Age patterns in the prevalence of DSM-IV depressive/anxiety disorders with and without physical co-morbidity

¹ Department of Psychological Medicine, Otago University, Wellington, New Zealand ² Center for Health Studies, Group Health Cooperative of Puget Sound, Seattle, WA, USA ³ Health Services Research Unit, Institute Municipal d’Investigacion Medica (IMIM), and CIBER en Epidemiologia y Salud Publica (CIBERESP), Barcelona, Spain ⁴ Center for Public Mental Health, Austria ⁵ SUNY Stony Brook, Stony Brook, New York, USA ⁶ Department of Neurosciences and Psychiatry, University Hospital, Gasthuisberg, Leuven, Belgium ⁷ Regional Health Care Agency, Emilia-Romagna Region, Bologna, Italy ⁸ Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands ⁹ Fundació Sant Joan de Déu Research and Development Unit, Barcelona, Spain ¹⁰ Department of Psychiatry, University College Hospital, Ibadan, Nigeria ¹¹ Shanghai Mental Health Center, Shanghai, People’s Republic of China ¹² Department of Health Care Policy, Harvard Medical School, Boston, MA, USA ¹³ Fondation MGEN Pour La Santé Publique, Université Paris 5, Paris, France ¹⁴ Mental Health Services, Ministry of Health, Jerusalem, Israel ¹⁵ Department of Epidemiology, National Institute of Psychiatry, Mexico City, Mexico ¹⁶ Institute for Development Research Advocacy and Applied Care (IDRAAC), Beirut, Lebanon ¹⁷ Department of Rural and Indigenous Health, School of Rural Health, Monash University, Victoria, Australia ¹⁸ Colegio Mayor de Cundinamarca University, Bogota, Colombia ¹⁹ National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan ²⁰ Department of Society, Human Development and Health, Harvard School of Public Health, Harvard University, Boston, MA, USA

Abstract

Background—Physical morbidity is a potent risk factor for depression onset and clearly increases with age, yet prior research has often found depressive disorders to decrease with age. This study tests the possibility that the relationship between age and mental disorders differs as a function of physical co-morbidity.

Method—Eighteen general population surveys were carried out among household-residing adults as part of the World Mental Health (WMH) surveys initiative (n=42 697). DSM-IV disorders were assessed using face-to-face interviews with the Composite International Diagnostic Interview (CIDI 3.0). The effect of age was estimated for 12-month depressive and/or anxiety disorders with and without physical or pain co-morbidity, and for physical and/or pain conditions without mental co-morbidity.

Results—Depressive and anxiety disorders decreased with age, a result that cannot be explained by organic exclusion criteria. No significant difference was found in the relationship between mental...
disorders and age as a function of physical/pain co-morbidity. The majority of older persons have chronic physical or pain conditions without co-morbid mental disorders; by contrast, the majority of those with mental disorders have physical/pain co-morbidity, particularly among the older age groups.

Conclusions—CIDI-diagnosed depressive and anxiety disorders in the general population decrease with age, despite greatly increasing physical morbidity with age. Physical morbidity among persons with mental disorder is the norm, particularly in older populations. Health professionals, including mental health professionals, need to address barriers to the management of physical co-morbidity among those with mental disorders.

Keywords

Age; anxiety disorder; co-morbidity; depressive disorder; physical

Introduction

The prevalence of major depressive disorder (MDD) in the general population has frequently been found to decrease with increasing age (Regier et al. 1988; Karel, 1997; Beekman et al. 1999; Kessler et al. 2003a; Alonso et al. 2004; Pirkola et al. 2005; Wells et al. 2006; Trollor et al. 2007), and the picture for anxiety disorders is similar (Regier et al. 1988; Jorm, 2000; Alonso et al. 2004; Wells et al. 2006; Trollor et al. 2007). A number of methodological reasons have been advanced for this, including selective mortality, excluding the institutionalized from the sample and cohort effects (Karel, 1997; Jorm, 2000; Snowdon, 2001; Hybels & Blazer, 2002; O’Connor, 2006). With the exception of the cohort effects, these sampling bias explanations are not thought to be sufficient to explain this age-related pattern (Jorm, 2000; Hybels & Blazer, 2002; Trollor et al. 2007). As to whether the decrease in 12-month or 1-month depressive disorder with age is a cohort or age effect, there is as yet insufficient clear evidence to draw conclusions about this (Jorm, 2000), but it is noteworthy that the same age-related decline in prevalence has now occurred in cross-national surveys conducted in the USA nearly two decades apart (Regier et al. 1988; Kessler et al. 2003a), which is more supportive of an age-related than a cohort effect.

