
Spatio-temporal modeling of chronic PM10 exposure for the
Nurses’ Health Study

Jeff D. Yanoskya, Christopher J. Paciorekb, Joel Schwartza,c, Francine Ladena,c,d, Robin
Puetta, and Helen H. Suha
a Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public
Health, Boston, MA, USA

b Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA

c Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA

d Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA, USA

Abstract
Chronic epidemiological studies of airborne particulate matter (PM) have typically characterized the
chronic PM exposures of their study populations using city- or countywide ambient concentrations,
which limit the studies to areas where nearby monitoring data are available and which ignore within-
city spatial gradients in ambient PM concentrations. To provide more spatially refined and precise
chronic exposure measures, we used a Geographic Information System (GIS)-based spatial
smoothing model to predict monthly outdoor PM10 concentrations in the northeastern and
midwestern United States. This model included monthly smooth spatial terms and smooth regression
terms of GIS-derived and meteorological predictors. Using cross-validation and other pre-specified
selection criteria, terms for distance to road by road class, urban land use, block group and county
population density, point- and area-source PM10 emissions, elevation, wind speed, and precipitation
were found to be important determinants of PM10 concentrations and were included in the final
model. Final model performance was strong (cross-validation R2=0.62), with little bias (−0.4 μg
m−3) and high precision (6.4 μg m−3). The final model (with monthly spatial terms) performed better
than a model with seasonal spatial terms (cross-validation R2=0.54). The addition of GIS-derived
and meteorological predictors improved predictive performance over spatial smoothing (cross-
validation R2=0.51) or inverse distance weighted interpolation (cross-validation R2=0.29) methods
alone and increased the spatial resolution of predictions. The model performed well in both rural and
urban areas, across seasons, and across the entire time period. The strong model performance
demonstrates its suitability as a means to estimate individual-specific chronic PM10 exposures for
large populations.
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1. Introduction
Previous epidemiological studies have shown that chronic exposure to airborne particulate
matter (PM) is related to increased mortality as well as lung cancer, ischemic heart disease,
dysrhythmias, heart failure, and cardiac arrest (Dockery et al. 1993; Pope et al. 1995; Abbey
et al. 1999; Pope et al. 2002; Finkelstein et al. 2003; Pope et al. 2004). These health studies
have typically characterized the chronic PM exposures of their study populations using city-
or county-wide ambient concentration measurements, which generally do not account for
within-city spatial gradients in ambient PM concentrations or changes in spatial gradients over
time. This failure to account for within-city spatial gradients results in decreased statistical
power and, depending on the nature of the resulting measurement error (Zeger et al. 2000),
may cause the chronic health effects of particles to be underestimated. Recent studies suggest
that within-community mortality effects may be as large as those found in between-community
studies (Jerrett et al. 2005; Miller et al. 2007), though both of these studies derive exposure
estimates from a single year, 2000, after or at the end of their follow-up periods and assume
that spatial relationships in PM levels are constant back in time. Further, given their reliance
on nearby monitors, health studies using city- or county-wide ambient concentration
measurements are limited to areas where nearby monitoring data are available.

Within-city spatial gradients have been estimated using simple spatial interpolation of ambient
PM concentrations. Wong et al. (2004) discussed and compared several of these methods,
including inverse distance weighting (Schwartz 2001), nearest neighbor techniques (Schwartz
and Zeger 1990; Stern et al. 1994; Vedal et al. 1998; Pope et al. 2004), moving window or
“spatial averaging” techniques (Chestnut et al. 1991), and kriging. These methods, however,
are limited by methodological restrictions that require assumptions regarding the form of the
distance-weighting function and by the often sparse spatial distribution of air monitoring sites,
which allows interpolation to capture only large-scale spatial gradients over most of the
domain.

Other studies have used land use regression models (Briggs et al. 2000; Hoek et al. 2001;
Brauer et al. 2003; Jerrett et al. 2007) to predict spatial variation based on land use variables.
These models are often limited, as they generally include land use variables as categorical
variables or as simple linear forms, and have generally not modeled residual spatial variability
or allowed these residual spatial surfaces to vary over time.

