation runs for sample sizes n = 100, 150, 350, 800, and
1400 to study the approximate asymptotic confidence intervals given in (10). For the sample
sizes n = 100, 150, 350, 800 and 1400, the total number of bins formed were m = 16, 27, 32,
50 and 70. Table 2 summarizes the coverage and interval lengths, averaged over the 1000
simulation runs, for the approximate 95% asymptotic confidence intervals for the parameter
vector (γ0, γ1, γ2, δ)T = (4,−1,.3, 3). The numerical study indicates that the estimated non-
coverage percentages are close to the target value of 0.05, as the sample size n increases. The
estimated interval lengths are decreasing as n increases, as expected.

We also examined the bias, variance and mean squared error (MSE) of the proposed estimators
in comparison to the CAR estimators. For example, the estimated (absolute bias, variance,
MSE) values for PCAR estimators at the smallest sample size n = 100 are (0.0112, 0.2223,
0.2224), (0.0120, 0.1392, 0.1393), (0.0028, 0.0421, 0.0421) and (0.0167, 0.0651, 0.0654) for
γ̂0, γ̂1, γ̂2 and δ ̂, respectively. These values are averages over 1000 Monte Carlo runs. The
results are similar for other sample sizes, where the variance seems to be the dominating factor
contributing to the MSE. The estimated (bias, variance, MSE) values for the CAR estimator
for δ (even though their asymptotic distributions are different, the three other point estimates
for γ0, γ1 and γ2 are the same for the two methods), δ̂*, are (1.294, 1.694, 3.368) at the same
sample size of n = 100. The multiplicative bias factor of the CAR estimate for δ, shown to be
Cs = E{ψ(U)Zs}/E(Zs) in Section 3, is equal to 1.416 for this simulation set-up. As expected,
the CAR estimate δ̂* is off target for δ = 3 (with a mean of 4.294 at n = 100, and 4.146 at n =
1400). In addition to being biased, note that the CAR estimator δ̂* has substantially larger
variance relative to the PCAR estimator.

As stated above, for sample sizes n = 100, 150, 350, 800 and 1400, the total number of bins
formed were m = 16, 27, 32, 50 and 70, respectively. We carried out additional simulation
studies to examine the affect of the number of bins m. The results suggest that the estimators
are robust, based on estimated MSE, when m is chosen in the intervals [13, 18], [18, 27], [25,
45], [35, 65] and [60, 90] corresponding to sample sizes n = 100, 150, 350, 800 and 1400. In
a given application, the above intervals can give rough guidelines on how the choice of m may
change with sample size, although a sensitivity analysis for the choice of m specific to the data
would also be informative.

Finally, we note that even though the smallest sample size at which the proposed asymptotic
confidence intervals attain reasonable coverage in our simulation study is n = 100 (the coverage
is around 5% off the targeted level for n = 100), the proposed PCAR point estimators still yield
reasonable (bias, variance and MSE) values: (0.0515, 0.5748, 0.5775), (0.0026, 0.3552,
0.3553), (0.0256, 0.0916, 0.0922) and (0.0205, 0.3328, 0.3332) for γ0 = 4, γ1 = −1, γ2 = 0.3,
δ = 3, respectively, at n = 50. These values are estimated under the current simulation set-up
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with 3 predictor variables for n = 50 and m = 8. For the case of simple linear regression, roughly
the same number of bins can be attained with n = 30, and hence n = 30 would be the smallest
sample size where CAR and PCAR give reasonable point estimates. For sample sizes smaller
than 30, systematic localization via binning may not be fully feasible so the PCAR estimates
should be taken with caution. In this case a very rough localization by stratification (by U) into
2–3 groups for crude comparisons is possible.

7 Proofs of the main results
We provide the major steps of the proofs of the main results (Theorem 1 and 2) here and defer
the auxiliary results for these proofs to the Appendix, where they are listed as lemma 1 to
lemma 4. We introduce the following technical conditions:

• (C1) The covariate U is bounded below and above, −∞ < a ≤ U ≤ b < ∞ for real
numbers a < b. The density f(u) of U satisfies infa≤u≤b f(u) > c1 > 0, supa≤u≤b f(u) <
c2 < ∞ for real c1, c2, and is uniformly Lipschitz continuous, i.e., there exists a real
number M such that supa≤u≤b|f(u + c) − f(u)| ≤ M|c| for any real number c.