Complicating the picture, scale measures of depressive symptoms (e.g. the Center for Epidemiologic Studies Depression Scale, CES-D) frequently show an increase with age (Beekman et al. 1995; Jorm, 2000; Hybels & Blazer, 2002; Stordal et al. 2003; van’t Veer-Tazelaar et al. 2008), although decreases (Henderson et al. 1998), and U-shaped patterns (Newmann, 1989; Kessler et al. 1992) have also been observed. Prevalences of ‘clinically significant depression’ (measured by the CES-D and/or inclusive of subthreshold depression) among the ≥65 years age group are generally in the range of 10–20% (Beekman et al. 1995, 1999; Snowdon, 2001), compared with prevalences of MDD typically less than 3% (Beekman et al. 1999; Alonso et al. 2004; Wells et al. 2006; Trollor et al. 2007).

The contrast between the age patterning and prevalence estimates of CES-D depressive symptoms versus MDD has fueled suspicion about the validity of diagnostic criteria in older persons, and their operationalization in standardized interviews such as the Composite International Diagnostic Interview (CIDI) (Beekman et al. 1995; Mulsant & Ganguli, 1999; Snowdon, 2001; Hybels & Blazer, 2002; O’Connor, 2006). It has been suggested that depression may manifest differently with age, with older people being more likely to report somatic symptoms and less likely to report required diagnostic symptoms of depressed mood and anhedonia (Gallo et al. 1994; Karel, 1997; Christensen et al. 1999; Jorm, 2000; Hybels & Blazer, 2002). It has also been argued that the attribution of depressive symptoms to a co-morbid physical condition increases with age independent of physical health status (Knauper...
& Wittchen, 1994), with the result that standardized diagnostic interviews may underdiagnose in older people because they exclude symptoms attributed to physical disease (Knauper & Wittchen, 1994; O'Connor, 2006). Knauper & Wittchen (1994) interpret their finding of increasing physical illness symptom attribution with age as a simplifying cognitive heuristic in response to the complex stem questions and probing for physical causes for every depressive symptom in earlier versions of the CIDI. They suggest that changing the structure of the physical cause probe system so that it occurs after assessment of the complete depressive episode should address this problem. This change has been implemented in the version of the CIDI used in the surveys that form the basis of this report.

What is not in dispute is that the prevalence of chronic physical conditions increases with age. There is also substantial evidence that mental disorders are more common among persons with physical illness (Wells et al. 1989; Dew, 1998; Harter et al. 2003; Evans et al. 2005; Scott et al. 2007). Moreover, longitudinal studies show that physical disease is a potent risk factor for depression and anxiety episode onset among the elderly (Schoevers et al. 2000; Brilman & Ormel, 2001; de Graaf et al. 2002; Krishnan, 2002). In this context, it is perhaps curious to find a decrease in diagnosed depression with increasing age, even taking into account the methodological issues mentioned above.

One possibility is that the relationship between age and depression differs as a function of whether mental disorders are accompanied by physical condition co-morbidity. On the basis of prior research, it might be expected that co-morbid depression (here referring to co-morbidity with a chronic physical and/or chronic pain condition) would increase with age whereas non-co-morbid depression would decrease with age. This paper, based on 18 of the World Mental Health (WMH) surveys (Kessler & Ustun, 2004), examines this possibility by testing whether there is an interaction of age with the presence of physical/pain condition co-morbidity in the association with 12-month depressive or anxiety disorder, and by showing the effect of age in those with 12-month mental disorders disaggregated into those with and without physical/pain co-morbidity. The relative proportion of co-morbid to non-co-morbid depression in each age group is also determined. Relevant to the methodological issues raised above, we show the percentage of depression cases excluded for organic (physical) causes in each age group. Our aims are thus both analytical and descriptive. Describing how mental–physical co-morbidity varies across age groups in general population samples is important for guiding the work of both health-care and mental health-care professionals in appreciating the overall health problems of patients they treat.

Method

Samples

Eighteen surveys were carried out in 17 countries in the Americas (Colombia, Mexico, the USA), Europe (Belgium, France, Germany, Italy, The Netherlands, Spain, Ukraine), the Middle East (Israel, Lebanon), Africa (Nigeria, South Africa), Asia (Japan, separate surveys in Beijing and Shanghai in the People's Republic of China) and the South Pacific (New Zealand). All surveys were based on multi-stage, clustered area probability household samples and were carried out face-to-face by trained lay interviewers. Cognitive impairment was not systematically screened for, but given the demands of the lengthy interview, the sample effectively represents the cognitively intact. Sample sizes range from 2372 (The Netherlands) to 12 992 (New Zealand), with a total of 85 088 respondents. The age ranges reported here include those from 18 years and over, but Mexico and Colombia did not sample beyond 65 years and Beijing and Shanghai did not sample beyond 70 years. Response rates range from 45.9% (France) to 87.7% (Colombia), with a weighted average response rate of 70.8%.

