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Abstract
A new optimization-based method is presented to predict the hydrophobic residue contacts in α-
helical proteins. The proposed approach uses a high resolution distance dependent force field to
calculate the interaction energy between different residues of a protein. The formulation predicts
the hydrophobic contacts by minimizing the sum of these contact energies. These residue contacts
are highly useful in narrowing down the conformational space searched by protein structure
prediction algorithms. The proposed algorithm also offers the algorithmic advantage of producing
a rank ordered list of the best contact sets. This model was tested on four independent α-helical
protein test sets and was found to perform very well. The average accuracy of the predictions
(separated by at least six residues) obtained using the presented method was approximately 66%
for single domain proteins. The average true positive and false positive distances were also
calculated for each protein test set and they are 8.87 Å and 14.67 Å respectively.

1 Introduction
Protein structure prediction is one of the greatest challenges in the field of computational
biology. A variety of techniques are employed to make such predictions (comparative
modeling, fold recognition and first principle based methods)(Floudas et al., 2006; Floudas,
2007). A first principles based approach is the most difficult type because such methods do
not use information from the database of proteins with known structures. These methods
rely on a search of the conformational space of a protein to find energetically stable and
physically realizable structures. The use of additional restraints based on known or predicted
tertiary contacts can be used to guide the search and help a structure prediction algorithm
identify better quality structures. The definition of a contact is method dependent and a
contact is said to occur when two atoms/residues are in spatial proximity with each other.
The definition of a contact can be based on the distance between two Cα atoms, or between
two Cβ atoms or may be a combination of both (Fariselli et al., 2001b). These predicted
contacts can then be explicitly used as restraints in structure prediction algorithms. Contact
prediction methods can also be enhanced and used for secondary structure topology and
disulfide bridge prediction. Thus, the development of an effective residue contact prediction
model can play a vital role in protein structure prediction (Ortiz et al., 1998a,b, c; Olmea et
al., 1999; Cheng and Baldi, 2006; Bonneau et al., 2002; McAllister et al., 2006; McAllister
and Floudas, 2007). Ortiz et al. (1998a) used multiple sequence alignments to derive
distance restraints that were used in Monte Carlo simulations. Similarly, McAllister et al.
(2006) integrated their α-helical topology prediction method with an ab-initio protein
structure prediction method ASTRO-FOLD (Klepeis and Floudas, 2003c).
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Various research groups have introduced different approaches to develop residue contact
prediction methods (Horner et al., 2008; Cheng and Baldi, 2007; Vicatos and Kaznessis,
2008; Shackelford and Karplus, 2007; Vullo et al., 2006; Kundrotas and Alexov, 2006;
Vicatos et al., 2005; Punta and Rost, 2005; Zhang and Huang, 2004; Zhao and Karypis,
2003; Shao and Bystroff, 2003; Singer et al., 2002; Fariselli et al., 2001a; Fariselli and
Casadio, 1999; Lund et al., 1997; Göobel et al., 1994). These methods can broadly be
classified into two categories. The first category uses correlated mutations analysis and the
second category uses machine learning techniques for contact prediction. There exist a
variety of machine learning approaches like hidden Markov models, self organizing maps
and support vector machines (Zhao and Karypis, 2003; Cheng and Baldi, 2007) that are used
for protein residue contact prediction. A few selected publications using these methods are
reported below. Several researchers have specifically investigated the disulfide bridge
connectivity and its relationship with protein structures (Chuang et al., 2003; Cheng et al.,
2006; Chen and Hwang, 2005; Rubinstein and Fiser, 2008).

Correlated mutations analysis is based on the premise that mutations in proximal residues
occur in a covariant fashion (Vicatos et al., 2005). This means that when a critical residue
(i.e., important for protein function) of a protein is mutated, the proximal residues are likely
to undergo mutations in order to keep the functionality intact (Vicatos et al., 2005). This
hypothesis has been used as the underlying principle for various correlated mutations based
contact prediction methods. Hamilton et al. (2004) used neural networks on a training set of
100 proteins. Instead of using pairwise correlation as the predictor, they used windows
(pairwise correlation between 5 residues centered around a residue of interest) of correlation
for contact prediction and reported an improved accuracy. This method resulted in an overall
accuracy value of 30.7% when the best L/10 predictions are considered. Fariselli et al.
(2001b) also used a correlated mutations analysis approach with neural networks and
reported that their method had the lowest predictive ability for α-helical proteins relative to
proteins of different structural classes. A similar result was also reported in another
publication (Vicatos et al., 2005). Vicatos et al. (2005) started with a vector of 142
descriptors (based on the physiochemical properties) that they used for residue similarity
comparison. These 142 descriptors are subsequently reduced to a set of 19 descriptors using
Principal Component Analysis. Finally a set of 3 main descriptors was selected for
correlated mutations analysis. This method was tested on all protein structural classes and
was found to produce an average accuracy of around 15% using their two predictors for α-
helical proteins. In another work, Vicatos and Kaznessis (2008) proposed a Monte Carlo
simulation based approach to separate true positive predictions from the false positive
predictions and thus increasing the accuracy of predictions for α-helical proteins.