To circumvent the limitations of the nearby community monitor and the simple spatial
interpolation approaches, we used generalized additive models (GAMs) to predict monthly
outdoor mass concentrations of airborne inhalable particles (aerodynamic diameter<10 μm;
PM10) across 13 states in the northeastern and midwestern United States (US). GAMs use semi-
parametric methods to model non-linear, uni-dimensional and multi-dimensional functional
forms using penalized splines (Hastie and Tibshirani 1990; Nychka 2000; Wood 2000, 2003,
2004), are computationally efficient, and avoid arbitrary assumptions regarding the distance-
weighting function used to model spatial trends. In addition to spatial trends, we included site-
specific land use information, obtained from a Geographic Information System (GIS), in our
model to address issues related to data sparseness and to help explain fine-scale spatial variation
in outdoor PM10. By combining spatial smoothing with land use predictors, our model is able
to account for within-city spatial gradients, larger-scale regional gradients, and temporal trends
in PM10 concentrations across a large area. The model was developed for use in a larger study
of the chronic health impact of PM, as part of the Nurses’ Health Study, a large prospective
cohort study of US women.
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2. Methods
A model to predict outdoor PM10 concentrations across the northeastern and midwestern
United States was developed by combining spatial smoothing with GIS-derived and
meteorological predictors. This model uses ambient PM10 data measured as part of air quality
and research monitoring networks together with meteorological variables from weather data
bases and site characteristics from a GIS. An important feature of our model was the
incorporation of space-time interactions at the monthly level. The model was developed in
several stages, with preliminary models built to identify important covariates and explore
temporal structure, a final model constructed to estimate PM10 spatial surfaces, and
“sensitivity” models constructed to examine the impact of model choices, assumptions, and
GIS-derived covariates. Model performance was evaluated using cross-validation techniques.

2.1 Statistical Models
2.1.1 Modeling Approach—We modeled spatial and temporal trends in the PM10
monitoring data using a generalized additive mixed model (GAMM) with bivariate penalized
spline terms for space, and one-dimensional penalized spline terms for GIS-derived and
meteorological predictors. Simpler, preliminary models were also constructed for preliminary
covariate selection and to determine the appropriate spatio-temporal structure of the model,
but for brevity only the final modeling approach is described below. The form of the model
was:

1)

where yi,t is the natural-log transformed PM10 monthly site average (for i=1,…, I, I = 922
monitoring sites in the study region and t=1, …, T, T = 180 monthly time periods from 1988
to 2002), and gt(si) accounts for time-period-specific residual spatial variability whereas g
(si) accounts for time-invariant spatial variability. Also, si is the projected spatial coordinate
pair for the ith location, Zi,t,1 through Zi,t,P are time-varying covariates, and Xi,1 through
Xi,Q are time-invariant GIS-derived covariates. We also note that bi is essentially a site-specific
random effect in this model, hence our characterization of the model as a GAMM.

However, for computational reasons, the model in Equation 1 was fit in two stages: the first to
estimate site-specific terms adjusting for time-varying covariates and time-varying residual
spatial variability and the second to model the site-specific terms using site-specific time-
invariant GIS-derived predictors and by modeling residual time-invariant spatial variability.
The form of the two-stage model was:

2)

3)

where ûi is an estimated site-specific intercept that represents the adjusted long term mean at
each location. Both stages of the model were fit using the gam() function in the mgcv library
in R (2006). Because of the time-period-specific spatial terms, the first stage (Equation 2) was
fit iteratively in a back-fitting arrangement (Hastie and Tibshirani 1990) with ui + f1()…fp()
first estimated jointly and at+gt (si ) then estimated separately for each month, such that
variability in the concentrations is parsed between the covariates and the residual spatial terms
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in the first stage. 15 iterations were used to allow all models to converge, and to provide
consistency in comparing across models, though typically only eight to 12 iterations were
necessary to achieve model convergence. We note that the error variance in the first stage
(Equation 2), σe,t 2, is indexed by t because we fit monthly smooth spatial terms (at+gt (si ) in
separate models. The second stage (Equation 3) was then fit to the estimated site-specific ûi
terms using a separate call to the gam() function. Note that by separating the model (Equation
1) into two stages (Equations 2 and 3), the site-specific random effect, bi, becomes a spatial
residual. Also note that while observations in the first stage are specific to location and time,
there are only I observations (i.e., one per site) available in the second stage. Predictions, exp
(ŷi,t), were generated from the model by assigning the GIS-derived and meteorological
predictors to prediction locations for each month following procedures described in the
Geographic Data and Meteorological Data sections, and exponentiating back to the original
scale.

The uncertainty in the model predictions (on the log-scale) was calculated by summing across
the three sources of uncertainty: 1) time-varying spatial and regression functions, 2) time-
invariant spatial and regression functions, and 3) residual site and time-varying variance
components:

where the residual variances σ ̂e,t 2 and σ ̂e,t 2 account for prediction uncertainty in addition to
contributions from functional uncertainty. Note that we assume σ ̂ e,t 2 represents local
heterogeneity and not instrument error. On the original scale, we estimate the prediction
uncertainty using a Taylor series approximation, the delta method (Casella and Berger 2002):

For simplicity, this approach ignores the correlation of the uncertainties of the smooth terms.
However, the prediction interval coverage suggests that the approach provides an adequate
representation of uncertainty (results not shown). We also assessed the relative contribution of
each of these sources of uncertainty to the total. Spatial variability of the estimated standard
errors was assessed by plotting these values across the domain for selected time periods.