Psyc Hol Med. Author manuscript; available in PMC 2009 November 1.
Internal subsampling was used to reduce respondent burden and reduce average interview time by dividing the interview into two parts. Part 1 included the core diagnostic assessment of mental disorders. Part 2 included additional information relevant to a wide range of survey aims, including assessment of chronic physical conditions. All respondents completed Part 1. All Part 1 respondents who met criteria for any mental disorder and a probability sample of other respondents were administered Part 2. Part 2 respondents were weighted by the inverse of their probability of selection for Part 2 of the interview to adjust for differential sampling. Analyses in this article were based on the weighted Part 2 subsample (n=42,697). Additional weights were used to adjust for differential probabilities of selection, adjust for non-response and to match the samples to population sociodemographic distributions.

Training and field procedures

The central WMH staff trained bilingual supervisors in each country. The World Health Organization (WHO) translation protocol was used to translate instruments and training materials. Some surveys were carried out in bi- or multi-lingual form (Belgium; Ukraine, Israel, Nigeria). Other surveys were carried out exclusively in the country’s official language. Persons who could not speak these languages were excluded. Quality control protocols, described in more detail elsewhere (Kessler et al. 2004), were standardized across countries to check on interviewer accuracy and to specify data cleaning and coding procedures. The institutional review board of the organization that coordinated the survey in each country approved and monitored compliance with procedures for obtaining informed consent and protecting human subjects.

Mental disorder status

All surveys used the WMH survey version of the WHO-CIDI (now CIDI 3.0; Kessler & Ustun, 2004), a fully structured diagnostic interview, to assess disorders and treatment. Disorders were assessed using DSM-IV definitions and criteria (APA, 1994). CIDI organic exclusion rules were imposed for diagnoses of MDD and panic disorder. The probe for physical illness was applied at the episode level (i.e. after all individual symptom questions had been asked). Respondents were asked whether they considered that their episode of symptoms was ever ‘the result of physical causes such as physical illness or injury or the use of medication, drugs or alcohol’. If they responded in the affirmative, they were then asked if their episode was always the result of physical causes. If they responded in the affirmative again, they were asked to specify the causes, which were recorded as open text. In all countries, a mental health clinician subsequently evaluated the open text responses and coded them as a legitimate organic exclusion or not. An episode of MDD was excluded on organic grounds only if the respondents indicated that their episodes were always due to physical causes and if the clinician coded them as legitimate organic exclusions. The percentage of MDD episodes excluded as organic, by age group, for all countries combined was: 4.4% (18–34 years); 6.6% (35–49 years); 8.0% (50–64 years); 8.9% (65–79 years); and 11.1% (≥80 years).

This paper includes 12-month anxiety disorders (generalized anxiety disorder, panic disorder and/or agoraphobia, post-traumatic stress disorder, and social phobia) and depressive disorders (dysthymia and MDD). Anxiety and depressive disorders were aggregated into a single category, on the basis of prior findings from the WMH surveys that anxiety disorders and depressive disorders have equal and independent relationships with a wide range of chronic physical conditions (Scott et al. 2007).

Chronic physical conditions

Physical conditions were assessed with a standard chronic condition checklist adapted from the US Health Interview Survey (NCHS, 1994). Prior research has demonstrated reasonable
correspondence between self-reported chronic conditions, such as diabetes, heart disease and asthma, and general practitioner records (Kriegsman et al. 1996).

For all countries except Nigeria, Lebanon, China and Ukraine, chronic physical conditions were screened for by asking participants in the Part 2 sub-sample if they had ever had arthritis, rheumatism, chronic back or neck problems, frequent or severe headaches, other chronic pain, seasonal allergies, stroke, heart attack, and whether they had ever been told by a doctor they had had heart disease, high blood pressure, asthma, tuberculosis, chronic obstructive pulmonary disease (COPD), diabetes, ulcer, HIV/AIDS, epilepsy or cancer (Table 1). For problems that could have remitted, participants were asked if they still had the condition(s) in the past 12 months, except in Nigeria, Lebanon, China and Ukraine (Table 1). The 12-month prevalence of these latter conditions is used in this paper. For the analyses reported here, the physical conditions were aggregated and included: stroke, heart attack, heart disease, asthma, COPD, diabetes, ulcer, HIV/AIDS, epilepsy, tuberculosis and cancer. The pain conditions were also aggregated and included: arthritis, chronic back/neck problems, frequent or severe headaches and other chronic pain.