In a recent work, Cheng and Baldi (2007) proposed a support vector machine method
(SVMcon) to address this problem. This method uses a set of five features (local window
feature, pairwise information feature, residue type feature, central segment window feature,
and protein information feature) as input to predict the likelihood of contact between two
residues (Cheng and Baldi, 2007). The use of the enhanced feature set enabled to authors to
attain a higher level of accuracy and coverage on the test set. SVMcon was also tested on all
protein structural classes and an average accuracy of 24% 17%, and 11% was obtained for
α-helical proteins for residue separation value of 6, 12, and 24, respectively.

Despite all these developments, the protein residue contact prediction problem has still not
achieved a desired level of success. There has been a conscious effort by re-searchers in this
field to address this problem, which is also part of the Critical Assessment of Techniques for
Protein Structure Prediction (CASP) experiments (Grana et al., 2005). As mentioned earlier,
it has been found that predicting non-local contacts in α-helical proteins is a relatively
difficult problem relative to predicting contacts in other structural classes of a protein
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(MacCallum, 2004). Our proposed method specifically aims at predicting non-local
hydrophobic contacts in α-helical proteins and our focus is on improving accuracy of the
predicted hydrophobic contacts. A complete description of the proposed model is presented
in the following sections.

2 Methods
The residue contact prediction model in this article aims at predicting the contacts between
different hydrophobic residues of an α-helical protein which can be used to narrow down the
space searched by protein structure prediction algorithms. This contact prediction model is
based on Anfinsen ‘s hypothesis (Anfinsen, 1973), which states that for a given
physiological set of conditions the native structure of a protein corresponds to the global
Gibbs free energy minima. The proposed model also selects contacts in such a way that the
total energy of such a configuration is minimum. Given the secondary structure information
(location of α-helices) of an α-helical protein, the proposed integer linear optimization
model predicts a set of residues that are most likely to form contacts (i.e., interhelical
contacts between hydrophobic residues). This method also produces a distance range in
which these predicted contacts are most likely to occur. It uses the information about
secondary structure of a protein as input to the model. The secondary structure information
is obtained using the Dictionary of Protein Secondary Structure (DSSP)(Kabsch and Sander,
1983). The DSSP method assigns secondary structure through the identification of hydrogen
bonding patterns indicative of α-helices, β-sheets, and turns. A high resolution Cα-Cα

distance dependent force field (Rajgaria et al., 2006) is used to calculate the interaction
energy between different residues of a protein. This force field is discussed in detail in
Section 2.1. The energy of the conformer is calculated using this force field and the contacts
that produce the lowest energy (that also satisfy some structural constraints) are selected by
the proposed integer linear optimization model. Problem specific constraints can be easily
incorporated in the existing model. This method has been found to perform very well on
four different protein test sets with a very good accuracy.

2.1 High Resolution Cα-Cα Distance Dependent Force Field
The force field used in this formulation is a high resolution Cα-Cα distance dependent force
field generated using a linear optimization formulation (Rajgaria et al., 2006). The force
field is denoted as high resolution because it has been trained on a large set of high
resolution decoys (small rmsd with respect to the native) and it was generated by requiring
that the native structure always has a lower energy value than the similar non-native
structures. This type of training ensures that the force field will assign a contact energy that
would result in a lower energy configuration.

The Cα-Cα high resolution force field (HRFF) is a distance dependent force field and the
energy of an interaction between two residues depends on the “contact” distance between
the two Cα atoms. A contact exists when the Cα carbons of two amino acids are within 3 and
9 Å of each other. Hence, the energy of each interaction is a function of the Cα-Cα distances
and the identity of the interacting amino acids. For 20 naturally occurring amino acids, there
are 210 amino acid combinations and for 8 distance bins (refer Table I) there are 1680
energy parameters. In this model these energy parameters are denoted as Ei,j,b, where i and j
are the interacting amino acids and b is the contact distance. The Cα-Cα HRFF is then simply
used as a lookup table and the interaction energy between any two amino acids of given
identities and distance is a parameter. For more detailed information on force field
generation, readers are referred to the original work (Rajgaria et al., 2006).
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2.2 Optimization Model Formulation
A binary variable, wi,j,b is defined for each residue pair and this variable is active only when
the pair (I, j) forms a residue contact in the given distance bin b. The high resolution force
field uses 8-bin distance definition for the interaction energy between two interacting amino
acids. These bins range from 3.0 Å to 9.0 Å. Contacts beyond this range are assumed to not
contribute to the energy of a conformer. The model uses an extra bin, bin 9, to identify these
no-contacts.