2.1.2 Covariate Selection—Covariates that we expected a priori to have a physical
influence on PM10 were considered for inclusion in the model. The potential covariates (as
described below) were air temperature, sea-level adjusted barometric pressure (SLBP), wind
speed, air stagnation, distance to nearest roadway by road class, population density at the block
group, tract, and county level, point-source PM10 emissions within 1 and 10 kilometer (km)
buffers, point-source PM10 emissions estimated using a kernel density function with
neighborhoods of varying size, county-level area-source PM10 emissions, urban land use, and
elevation. Model covariates were chosen from this list based primarily on comparisons of
model performance with alternative covariate sets (as assessed using the cross-validation R2),
examination of the smooth functions of each term, and on statistical significance in the second
stage of the model. In a limited number of cases, some covariates were also included in the
model based on a priori scientific considerations.

Only those covariates that had a relationship with PM10 concentrations consistent with known
pollutant behavior and that improved predictive performance were kept in the model, with the
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aim of achieving a parsimonious model specification. Non-linearity in the covariate effects
was accounted for using spline terms, with seven to eight degrees of freedom considered
sufficient to describe the general shape of each function. In the event that a smooth term used
more than approximately eight degrees of freedom, the smoothing parameter in the gam()
function was used to reduce the degrees of freedom and force a smoother function across the
range of the covariate to reduce the potential for overfitting to the data.

2.1.3 Model Comparisons—To evaluate simpler spatio-temporal structures, the
performance of the final model with monthly spatial terms was compared to a model with the
same covariates but with seasonal spatial terms:

4)

5)

where Season has four levels (winter, spring, summer, and fall). Also, a smoothly-varying
intercept, h(t), where t=1,…, T, T=180, was added to allow for monthly control for the mean
across all sites.

To evaluate the contribution of GIS-derived and meteorological covariates to model
performance, the final model was compared to a set of monthly GAMs with only spatial terms
( yit = at + gt (si) + eit ). The final model was also compared to a conventional method of spatial
interpolation, inverse distance weighting (IDW), with the inverse of the squared distance (1/
d2) used as the weighting function. Finally, the final model was compared to a simplistic but
commonly used approach of using the measured value from the nearest monitor within a radius
of 50 km (31.1 miles).

2.1.4 Cross-validation—Cross-validation techniques were used both to inform decisions
about covariate selection, as well as to compare among alternative model specifications. Cross-
validation procedures followed those outlined in Efron and Gong (1983), where monitoring
sites in the study region were selected at random and were assigned exclusively to one of 10
sets. Data from Sets One through Nine were held out in turn, with predictions generated at the
locations of the held-out observations. The predictive ability of the model was determined
using the squared correlation between the held-out values and the observations (referred to as
the cross-validation R2), with both on the original scale rather than the log scale. Prediction
errors were calculated by subtracting held-out observations from the model predictions. The
potential for bias in model predictions was determined using the mean prediction error and the
slopes from linear regression of the held-out values against the observations. The precision of
model predictions was estimated by taking the square root of the mean of the squared prediction
errors (RMSPE).

Since the covariate selection process involved fitting multiple candidate models to the same
data, data from Set Ten was used to examine generalizability of the model to unmeasured
locations, assessing whether the covariate selection process itself contributed to overfitting.
To do this, data from Set Ten were used only to evaluate predictions from the final model.

2.2 Data
2.2.1 PM10 Data—Outdoor PM10 concentration data from 13 states in the northeast US,
referred to as the study region, were included in this analysis (Figure 1). Data collected in states
adjacent to this study region were also included in the spatio-temporal models to avoid
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boundary effects to the extent possible (Figure 1). PM10 concentration data were obtained from
the US Environmental Protection Agency (USEPA) on a DVD compiled for four USEPA-
funded epidemiological studies from the USEPA’s Air Quality System (AQS), from the
Visibility Information Exchange Web System (VIEWS) for the Interagency Monitoring of
Protected Visual Environments (IMPROVE) network, and from Harvard research studies
including the 24 Cities Study and 5 Cities Study (Spengler et al. 1996;Suh et al. 1997). Data
from all sites that report to the AQS were included regardless of the stated primary monitoring
objective, because excluding sites near point sources, for example, would have prevented the
model from capturing these sources of spatial variability, and because monitoring objective
information is not available for many AQS sites or for monitoring sites of other monitoring
networks.