Analysis methods

Prevalences were estimated for four groups, those with: (i) a 12-month depressive and/or anxiety disorder with a co-morbid pain condition, (ii) a 12-month depressive and/or anxiety disorder with a co-morbid physical condition, (iii) a 12-month depressive and/or anxiety disorder without a co-morbid physical or pain condition, and (iv) a physical and/or pain condition without co-morbid depressive/anxiety disorder. Groups (i) and (ii) are not mutually exclusive. Group (iv) is included to provide context for the mental disorder estimates.

Odds ratios for the effect of age (reference level 18–34 years) in each of the four mental and/or physical condition combinations specified above were calculated for all countries combined, in logistic regression models controlling for gender. The interaction of age with physical or pain co-morbidity (present versus absent) in predicting 12-month depressive and/or anxiety disorder was assessed in a logistic regression model on the pooled dataset, controlling for gender.

A separate set of analyses using those with a 12-month depressive and/or anxiety disorder (i.e. cases) as denominator calculated the percentage with a co-morbid physical and/or pain condition, by age group, for all countries combined. All analyses were run with SUDAAN version 8.0.1 (SUDAAN, 2002) to adjust for clustering and weighting.

Results

Sample characteristics

The combined sample of those who completed the longer version of the interview (Part 1 + Part 2) including the physical condition checklist was 42,697. The Part 2 sample in each country ranged in size from the smaller Asian surveys in Japan (887), Beijing (914) and Shanghai (714) to the larger samples in New Zealand (7312), the USA (5692), Israel (4859) and South Africa (4315). The proportion of the sample that was age 60 or greater was higher in the developed countries than the developing countries, and the percentage with 12 or more years of education was also generally higher in the developed countries. Further detail on sample characteristics is provided elsewhere (Scott et al. 2007).

Mental and/or physical condition groups by country

The prevalence of the four groups is shown in Table 2 for each of the contributing countries, all ages combined. The table illustrates two key features: there is a good deal of variability in
prevalences across countries, but despite this variability, there is a pattern of mental disorder being more prevalent with pain or physical condition co-morbidity than without it. Physical/pain conditions unaccompanied by mental co-morbidity are a good deal more prevalent than when accompanied by mental co-morbidity, in all countries.

Mental and/or physical condition groups by age

Prevalence by age—The age patterns in the prevalences of the four mental and/or physical condition groups are depicted in Fig. 1. The prevalence of depressive/anxiety disorders in the absence of physical/pain co-morbidity decreases with age. By contrast, the prevalence of physical/pain conditions in the absence of depressive/anxiety disorder increases sharply with age. The two mental–physical co-morbidity groups display a similar age-related pattern with prevalence climbing slightly from younger to middle age and then reducing somewhat in the older groups.

Effects of age, controlling for gender—The effects of age on the four mental and/or physical condition groups after controlling for gender are provided in Table 3. These data clarify the age curves shown in Fig. 1, without the distraction of the differing prevalences across the four groups. The greatest change across the lifespan occurs in the decreasing odds of depressive/anxiety disorder without physical/pain co-morbidity. The two mental–physical co-morbid groups show slightly different patterns in that the odds of mental disorder co-morbid with pain are the same in the 65–79 years age group as the youngest group, but the odds of mental disorder co-morbid with physical condition are higher in the 65–79 years age group compared with the youngest group. However, all types of mental disorder (with or without co-morbidity) decline in the oldest age group. The lack of substantive difference between the mental disorder groups in age patterns is confirmed in finding that the interaction of age and physical disorder co-morbidity (present versus absent) in the association with 12-month depression/anxiety was not significant ($p=0.40$).

Proportion of mental disorder cases with physical/pain co-morbidity, by age—Mental disorders in the aggregate (i.e. both with and without physical/pain condition co-morbidity) decline in prevalence with age (Table 4). The proportion of cases with physical or pain condition comorbidity is greater than 50% at all ages, increases in a monotonic fashion with age, and comprises the vast majority of the oldest age group with mental disorders (Table 4).

Discussion

When mental disorders were disaggregated into those with and without physical/pain condition co-morbidity, those without co-morbidity decreased monotonically with age, whereas those with co-morbidity peaked in the middle years and then decreased in older age. However, no significant difference was found in the relationship between mental disorders and age as a function of physical/pain co-morbidity. In the aggregate, depressive and anxiety disorders decreased with age. The overlap of mental and physical conditions was asymmetrical; among those with mental disorders, physical/pain co-morbidity was more common than not, at all ages, and rises with age. By contrast, physical/pain conditions were more likely to occur without mental co-morbidity than with it, at all ages.