Table I shows the relation between the contact bin and the predicted contact distance range
in which the predicted contact is likely to occur. From this table it can be seen that there is
no prediction for distances less than 3.0 Å. It is very rare for two Cα atoms of two different
residues to come closer than 3.0 Å, therefore predicted contacts are always more than 3.0 Å.
A maximum prediction width of 8.0 Å is used to define a contact. If a contact is predicted in
bin 1, then it means that the distance range of this contact varies from 3.0–8.0 Å. Similarly,
for other bins the predicted contact distance range is given in column 2 of Table I.

Using the contact energy values, this formulation then identifies the optimal contact bin (bin
1–8 if there is a contact and bin 9 if there is no contact) for each residue combination subject
to a set of constraints. These constraints are an important part of the formulation and are
included either as a preprocessing step or as model equations (refer Section 2.3 and 2.4). In
the preprocessing step some of the contacts are fixed before the model is solved. Model
equations are constraints that are enforced while the solver searches the solution space.
These constraints are described in Section 2.3 and Section 2.4.

2.3 Objective function and contact variables
The objective function of this formulation is to predict the set of hydrophobic residue
contacts of a protein that minimizes the contact energy. In this formulation, every active
binary variable, wi,j,b (representing the existence of a residue-residue contact between pair i,
j at distance bin b) contributes to the energy of a conformer by amount Ei,j,b. The high
resolution distance dependent force field published in Rajgaria et al. (2006) is used as the
energy parameter for bins 1–8. It has been observed from the force field plots that as the
contact distance increases, (greater than 9 Å) the interaction energy approaches a value of 0
for most of the residues. For this reason, the energy value of bin ‘9’ (which represents no
contact), is assigned as zero (Ei,j,9 = 0).

The objective function can be written in terms of the binary variables and parameters as
Equation 1. As mentioned earlier, whenever there is a contact between residue pair (i, j) at a
distance bin b, then this contact contributes to the energy of a protein by amount Ei,j,b. Thus,
the total energy of a protein can be calculated by taking the sum of such energy
contributions over all residue pairs (Equation 1). Also, a residue pair (i, j) can only form
contact in one of the 9 bins. This means that wi,j,b will be equal to 1 for only one bin b and it
will be equal to 0 for rest of the bins. This is incorporated in the model as Equation 2. A
binary variable yci,j is defined for each residue pair and this variable is active only when the
pair (i, j) forms a residue contact in the first 8 bins. Equation 3 relates the activity of variable
yci,j to wi,j,b. yci,j is equal to 1 when there is a contact between residue pairs (i, j) in bin 1–8.
If the contact occurs in the last bin (bin 9) then yci,j is set equal to 0.

(1)
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(2)

(3)

It might appear that the total energy in Equation 1 is calculated by summing the contribution
from all possible residue pairs i and j, and not just hydrophobic residues. However, as
explained later in the text (refer Section 2.4.2), all binary variables yci,j, corresponding to
non-local (residues separated by more than 5 residues), non-hydrophobic contacts are set
equal to zero. Thus, these non-local, non-hydrophobic contacts do not contribute to the total
energy of the conformer. However, local non-hydrophobic residues are allowed to make
contacts.

2.3.1 Helix Contact Constraints—For every helical residue hi (i ∈ α – helix), Equation
4 establishes the maximum number of non-local contacts that can be specified using hi. This
constraint is included in order to limit the number of contacts a helical residue can have.
Equation 4 means that every helical residue i, can at most make three contacts with other
helical residues j that are not in the same helix and that are separated by at least three
residues from i. This local separation of three residues is introduced to discount the contacts
that a residue would make with other local residues because of sequential proximity.
Increasing the right hand side value from three to four will produce more predictions but all
of these predictions might not be correct or most effective. Similarly, decreasing the value of
right hand side to two will result in a smaller subset of contacts while possibly missing some
important contacts.

Equation 5 is a similar version of Equation 4 for helical residues that are Cysteine. Cysteine
residues are also involved in forming disulfide bridges with other Cysteine residues of a
protein. This additional contact property of Cysteine residues is included by allowing four
non-local contacts for each of the helical Cysteine residue in a protein.