Both hourly and daily PM10 data were reported to the various monitoring networks. For
monitors that reported hourly PM10, these data were averaged from midnight to midnight to
generate daily means. However, daily means were not calculated when 18 or more valid hourly
values were not available. Daily PM10 data reported using standardized volumes were
converted to local conditions using estimates of daily temperature, SLBP, and site elevation.
Daily PM10 data were then averaged across co-located monitors into daily means for each
monitoring site, and these daily site means were then averaged over the month to generate
monthly site means. As was done for the hourly data, monthly site means were considered
valid only if greater than approximately 70% of the nominal days had valid daily PM10 values.

2.2.2 Geographic Data—Several characteristics of the PM monitoring sites were described
using a GIS. Site-specific geographic data on distance to roadways by road class, urban land
use, population density at the block group, tract, and county level, point-and area-source
PM10 emissions, and elevation were compiled using ArcGIS 9 (ESRI, Redlands, CA). These
variables are derived at the monitoring locations as well as at model prediction locations
(collectively referred to as point locations), which can be computationally intensive when
making predictions at many locations.

The distance from each point location to the nearest roadway by road class was calculated in
the GIS using ESRI StreetMap road data. Road segments were first classified by US Census
Feature Class Code (CFCC) as A1 (primary roads, typically interstates, with limited access),
A2 (primary major, non-interstate roads), A3 (smaller, secondary roads, usually with more
than two lanes), or A4 (two lane, typically surface roads used for local traffic). Distances less
than four meters were set to four meters since values less than four meters were likely due
either to spatial error in the georeferencing of the road data or to inaccurate geographic
coordinates. Distance to road data were log-transformed, since data were highly right-skewed,
which could introduce instability into the estimated smooth functions due to sparse covariate
values in the right tails of the distributions.

Land use data were compiled from the US Geological Survey (USGS) 1992 National Land
Cover Dataset (NLCD), which provides data on 19 categories of land use in raster image files
with one arc-second (about 30 m) spatial resolution. Low-intensity residential, high-intensity
residential, and industrial/commercial/transportation land uses were summarized using a
moving window technique (“Neighborhood statistics” in ESRI Spatial Analyst) to estimate the
proportion of urban land use within 1 km of each point location. Because we intended to capture
neighborhood-scale variability in urban land use patterns, a 1 km radius was considered
appropriate.

Population density values were assigned to each point location using the GIS with data from
the 1990 US Census at three aggregation levels: block group, tract, and county. In the event
that a location was outside the Census boundaries (resulting from slight spatial inaccuracies in
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either the boundary files or the geographic coordinates of the location), the population density
from the nearest area was used.

PM10 emissions from nearby point sources were estimated at each point location using the
1999 USEPA National Emissions Inventory (NEI) facility emissions report. One and ten km
radius circular buffers were created around each point location, and the reported point source
emissions within these buffers summed. Because the distributions of point-source emissions
were highly right-skewed, natural log transforms of these data were performed. To facilitate
natural log transformation, locations reporting zero point-source PM10 emissions within the
appropriate buffer were assigned a value of one-half the minimum value among all monitoring
locations. We also explored using a kernel density function to interpolate the point-source
emissions data, using neighborhoods of 5, 7.5, and 10 km.

Area-source PM10 emissions for each point location were estimated using USEPA NEI tiered
emissions reports, which provide estimates of total area-source emissions of PM10 by county
and year. Thus, these data were treated as a time-varying covariate. The reports include
information on residential combustion, including wood smoke emissions, and highway and
off-highway vehicular emissions. In the event that area-source emissions data were unavailable
for a given county and year, these data were replaced with data from a previous or later year,
if available. If data for a county were not reported in any year from 1988 to 2002, then the
minimum value among the monitoring locations was assigned. Data were log-transformed
since their distribution was highly right-skewed.

Elevation data were compiled from the USGS National Elevation Dataset (NED). Elevation
data are provided as raster image files with one arc-second spatial resolution, and an elevation
was assigned to each point location using the GIS.

2.2.3 Meteorological Data—Monthly average temperature, wind speed, SLBP, and total
precipitation were obtained from the National Climatic Data Center (NCDC) from the TD3280
and TD3220 data products by averaging or summing daily data over each month for each
meteorological monitoring site. Again, as for PM10 concentration data, monthly values of the
meteorological predictors were calculated only for months with more than 70% valid daily
values. Monthly values for each of the meteorological predictors were estimated at each point
location by spatially smoothing monthly data from the meteorological monitoring sites using
a GAM with a bivariate penalized spline smooth term of the projected spatial coordinates for
each month. Similarly, daily temperature and SLBP used to correct standardized volumes were
estimated at each PM10 monitoring site by spatially smoothing daily means of temperature and
SLBP on a daily basis.