The results of this study are consistent with other general population surveys using standardized diagnostic measures in showing lower prevalences of depression and anxiety disorders in older age groups relative to younger age groups. One of the criticisms of this kind of study is that it samples from the non-institutionalized population and, effectively, given the demands of the CIDI, from a cognitively intact population. This is undeniable, but these sampling issues
probably do not explain the decline in mental disorder prevalence with age. US data indicate that rates of institutionalization are fairly low among those aged 65–79 years, who form the majority of the older population (3% in those aged 65–69; 5% in those 70–74; 7% in those 75–79) (Siegler et al. 2002), and similar figures have been quoted for Australia (Troller et al. 2007). Troller et al. (2007) have shown (a) that inclusion of those living in aged-care facilities would have minimal impact on mental disorder prevalences among those aged ≥65 years, and (b) that prevalences are unaffected whether those with mild cognitive impairment are included or excluded from analysis.

It also seems improbable that the application of organic exclusion criteria can explain the decline in mental disorder prevalence with age. First, because the probes for organic causes were applied at the episode and not the symptom level, thus obviating the possibility that older persons would use organic attribution as a cognitive heuristic for dealing with symptom-related probes (Knauper & Wittchen, 1994). Although this does not obviate the possibility that older persons may be more likely to attribute entire episodes to organic causes (independent of actual health status), at present we are not aware of evidence that this occurs, and in each of the WMH surveys mental health clinicians judged the legitimacy of all such attributions. Second, although the data we present on the rates of organic exclusions show a clear increase with age, the proportion of cases excluded for organic causes is not high enough to explain the decline in mental disorder prevalence with age. For example, if the excluded cases were all reincluded, estimates of mental disorder in the youngest and oldest age groups would rise to 11.2% and 5.0% respectively, compared with estimates of 10.7% and 4.5% with organic exclusions applied (and in fact this would be an overestimate of the impact of organic exclusions because the mental disorder estimates in this paper combine depressive and anxiety disorders). Heithoff (1995) showed a similar result with Epidemiologic Catchment Area (ECA) data. These data do not, however, inform with regard to the possibility that depression may manifest differently with age, which might mean that the declining prevalence we observe is an artifact of the fact that DSM-IV criteria become less valid with increasing age. The research on this is not consistent. Gallo et al. (1994), for example, find a negative association between age and reports of anhedonia, whereas Christensen et al. (1999) find the opposite (see also Karel, 1997). A further consideration is the fact that these criticisms of diagnostic validity on the grounds of age differences in symptom manifestation and symptom attribution largely apply to depression diagnoses, yet anxiety disorders show the same decline with age (Alonso et al. 2004; Wells et al. 2006; Troller et al. 2007). Nevertheless, it is also clear that fully structured lay-conducted interviews such as the CIDI produce considerably lower estimates of DSM-based depressive disorders among older populations than semi-structured interviews conducted by clinicians (Skoog, 2004). The source of this discrepancy in prevalences, and its implications for conclusions about the validity of either the fully structured or semi-structured interviews, remains to be clarified.

In sum, this study demonstrates that despite the extremely prevalent reports of chronic pain and physical conditions among older age groups, the vast majority in the older general population do not have CIDI-diagnosed mental disorders. Methodological explanations notwithstanding, there are possible substantive explanations for this also, including age-related changes in expectations of declining health status (Karel, 1997; Siegler et al. 2002). Another possibility is that if, as some researchers have speculated, older persons have reduced psychological and social vulnerability to depression (Karel, 1997; Henderson et al. 1998; Blazer & Hybels, 2005), this may compensate for the increased prevalence of physical illness, or increase individuals’ ability to cope with it. British researchers, observing a sharp decrease in prevalence of depressive and anxiety disorders at retirement age (Villamil et al. 2006), have suggested that it may be explained by reducing societal demands and expectations associated with the statutory retirement age. This cannot explain all of the decrease in mental disorder
prevalence observed in the current report, as it continues to reduce in the ≥80 years group relative to the 65–79 years age group (see also Troller et al. 2007), but different factors may be responsible for decreasing mental disorder prevalence at different ages, and retirement may well be an important factor in the younger old that helps to offset the psychological impact of increasing physical morbidity.