• (C2) The variables (e, U, Xr) are mutually independent for r = 1,…, p. In addition,
(e, Zs) are assumed to be independent.

• (C3) For the predictors, sup1≤i≤n,1≤r≤p,1≤s≤q{|Xnri|, |Znsi|} ≤ B for some bound B ∈
ℝ. In addition, the predictors Xr satisfy the condition that E(Xr) ≠ 0.

• (C4) Contamination functions ψ(·) and ϕr(·), 1 ≤ r ≤ p, are twice continuously
different-ttiable, satisfying Eψ(U) = 1, Eϕr(U) = 1, and ϕr(·) > 0, 1 ≤ r ≤ p.

• (C5) The matrices Γnj, j = 1,…, m are nonsingular, i.e. ρ = |infj det(Γnj)| > 0, where

 is a Lnj × (p+q+1) undistorted data

matrix in bin j, and  denotes the kth
observation.

The technical conditions above are similar to those introduced in Şentürk and Müller (2006),
except for the new independence structure outlined in (C2), the boundedness of the undistorted
predictors Zs in (C3), and the bin dependent limiting matrices Γnj in (C5), resulting from the
dependence structure between Zs and U. Bounded covariates are standard in asymptotic theory
for least squares regression, as are conditions (C2) and (C5) (see Lai, Robbins and Wei,
1979). The identifiability conditions stated in (C4) are equivalent to E(Ỹ|X) = E(Y|X) and E
(X̃r|Xr) = Xr.

In the proofs of the main results, the following notations will be utilized.

1. A ⊡ B: The Hadamard product of two matrices, A and B, of the same dimension. The
matrix A ⊡ B is also of the same dimension with (i, j)th element equal to the product
of the (i, j)th elements of matrices A and B.

2. 1a×b: A matrix of size a × b with all entries equal to one.

3. θ ̂nj = (β ̂n0j β ̂n1j,…, β ̂npj, η ̂n1j,…, η ̂npj)T.

4.

5.

6. We use  to denote the matrix  and Lnj(i) to denote the number of points in the

jth bin such that Uni ∈ Bnj, and  is the (r, k)th
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element of the matrix  for 1 ≤ r ≤ p + q + 1, where  is the

kth element in the ordered sample .

7. .

Proof of Theorem 1
From Lemma 4 (b.), we have that

(12)

where 

Lemma 3 together with (12) implies that, on event En,

(13)

We first consider the case of r = 0 and show that  is asymptotically normal. Using

Lemma 4, (13), and some algebra,  can be expressed
as

Since the above sum is over all bins indexed by j, and over all points within the bins indexed
by k, it is equal to the sum over all data points indexed by i, summed up in a random order.

Thus, the above expression for  can be further simplified to

(14)

Therefore,  is asymptotically equivalent to  because the second
term  is negligible when . Next, let Fn0t be the σ-field

generated by . Then {Sn0t, Fn0t, 1 ≤
t ≤ n} is a mean zero martingale for n ≥ 1, since E(Sn0t) = 0, E(Sn0,t+1|Fn0t) = Sn0t, and Sn0t is
adapted to Fn0t. Furthermore, note that the σ-fields are nested, that is, Fn0t ⊆ Fn0,t+1 for all t ≤

n. Hence, it follows from Lemma 1 that  in distribution (McLeish, 1974,
Theorem 2.3 and subsequent discussion). This establishes the asymptotic normality of

.
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We proceed next to establish the asymptotic normality of  for r = 1,…, p. Let

 and note that γ̂nr = ν ̂nr/ν̂nr. We first show
that

(15)

For (15) to hold, by the Cramér-Wold device, it is enough to show the asymptotic normality
of

(16)

for real a, b. The asymptotic normality of  will follow from (15) by
applying the δ-method with γ̂nr = ν ̂nr/ν̂nr. Again applying Lemma 4 together with (13) and
some simple algebra, we can express ν̂nr and ν̂nr as

Thus, using similar simplifications as was done for the case of r = 0 in (14), the linear
combination (16), namely  can be expressed as

The second term  is asymptotically negligible and it is straightforward to verify that

 is a mean zero martingale for n ≥ 1. Analogous to the case
of r = 0, described in more details earlier, it follows from Lemma 2 that

. Finally, a direct application of the δ-method gives
 for 1 ≤ r ≤ p, where  is explicitly given in Theorem 1.