Data on air stagnation were compiled by NCDC (Air Stagnation Index) on a 0.25 by 0.25 degree
grid covering the continental US based on the work of Wang et al. (1999). Stagnant days were
defined by a sea-level geostrophic wind speed less than eight meters per second, 500 millibar
pressure-level wind speed less than 13 meters per second, and no precipitation. When there
was a temperature inversion below the 850 millibar pressure level, the eight meter per second
wind speed threshold was relaxed by 10% (to 8.8 meters per second) (Air Stagnation Index).
The percentage of days per month that met the stagnant air criteria were assigned to each point
location for each month.

3. Results
3.1 PM10 Data Summary

A summary of monthly-average PM10 concentration measurements and monitoring locations
is presented in Table 1. The USEPA AQS network provided 98% of the PM10 concentration
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values and 93% of the monitoring locations in the study region. Monthly- average PM10
concentrations were approximately log-normally distributed, with geometric mean and
standard deviation of 23.5 μg m−3 and 1.5 μg m−3, respectively, across the study region. The
distribution of the measured monthly-average PM10 values in the study region is presented by
state or state group and by season in Table 2.

3.2 Model Development
A summary of the distributions of the GIS-derived and meteorological covariates included in
the final model, their units, and the number of estimated degrees of freedom in their smooth
terms is presented in Table 3.

3.2.1 Time-varying predictors—Estimates of yearly area-source PM10 emissions, wind
speed, and precipitation were selected for model inclusion based on the increased predictive
ability of the model (as assessed using the cross-validation R2) when these terms were included.
As expected, monthly PM10 concentrations increased with area-source emissions (Figure 2)
and with decreasing wind speed (Figure 2) and precipitation. Although significant, air
stagnation was not included as a model predictor because of its strong negative correlation with
wind speed (Pearson r=−0.59), its greater and more locally heterogeneous variation in space,
and its poorer predictive performance. The degrees of freedom used in estimating the smooth
functions of the yearly area-source PM10 emissions and monthly precipitation terms were
reduced slightly from the default approach to attenuate small, local variations in the shape of
the functions, which may have been caused by the numerous observations at each location.
However, these reductions did not change the fundamental relationship between the predictors
and the PM10 concentrations. Preliminary model results showed that the relationship between
monthly-average SLBP and PM10 concentrations was contrary to known particle behavior, and
the addition of SLBP offered no improvement in predictive performance. The same was true
for air temperature, so both SLBP and air temperature were removed from further consideration
as predictors.

3.2.2 Time-invariant predictors—Nine location-specific GIS-derived covariates,
including distance to nearest roadway for road classes A1, A2, and A3, urban land use,
population density at the block group and county level, point-source PM10 emissions within 1
and 10 km buffers, and elevation, were found to be important predictors in the model using the
selection criteria. Each was statistically significant (p<0.05) (Wood 2006), except for the point-
source PM10 emissions within 1 km, which was only marginally significant (p=0.09), but was
kept in the model because it increased predictive performance.

The three smooth terms for the distance to nearest A1, A2, and A3 roadway showed increased
concentrations near roadways, with larger effects for the larger road classes. The smooth
function for distance to the nearest A1 road shows strong non-linearity (Figure 2); terms for
the other road classes are essentially linear (Table 3). The distance to nearest class A4 roadway
was not included in the model because this term did not improve predictive ability, and had
essentially no effect when other predictors were included in preliminary models.

The smooth term for the proportion of urban land use within 1 km showed greater urbanization
to be associated with higher PM10 concentrations (Figure 2), while block group (Figure 2) and
county population density were generally negatively associated with PM10 at low population
densities and positively associated at higher densities. Although these three predictors were
correlated, they were included in the model because each was significant and improved
predictive performance. The tract level population density term, in contrast, was insignificant
and offered no improvement in predictive performance, and therefore was not included in the
final model.
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The smooth functions for the point-source emissions terms showed increased PM10
concentrations with increasing emissions, with a small linear effect for the 1 km radius and a
larger, non-linear effect for the larger 10 km radius. Terms representing the point-source
PM10 emissions using a kernel density function were not included in the model because of
their computational intensity and their weaker predictive performance relative to the simpler
circular buffer approach.

PM10 concentrations decreased nearly linearly with increasing elevation (Figure 2).

3.3 Model comparisons
The final model with monthly spatial terms and the above GIS-derived and meteorological
covariates explained 62% of the variability in measured PM10 levels at held-out locations, with
this value being substantially higher than that explained by a GAM spatial smoothing only
model with no covariates (cross-validation R2=0.51) (Table 4), demonstrating the importance
of including GIS-derived and meteorological predictors with respect to model performance.
Plots of the predicted concentration surfaces also revealed much more local spatial variability
in predictions from the final model compared to those from the GAM spatial smoothing only
model.