Considering the population with mental disorders, however, a different perspective emerges: physical condition co-morbidity is the rule, not the exception, regardless of age. Past research has emphasized the need for improved detection and treatment of mental disorders in primary care (Ormel et al. 1991; Katon et al. 1992; Coyne et al. 2002). The present study highlights the need for health professionals, including mental health professionals, to address barriers to adequately manage physical co-morbidity among those with mental disorders. Research among mental health professionals has identified barriers such as a lack of explicit allocation of responsibility for medical treatment, lack of service delivery integration, and pessimistic attitudes among treatment providers as to whether improved physical health is possible, or a priority, among those with mental illness (Brown et al. 2000; Friedli & Dardis, 2002; Hyland et al. 2003). Further research among primary-care providers and hospital physicians may be warranted to identify whether there are barriers (e.g. attitudinal, or time pressure) to a treatment focus on physical morbidity once a mental disorder has been diagnosed.

Several limitations of this study should be noted, in addition to the sampling limitations already discussed. First, physical and pain conditions were ascertained by a standard checklist, rather than physician's examination, which contrasts with the detailed assessment of mental disorders. While acknowledging the limitation of self-report, methods research indicates that self-report of diagnosis (which was the measure for most of the physical conditions) generally shows good agreement with medical records data (Kehoe et al. 1994; NCHS, 1994; Kriegsman et al. 1996). A second, related issue is that the relative prevalences of mental and physical conditions observed here, and their degree of overlap, are influenced by which disorders we have chosen to include/exclude. Not all mental disorders were included, although we included most of the common disorders and those most closely associated with physical co-morbidity. We also grouped together a larger number of physical/pain conditions. While this needs to be borne in mind when interpreting the results, it seems likely that the kind of asymmetry we observe here (a lower proportion of the population with physical conditions having mental disorder co-morbidity relative to the proportion of the population with mental disorder who have physical co-morbidity) is characteristic of general populations. Third, we have not included any data on disability, so although on a pure frequency basis it appears as if physical morbidity outweighs mental morbidity in older populations, this does not take into account the complicating and disabling contribution that depression makes to the morbidity of medical conditions (Kessler et al. 2003b; Buist-Bouwman et al. 2005; Scott et al. in press).

In conclusion, this study provides a global, population perspective on the age patterning of CIDI-diagnosed depression and anxiety disorders, for the first time disaggregated into those with and without physical and pain co-morbidity. No significant difference was found in the relationship between mental disorders and age as a function of physical/pain co-morbidity. In the aggregate, depressive and anxiety disorders decreased with age, a result that cannot be explained by organic exclusion criteria. Physical/pain co-morbidity among those with mental disorders is normative and increases with age, which suggests that barriers to the adequate management of mental–physical co-morbidity remain.

Acknowledgements

The surveys discussed in this article were carried out in conjunction with the World Health Organization (WHO) World Mental Health (WMH) Survey Initiative. We thank the WMH staff for assistance with instrumentation, fieldwork, and data analysis. These activities were supported by the US National Institute of Mental Health (NIMH; Psychol Med. Author manuscript; available in PMC 2009 November 1.
 References

Fig. 1.
Percentage with the four mental and/or physical condition combinations, by age group, all countries combined (n=42,697). –◆–, Depression/anxiety with chronic pain; –□–, depression/anxiety with physical and/or pain condition; –△–, depression/anxiety without physical condition; –●–, Physical and/or pain condition without depression/anxiety.
Table 1

World Mental Health Survey questions on chronic physical conditions

The next few questions are about health problems you might have had at any time in your life.

Have you ever had any of the following?\(^{a,b}\)

- Arthritis or rheumatism
- Chronic back or neck problems\(^c\)
- Frequent or severe headaches\(^c\)
- Any other chronic pain\(^c\)
- A stroke
- A heart attack

Did a doctor or other health professional ever tell you that you had any of the following illnesses?\(^b\)

- Heart disease
- High blood pressure\(^c\)
- Asthma
- Any other chronic lung disease such as COPD or emphysema
- Diabetes or high blood sugar\(^c\)
- An ulcer in your stomach or intestine\(^c\)
- HIV infection or AIDS
- Tuberculosis\(^c\)
- Epilepsy or seizures
- Cancer

COPD. Chronic obstructive pulmonary disease.

\(^a\) In Nigeria, Lebanon, China and Ukraine the first block of questions (from arthritis to heart attack) was asked only in a 12-month format: ‘Have you had any of the following in the past 12 months?’, and the follow-up question (below) was not asked.

\(^b\) Participants had to respond to each condition (yes/no/don’t know/refused).