The asymptotic normality of  follows similarly to the case of
, since they have similar forms in (13). (See also definition/notation 4.) The

asymptotic variance  which has a similar form as , is given explicitly in Theorem 1. This
completes the proof of Theorem 1.

Proof of Theorem 2
The following relation holds on event An
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(17)

It follows from Lemma 4 (a.) and (b.). Utilizing (17) together with (13) gives

(18)

By the Law of Large Numbers, (18), and boundedness considerations

It has been shown in Şentürk and Müller (2006) that

and it can be shown similarly that  Also, using Lemma 3,
Lemma 4 (a.), (b.) and the Law of Large Numbers, we have

The estimators of the asymptotic variances given in Theorem 2, in terms of the above quantities,

are: (1) , (2)

, and (3) .
Thus, the first part of Theorem 2 follows by noting that

 and . Asymptotic confidence
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intervals given in the second part of the Theorem follow immediately from Theorem 1 and
Slutsky’s theorem using the consistent variance estimators.

8 Discussion
In this work we extend covariate adjusted regression (CAR) models to partial covariate adjusted
regression (PCAR) models that allow for the specification of the effects of un-adjusted
predictors. Asymptotic normality of the proposed estimators are derived. The PCAR (and
CAR) estimation approach was designed to estimate the underlying regression relationship
directly, bypassing the estimation of the exact distortion forms. Although the current approach
leads to estimators that are simple to implement with known asymptotic properties and good
finite sample performance, it does not provide direct estimates of the distorting functions. If
the primary interest is in the distorting functions then alternative approaches are needed. A
potential alternative approach would involve considering refined estimators for the varying
coefficient functions to be used in targeting the distorting functions. However, nontrivial work
is required and this remains largely an open problem.

Another interesting and relevant issue, brought to light by a reviewer, is an alternative analysis
of the diabetes data given in Section 5. The analysis proceeds by considering the observed
variable Zs = Age as , where U = BMI (body mass index) and  is a latent variable
that can be interpreted as “core biological wear”. This implies that the underlying model of
interest would involve the latent construct of core biological wear instead of age (defined to
be the length of time that a person has lived, which is observable). Such an application is an
interesting extension of CAR in the presence of demographic variables, such as age or gender,
and may be of key interest to the area of latent variable modeling in general. However, if one
is interested in the direct effect of age on the response Y, then the specific model of interest
would include age as a predictor. In this case, the PCAR methodology developed here would
be appropriate, as the application of CAR estimation would result in inconsistent estimates. In
either case, the specific area of application and relevant body of scientific literature can provide
guidance to the researcher in choosing the relevant model. For example, if a researcher is unsure
of whether to enter age into the model as actually age or as ‘core biological wear’, then the
statistician can provide guidance on focusing/clarifying the specific aims of the research
hypotheses with the researcher and the available relevant literature. After the specific research
hypothesis is defined, which may involve illiciting the relationship (between the predictor and
response) of interest to the re-searcher, then a suitable/reasonable PCAR model can be chosen/
entertained. Hence, once the hypothesis (relationship of interest) is identified, then the
(underlying) model can be specified (containing predictor Zs or ) and the appropriate
estimators (PCAR or CAR) can be applied accordingly.

Finally, we note the following regarding the implementation of the binning procedure, in the
context of the data analysis. For the theory, we assumed that the support of U is the interval
[a, b]. To be able to bin the data with respect to U = BMI and compute the estimators, we take
a and b to be the min/max of the data. For any given population under study, a reasonable range
can be inferred to define the limits a and b. For adults, we can reasonably set the limits to 14
and 65 BMI, for instance. In our data, the observed min and max are 18.2 and 49.7 and the
intervals/bins are between these observed limits. However, if one is applying the binning using
the limits 14 and 65, for instance, our estimator weighted by Lj/n will assign zero weight to
bins/intervals with no data (as it should), e.g. bins with U between 14 to 18.2 and 49.7 to 65
BMI. Thus, starting the binning at the min/max of the data is approximately equivalent to
starting at [a, b].
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Appendix
In this section we provide the additional lemmas and their proofs utilized earlier for the main
results. We begin by formally defining the events under which the two main theorems of
Section 4 are given. Summarizing the existence conditions for the PCAR estimators, define
the events

(19)

where , ρ is as defined in (C5),

 is the average of the U’s in Bnj, and (Ω,ℱ, P) is the underlying probability
space. The estimators in (8) and (9) are well defined on events Ãn and An, respectively. The
event En in Theorem 1 and Theorem 2 is defined to be the intersection of An and Ãn, En = A ∩
Ãn. It is shown following Lemma 4 that pr(En) → 1 as n → ∞.