Predictive performance also increased with increasing temporal resolution, as the final model
with 180 monthly spatial terms (cross-validation R2=0.62) performed better than an alternative
model with four seasonal spatial terms and identical covariates (cross-validation R2=0.54)
(Table 4). These results indicate that the monthly spatial terms are better able to capture residual
spatio-temporal variability in ambient PM10 concentrations than are seasonal terms, even given
the relatively sparse spatial data distribution.

The final model also performed better than the other approaches using IDW (cross-validation
R2=0.29) or nearest neighbor spatial interpolators (cross-validation R2=0.22) (Table 4). As
shown by the regression of predicted on measured values at the cross-validation locations, the
final model also exhibited less multiplicative bias than the interpolation methods (slope of 0.92
for the final model vs. that of 0.65 and 0.42 for the IDW and nearest neighbor methods,
respectively).

3.4 Final Model Predictions
3.4.1 Trends in model predictions—Generally, PM10 concentrations during the winter
season were found to be more spatially variable than for other seasons, with the spatial terms
in winter using the most degrees of freedom and spring the fewest. Figure 3 shows the spatial
surface of the predicted PM10 concentrations in the study region averaged across all months
from 1988–2002. As shown in Figure 3, PM10 concentrations are higher in and around many
major urban areas, with areas of lower PM10 concentration found in more rural areas in northern
Michigan, New Hampshire, and Maine, as well as much of northern New York. The total
amount of variability in model predictions at the gridded locations shown in Figure 3, using
conventional sums of squares decomposition, was 46% spatial, 30% temporal, and 24% due
to spatio-temporal interaction. PM10 predictions from the final model for a typical month are
shown with greater spatial resolution in eastern Massachusetts in Figure 4. The micro-scale
and neighborhood-scale impacts of large roadways and urban land use are evident.

3.4.2 Accuracy and Precision—The accuracy and precision of the final model predictions,
as described by the bias and RMSPE values, respectively, are presented in Table 5. The results
indicate strong model performance, irrespective of season, location, urbanness, and to a lesser
extent monitoring network and monitoring objective. The model performed slightly better in
the summer as compared to winter with respect to both accuracy and precision. The model also
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performed consistently well across the time period of interest, with bias nearly constant and
approximately equal to −0.4 μg m−3 across years, though slightly higher for 1988 at −1.0 μg
m−3. Model precision across years was also nearly constant and equal to 6.4 μg m−3, though
slightly better after the year 2000 at 5.4 μg m−3 on average.

Mapping the bias and RMSPE values by monitoring site indicated no apparent spatial patterns
in the data across the study region (results not shown). The model performed equally well for
areas of varying urbanness, with no prominent trend across quartiles of urban land use or block
group population density. However, the model predictions were generally lower than the
measured values at sites in the AQS and Harvard 24 Cities networks, higher on average at sites
in the IMPROVE network (IMPROVE sites are typically in very rural locations), and
substantially higher at sites in the Harvard 5 Cities network. Precision of the model predictions
was comparable across networks, except that IMPROVE sites showed slightly improved
precision. The model performance varied slightly with the stated monitoring objective for the
AQS sites, with bias less than 2 μg m−3 for all but the “upwind background” and “maximum
precursor emissions impact” sites, which represent less than one percent of the data. Model
precision also varied across monitoring objectives, with sites from the AQS network where the
monitoring objective was not reported (listed as “unknown”) having the poorest precision (8.0
μg m−3) followed by “highest concentration” sites (6.9 μg m−3) (Table 5).

3.4.3 Predictive Uncertainty—The spatial pattern of uncertainty in the model predictions,
as reflected by the standard errors, is similar to that of the predicted concentrations. This
similarity is partially due to the exponentiation of the standard errors to the original scale,
causing higher predicted concentrations to have higher estimated standard errors. When the
standard errors were averaged across all months from 1988–2002, the 5th and 95th percentiles
of the mean standard error values across location were 2.6 and 5.8 μg m−3, respectively, with
an overall mean of 4.2 μg m−3. Uncertainties were elevated in several areas with high
concentrations, especially those with few nearby monitors such as in northeastern Maine, as
well as in several urban areas such as Detroit, MI, Cleveland, OH, Pittsburgh, PA, and New
York City, NY. The impact of monitor sparseness on model performance is illustrated by model
predictions for Maine, which are inflated in the northeastern part of the state and deflated in
the northwestern part of the state. Since few people live in this area, the impact of poor
predictive ability for this region on chronic exposure estimation is likely to be small.