\(^c\) If these conditions were endorsed by the participant, the following question was asked: ‘Did you still have (the condition) or receive any treatment for (it/them) at any time during the past 12 months?’
Table 2
Percentage (and 95% confidence interval) in each of the four mental and/or physical condition groups, by country

<table>
<thead>
<tr>
<th>Country</th>
<th>Depressive/anxiety disorder with pain condition</th>
<th>Depressive/anxiety disorder with physical condition</th>
<th>Depressive/anxiety disorder without physical or pain condition</th>
<th>Physical and/or pain condition without depressive/anxiety disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombia</td>
<td>4.8 (3.9–5.8)</td>
<td>3.1 (2.4–4.1)</td>
<td>4.4 (3.6–5.4)</td>
<td>32.1 (29.3–34.9)</td>
</tr>
<tr>
<td>Mexico</td>
<td>3.6 (2.9–4.3)</td>
<td>1.3 (1.0–1.7)</td>
<td>2.9 (2.4–3.5)</td>
<td>27.7 (24.4–31.3)</td>
</tr>
<tr>
<td>USA</td>
<td>10.3 (9.4–11.3)</td>
<td>7.2 (6.5–8.0)</td>
<td>5.1 (4.6–5.8)</td>
<td>44.2 (42.4–45.9)</td>
</tr>
<tr>
<td>Japan</td>
<td>1.7 (1.1–2.5)</td>
<td>1.4 (0.9–2.2)</td>
<td>1.7 (1.2–2.3)</td>
<td>43.1 (37.7–48.7)</td>
</tr>
<tr>
<td>Beijing</td>
<td>2.2 (1.5–3.2)</td>
<td>1.0 (0.6–1.6)</td>
<td>1.2 (0.7–2.2)</td>
<td>41.7 (37.2–46.3)</td>
</tr>
<tr>
<td>Shanghai</td>
<td>1.6 (0.8–3.1)</td>
<td>1.2 (0.4–3.4)</td>
<td>0.6 (0.2–1.4)</td>
<td>46.0 (40.8–51.3)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>7.0 (6.4–7.7)</td>
<td>5.2 (4.6–5.7)</td>
<td>5.0 (4.5–5.5)</td>
<td>45.4 (43.6–47.3)</td>
</tr>
<tr>
<td>Belgium</td>
<td>4.9 (3.6–6.7)</td>
<td>2.6 (1.8–3.8)</td>
<td>2.9 (2.0–4.3)</td>
<td>46.1 (42.5–49.8)</td>
</tr>
<tr>
<td>France</td>
<td>7.2 (5.8–8.8)</td>
<td>3.6 (2.8–4.6)</td>
<td>3.3 (2.3–4.7)</td>
<td>50.6 (46.1–55.1)</td>
</tr>
<tr>
<td>Germany</td>
<td>2.9 (2.2–3.9)</td>
<td>1.6 (1.2–2.2)</td>
<td>2.2 (1.6–2.9)</td>
<td>41.1 (37.9–44.5)</td>
</tr>
<tr>
<td>Italy</td>
<td>3.4 (2.8–4.2)</td>
<td>1.7 (1.3–2.4)</td>
<td>1.6 (1.2–2.2)</td>
<td>47.5 (44.3–50.6)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5.1 (3.9–6.7)</td>
<td>3.8 (2.5–5.5)</td>
<td>2.9 (1.9–4.5)</td>
<td>39.4 (34.8–44.2)</td>
</tr>
<tr>
<td>Spain</td>
<td>3.1 (2.5–3.8)</td>
<td>1.5 (1.2–1.9)</td>
<td>2.3 (1.8–2.9)</td>
<td>41.3 (38.6–44.1)</td>
</tr>
<tr>
<td>Ukraine</td>
<td>11.9 (10.1–13.9)</td>
<td>7.9 (6.6–9.5)</td>
<td>1.9 (1.2–3.1)</td>
<td>54.0 (50.8–57.2)</td>
</tr>
<tr>
<td>Lebanon</td>
<td>2.2 (1.4–3.6)</td>
<td>0.6 (0.2–1.6)</td>
<td>1.8 (0.9–3.7)</td>
<td>30.3 (26.0–35.1)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.7 (0.5–1.1)</td>
<td>0.3 (0.2–0.7)</td>
<td>0.8 (0.4–1.5)</td>
<td>33.0 (30.3–35.9)</td>
</tr>
<tr>
<td>Israel</td>
<td>5.1 (4.4–5.8)</td>
<td>3.5 (3.0–4.1)</td>
<td>2.6 (2.2–3.1)</td>
<td>41.7 (40.3–43.1)</td>
</tr>
<tr>
<td>South Africa</td>
<td>7.7 (6.8–8.7)</td>
<td>4.2 (3.5–4.9)</td>
<td>3.4 (2.6–4.5)</td>
<td>45.9 (43.2–48.5)</td>
</tr>
<tr>
<td>All countries</td>
<td>5.9 (5.6–6.2)</td>
<td>3.8 (3.6–4.0)</td>
<td>3.3 (3.1–3.5)</td>
<td>42.2 (41.6–42.9)</td>
</tr>
</tbody>
</table>