We next introduce some additional technical conditions that are needed for the proof of Lemma
4 given below:

• (C6) The functions h1(u) = ∫ xg1(x, u)dx and h2(u) = ∫ xg2(x, u)dx are uniformly Lips-
chitz, where g1(·,·) and g2(·,·) are the joint density functions of (χ,U) and (χe,U),
respectively.

• (C7) The error term satisfies E|eτ| < ∞ for τ > 4.

Lemma 1
Under the technical conditions (C1)–(C7), on event An (19), the martingale differences Wn0t
satisfy the conditions

(a.)

(b.)

.
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Proof
Let Wn0t = wn0tυn0t, where , υn0t = γ0ψ(Unt) + ψ(Unt)entκ1k(t)−γ0 ≡ α1nt+α2ntent,
α1nt. Using (C1), (C3) and (C4), it holds on event An that sup1≤t≤n |α1nt| < c1 and sup1≤t≤n |
α2nt| < c2 for some c1, c2 > 0. Thus, it holds for ϵ > 0 that

Now,  is bounded uniformly in n and t, since ent has finite fourth moment by (C7). Also
note that

. Lemma 1 (a.) follows, since  uniformly in n and t,  and |
ent| being i.i.d. with finite fourth moments.

Next, consider the term  given in Lemma 1 (b.). It is equal to

Using Law of Large Numbers, it holds that . Since T4 and T5 have
expected values zero and variances O(n−1), they are both Op(n−1/2). By Lemma 4 (a.) and the
Law of Large Numbers, term T6 is equal to

where Γ and ℳ are as defined prior to Theorem 1. Thus,

 and Lemma 1 (b.) follows.

Lemma 2
Under the technical conditions (C1)–(C7), on event An(19), the martingale differences Wnrt
satisfy the conditions
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(a.)

(b.)

Proof
Part (a.) of Lemma 2 follows in a similar fashion as part (a.) of Lemma 1. Therefore, we focus
on the proof of part (b.). The term  in Lemma 2 (b.) is equal to

Using the Law of Large Numbers, it holds that

. Since T11, T12,
T13 and T14 have expected values zero and variances O(n−1), they are all Op(n−1/2). By Lemma
4 (a.) and the Law of Large Numbers, term T15 is equal to

Thus
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where ,
and Σr22 = var(X̃r). Hence Lemma 2 (b.) follows.

Lemma 3
Under the technical conditions (C1)–(C6), it holds on event En that,

where

The proof follows from Lemma 3 of Şentürk and Müller (2006) by substituting 1 in place of
ϕp+1,…, ϕp+q.

Lemma 4

Under the technical conditions (C1)–(C7), for a sequence rn such that ,
on event An

(a.)

(b.)

, where Γnj is assumed to be nonsingular by (C5), and .

The proof is similar to the proof of Lemma 4 given in Şentürk and Müller (2006). However a

key difference is that the limiting term in part (a.), , contains expectations taken conditional
on U. The conditioning on U does not disappear because of the dependence between Zs and
U in the case of PCAR.

Proof that pr(En) → 1. The formula given in (32) in Şentürk and Müller (2006) can be extended
to supj |det(Θnj) − det(Γnj)| = Op(rn), where rn is as defined in Lemma 4. This implies, on event
An, that pr(infj det(Θnj) > ζ) → 1 as n → ∞, where
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 and ρ is as defined in (C5). Similarly, it can be
shown that pr(minj Lnj ≤ p + q) → 0 as n → ∞, where p + q denotes the number of predictors.
Thus, pr(A) → 1 as n → ∞. Furthermore, Lemma 3 implies that

This shows that pr(infj det(Θ̃nj) > ζ) → 1 as n → ∞, which implies pr(Ãn) → 1 as n → ∞. Thus
pr(En) → 1 as n → ∞.
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