We also examined the relative contribution of each source of uncertainty (on the log scale for
convenience) to the standard errors and found that that the residual spatial and spatio-temporal
variance components, σ2b and σ2

e,t, contributed the most, at 41% and 39%, respectively, of the
prediction variance. Also, estimation of the time-invariant spatial and regression functions
accounted for 11% of the uncertainty, time-varying spatial functions for 9%, and time-varying
regression functions less than one percent. These results indicate that the largest contributor to
model uncertainty is unexplained local spatial variability, both time-varying and time-
invariant. For simplicity this analysis ignores other sources of error, such as instrument error
in measured PM10 concentrations and error induced by averaging daily measures to the monthly
level. Though a very dense network of monitors could potentially reduce the error associated
with the unexplained local spatial variability, such a network is likely infeasible on a large
spatial scale. Additionally, while averaging PM10 data over longer time periods than monthly,
say seasonally or annually for example, may reduce the uncertainty induced by the spatio-
temporal variance component of the model, such a model would not provide monthly estimates
of PM10, which were needed for our corresponding health study to relate monthly changes in
exposure to health outcomes and to allow straightforward aggregation of monthly values into
longer-term moving averages, such as the average exposure for the 3, 6, or 12 months previous
to an event. Thus, our choice to use the monthly time-scale represents as balance between
reducing temporal uncertainty and describing local spatio-temporal variability.
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3.4.4 Overfitting—The final model R2 of 0.74 was higher than the cross-validation R2 of
0.62, which suggests that the model is overfitting, as the model fits the data better at measured
as compared to unmeasured locations. In contrast, the cross-validation R2 for Set Ten (i.e., data
from locations not used to select the covariates in the model) of 0.63 was comparable to 0.62,
the cross-validation R2 across Sets One through Nine, suggesting that model overfitting did
not result from the covariate selection process. If it had, the cross-validation R2 for Set Ten
would be substantially lower than that across Sets One to Nine.

4. Discussion
Our results demonstrate the ability of our GIS-based spatial smoothing model to predict
monthly outdoor PM10 concentrations across the entire northeastern US. Model performance
was strong and substantially better than smoothing or interpolation methods alone, predicting
monthly PM10 concentrations with a high degree of accuracy and precision over a large
geographic region. Further, the model performed well in both rural and urban areas, across
seasons, and across the entire time period. Its strong performance combined with its several
key features make the model a new, powerful, and efficient tool for chronic epidemiologic
studies of particulate matter and represents a significant advance over previously available
methods. The model’s key features are its inclusion of monthly-varying smooth spatial terms
as well as smooth terms of GIS-derived and meteorological predictors, which provides highly
spatially resolved (down to the level of the residential address) and temporally resolved
estimates of chronic PM exposures, even for individuals living in areas with no nearby monitors
(albeit with greater uncertainty for locations with distant monitors). Finally, the model is able
to make predictions at large numbers of locations in a computationally efficient manner, a
necessity for assigning exposures over a long time period to large numbers of subjects and/or
locations.

Results from our analyses showing the importance of GIS-derived predictors were consistent
with those of Brauer et al. (2003) and Briggs et al. (2000), who used GIS-derived predictors
(but not spatial smoothing techniques) in multiple linear regression models to explain spatial
variability in annual PM2.5 and NO2 concentrations, respectively. Although Briggs et al.
compared their ‘regression-mapping’ approach with spatial interpolation methods, neither
paper compared their approach with one that combines spatial modeling and GIS-derived
predictors in one model. Recent work by Gryparis et al. (2007) showed that including GIS-
derived covariates was important and improved predictive performance in modeling traffic-
related air pollutant levels in eastern Massachusetts.

Smith et al. (2003) used a spatial smoother combined with the effect of an additional covariate.
Our approach extends this methodology by 1) allowing for linear, categorical, and non-linear
time-invariant or time-varying effects (or any combination of the above) of additional
covariates using GAMs, and 2) allowing for complex space-time interaction by modeling
separate spatial surfaces at different time periods using bivariate penalized splines to perform
spatial smoothing rather than kriging, which can be computationally burdensome when making
predictions at large numbers of locations. Sahu et al. (2006) described a spatio-temporal model
that allows for nonstationarity depending on urbanness, though we suspect that the
implementation of such a model using Gaussian random fields and Bayesian fitting methods
may be computationally infeasible for our application. Also, Liao et al. (2006) applied ordinary
kriging models to daily PM10 data from the year 2000 across the US, and reported a mean
prediction error of 0.06μg m−3, smaller than but comparable to that in the current study of −0.4
μg m−3. By contrast, though, the mean of the standard errors in our study was considerable
smaller that that reported in Liao et al. (4.2 μg m−3 across the northeastern and midwestern US
across 1988 to 2002 vs. 16.3 μg m−3 for the entire continental US for the year 2000 from a
lognormal kriging model). This larger uncertainty may in part be because their kriging model
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relied on spatial modeling alone and did not incorporate GIS-derived predictors, but also may
be due to their modeling of daily PM10 levels versus monthly average PM10 in the present
study and the larger domain of their study.