*12-month DSM-IV depressive and/or anxiety disorders; physical disorders included stroke, heart attack, heart disease, asthma, chronic obstructive pulmonary disease (COPD), diabetes, ulcer, HIV/AIDS, epilepsy, tuberculosis and cancer; pain conditions included: arthritis, 12-month chronic back/neck problems, 12-month frequent or severe headaches and/or other 12-month chronic pain.
Table 3

Effect of age (reference level 18–34 years) in predicting the four mental and/or physical condition combinations, controlling for gender, all countries combined (n = 42,697)

<table>
<thead>
<tr>
<th>Age group years (n)</th>
<th>Depressive/anxiety disorder with pain condition<sup>a</sup></th>
<th>Depressive/anxiety disorder with physical condition<sup>a</sup></th>
<th>Depressive/anxiety disorder without physical or pain condition<sup>a</sup></th>
<th>Physical and/or pain condition without depressive/anxiety disorder<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>18–34 (14,818)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>35–49 (13,236)</td>
<td>1.3 (1.2–1.5)<sup>*</sup></td>
<td>1.4 (1.3–1.6)<sup>*</sup></td>
<td>0.8 (0.7–0.9)<sup>*</sup></td>
<td>1.5 (1.4–1.6)<sup>*</sup></td>
</tr>
<tr>
<td>50–64 (9,006)</td>
<td>1.5 (1.3–1.6)<sup>*</sup></td>
<td>1.9 (1.6–2.2)<sup>*</sup></td>
<td>0.5 (0.4–0.5)<sup>*</sup></td>
<td>2.7 (2.7–2.9)<sup>*</sup></td>
</tr>
<tr>
<td>65–79 (4,631)</td>
<td>1.0 (0.9–1.2)</td>
<td>1.6 (1.3–1.8)<sup>*</sup></td>
<td>0.2 (0.1–0.2)<sup>*</sup></td>
<td>4.8 (4.4–5.3)<sup>*</sup></td>
</tr>
<tr>
<td>≥80 (959)</td>
<td>0.7 (0.5–1.0)<sup>*</sup></td>
<td>0.9 (0.6–1.3)</td>
<td>0.0 (0.0–0.1)<sup>*</sup></td>
<td>6.6 (5.5–8.0)<sup>*</sup></td>
</tr>
</tbody>
</table>

Values are odds ratios (95% confidence intervals).

^a 12-month DSM-IV depressive and/or anxiety disorders; physical disorders included stroke, heart attack, heart disease, asthma, chronic obstructive pulmonary disease (COPD), diabetes, ulcer, HIV/AIDS, epilepsy, tuberculosis and cancer; pain conditions included: arthritis, 12-month chronic back/neck problems, 12-month frequent or severe headaches and/or other 12-month chronic pain.

[*] p < 0.05.
Table 4
Percentage with any 12-month depressive or anxiety disorder (cases), and proportion of cases with physical and/or pain condition co-morbidity, by age group, all countries combined (n = 42 697)

<table>
<thead>
<tr>
<th>Age group years (n)</th>
<th>Percentage with any 12-month depressive or anxiety disorder (i.e. with or without physical/pain co-morbidity)(^a) [% (95% CI)]</th>
<th>Proportion of cases (those with any 12-month depressive or anxiety disorder) with physical/pain co-morbidity(^a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–34 (14 818)</td>
<td>10.7 (10.2–11.3)</td>
<td>56.9</td>
</tr>
<tr>
<td>35–49 (13 236)</td>
<td>11.4 (10.8–12.0)</td>
<td>68.6</td>
</tr>
<tr>
<td>50–64 (9006)</td>
<td>10.4 (9.7–11.1)</td>
<td>78.9</td>
</tr>
<tr>
<td>65–79 (4631)</td>
<td>6.8 (6.1–7.5)</td>
<td>89.2</td>
</tr>
<tr>
<td>≥80 (959)</td>
<td>4.5 (3.5–5.9)</td>
<td>95.3</td>
</tr>
</tbody>
</table>

CI, Confidence interval.

\(^a\) 12-month DSM-IV depressive and/or anxiety disorders; physical disorders included stroke, heart attack, heart disease, asthma, chronic obstructive pulmonary disease (COPD), diabetes, ulcer, HIV/AIDS, epilepsy, tuberculosis and cancer; pain conditions included: arthritis, 12-month chronic back/neck problems, 12-month frequent or severe headaches and/or other 12-month chronic pain.