Bivariate penalized splines were considered an appropriate means of modeling residual spatial
variation in both the first and second stages of the model because these surfaces were expected
to vary smoothly in space after accounting for local variations using the other covariates and
because spline functions are sufficiently flexible to describe complex spatial trends in the data.
However, results from the final model provided some evidence of overfitting, likely associated
primarily with the monthly spatial surfaces, which were fit using relatively sparse and noisy
data. A denser monitoring network, with monitors located more uniformly across the domain
may reduce the potential for overfitting.

Our modeling approach assumes isotropy and stationarity of the spatial surfaces, normality
and homoscedasticity of residuals, independence of the monthly spatial terms, uniform effects
of GIS-derived and meteorological covariates across space, and no interactions of these
covariates with one another. The model presented in this paper represents a balance between
model complexity and computational efficiency with respect to the amount of time required
to fit the various candidate models and the final model, and to predict concentrations at large
numbers of locations. However, results in Paciorek et al. (unpublished data), which examines
different spatial smoothing methods and variations on other aspects of the model, demonstrate
that little, if any, improvement in predictive performance is gained from the use of more
complex spatial modeling methods or from other changes to the final model. In conclusion,
the strong performance of our modeling approach demonstrates its suitability as a means to
estimate individual-specific chronic PM10 exposures for large populations, and that the
approach has the potential to reduce measurement error in epidemiologic studies by improving
the accuracy of chronic exposure estimates. We are currently using this model to examine the
chronic health impacts of particles in the Nurses Health Study cohort.
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Figure 1.
Map of the northeast states showing the study region, states adjacent to the study region, and
PM10 monitoring sites (sites in Set 10 were not used during covariate selection).
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Figure 2.
Smooth plots from the final model showing non-linear effects of selected predictors and the
associated percent change in predicted PM10 concentrations.
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Figure 3.
Map of the predicted PM10 concentration surface over the entire study region averaged across
all months from 1988–2002. For display purposes, the map shows the 5th to the 95th percentile
of predicted PM10 concentrations.
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Figure 4.
Map of the predicted PM10 concentration surface in eastern Massachusetts for March 2000
from the final model. For display purposes, the map shows the 5th to the 95th percentile of
predicted PM10 concentrations.
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Table 5
Accuracy and precision of model predictions by state or state group, season, quartiles of urban land use and block group
population density, monitoring network, and monitoring objective determined using cross-validation

Grouping Na Biasb (μg m−3) RMSPEc (μg m−3)

By state or state groupd (1988–2002) Northern New England (ME, NH,
VT)

6 362 −1.1 6.6

Southern New England (CT, MA, RI) 6 658 −0.6 5.0

NY 5 307 0.1 5.8

Western Mid-Atlantic (MD, NJ, PA) 11 630 −0.7 7.2

Midwestern (OH, MI) 12 919 0.2 6.4

DE 469 −2.7 6.3

By season (across study region) Winter 10 478 −0.7 7.1

Spring 10 896 −0.5 6.5

Summer 10 967 −0.04 6.0

Fall 11 004 −0.4 5.9

By quartiles of urban land use 1 10 842 −0.3 6.0

2 10 899 0.1 7.4

3 10 805 −0.8 6.1

4 10 799 −0.6 6.0

By quartiles of block group population
density

1 10 827 −0.3 6.2

2 10 819 −0.9 7.3

3 10 885 0.2 6.1

4 10 814 −0.6 5.9

By monitoring network AQSe 42 271 −0.5 6.4

IMPROVEf 836 1.8 4.6

Harvard 5 Cities 172 4.7 7.7

Harvard 24 Cities 66 −1.8 6.8

By monitoring objectiveg Unknown (Other networks) 1 074 2.0 5.4

Unknown (AQS sites) 5 286 −1.8 8.0

Population Exposure 18 794 0.4 5.7

Highest Concentration 15 127 −1.3 6.9

General/Background 1 173 0.8 5.0

Other 1 139 −1.0 5.2

Upwind Background 287 2.1 5.2

Source Oriented 209 1.3 3.7

Maximum Ozone 145 1.8 4.3

Concentration

Maximum Precursor 111 4.8 5.4

Emissions Impact
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Grouping Na Biasb (μg m−3) RMSPEc (μg m−3)

Across all observationsa 43 345 −0.4 6.4

a
“N” is number of pairs of measurements and cross-validation predictions; data from one site in Pennsylvania were removed.

b
Mean prediction error (cross-validation predictions minus measurements).

c
RMSPE is root mean squared prediction error, describing precision of the model predictions.

d
Where results were similar, nearby states were grouped.

e
From the USEPA’s Air Quality System monitoring network.

f
From the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network.

g
Defined for sites in the USEPA Air Quality System (AQS) network only.
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