(4)

(5)

Another binary variable yhp,q, is introduced to represent a contact between two helices p and
q. If any residue of helix p makes a contact with any residue of helix q, then this variable is
active (i.e., yhp,q=1) implying a contact between these two helices. Thus, if wi,j,b is active for
a residue pair (i, j) where i and j are residues of two different helices (p and q) and b is in the
first 8 bins (denoting a contact) then yhp,q is forced to be active. This condition is written in
the form of Equation 6. Similarly, if helices p and q are contacting each other then there
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should be at least one active contact between the residues of helix p and helix q. This
constraint is included by relating the variable yhp,q to variable wi,j,b in the form of Equation
7.

(6)

(7)

Equation 8 is included in the model to limit the maximum number of interactions a helix can
have with other helices of the protein. In the proposed model, a helix is only allowed to
contact two other helices. This limit on the maximum number of helical contacts can be
changed but a maximum value of two was set as an upper limit in order to require that the
model choose the most important contacts.

(8)

Equation 9 requires that when two non-local, interhelical hydrophobic residues hi and hj (hi:
subset of residues i which are in a helix; hi and hj are alias of each other) form a contact then
hi, hj + 2 should not form a contact in bins 1–6. This equation is motivated from the fact that
residues hj and hj + 2 do not lie on the same side of a helix. If there exists a contact between
hi and hj, then the contact between hi and hj + 2 should be in bin 7 or bin 8. This constraint
is written in terms of Equation 9. For the cases when hi and hj form a contact, ychi,hk equals
1 and the right hand side of this equation becomes 0 forcing all whi,hj+2,b (for bins 1–6) to
take a value of zero.

(9)

It was observed that when a small helix (less than six residues) is connected to two other
helices (one on either side) by long loops then the smaller helix rarely contacts adjacent
helices. This constraint was included in the model in the form of Equation 10. In this
equation, helbeg(p) − helend(p−1) − 1 denotes the loop length between helix hp and helix
hp−1. Similarly, helbeg(p+1)−helend(p)−1 denotes the loop length between helix hp+1 and
helix hp.

(10)

Another set of constraints is added to fix some of the contacts based on the parallel and anti-
parallel topology of consecutive and non-consecutive helices. Two consecutive helices can
be either in a parallel or an anti-parallel arrangement (except for a few orthogonal
arrangements). The four most common possible arrangements for two contacting helices are
shown in Figure 1. The first two arrangements (AP1 and AP2) correspond to the anti-

Rajgaria et al. Page 6

Proteins. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parallel arrangement. AP1 corresponds to the case where the beginning of first helix is in
contact with the end of the second helix and AP2 corresponds to the arrangement where the
end of the first helix is in contact with the beginning of the second helix. Similar
arrangements for parallel helices are denoted by P1 and P2.

The occurrence of one of these arrangements depends on the length of the intermediate loop
and the length of contacting helices. To better understand the length dependence, a set of
317 α-helical proteins was studied. There were 1764 consecutive α-helices in this set. In this
study, the length of the intermediate loop along with the length of consecutive helices for
each of these α-helical proteins was recorded. It was observed that for cases where the loop
length was less than three residues, the AP2 arrangement occurred in about ~ 85 % cases.
The small intermediate loop prohibits other arrangements to take place and because of this
the end of first helix contacts the beginning of second helix resulting in an AP2
configuration.

For cases where the loop length was less than or equal to 6 residues, the anti-parallel
arrangement was much more common than the parallel arrangement. The ratio between the

loop length and the length of the smaller helix  was
calculated for these cases and it was found that when the loop length was less than or equal
to six residues and the loopratio was less than 0.75 then AP2 arrangement occurred most of
the time. Here, len(help) and len(helq) denote the length of helix p and q, respectively. These
observations were used as constraints in our model to predict AP2 arrangements for above
mentioned cases.

Equation 11 requires that when two consecutive helices are separated by three or less loop
residues, then the helices must contact each other. Equations 12 and 13 are enforced for
cases where the loop length is less than or equal to 6 residues and the loopratio is less than
0.75. These two equations require the contacting helices to have an AP2 contact
arrangement. The AP2 arrangement is enforced by only allowing contacts between part B of
helix p and part C of helix q (Figure 1). The binary variables denoting the contact between
part A of helix p and helix q are set to zero. Similarly, binary variables denoting the contact
between helix p and part D of helix q are also set to zero (as shown in Equation 13).

(11)

(12)

(13)

However, Equations 12 and 13 are only enforced when two contacting helices have
comparable length. If the length of one helix is more than the double of another helix then
the smaller helix is allowed to make contact with all residues of the longer helix. This
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constraint is incorporated for the cases shown in Figure 2. This constraint is written in the
form of Equation 14 and 15.

(14)

(15)

For cases where the intermediate loop length is more than 7 residues (for consecutive and
non-consecutive helices), no specific arrangement is enforced thus allowing the formulation
to choose one of these arrangements (if contacting) based on the resulting energetic
contribution. However, if two helices are in contact then it is enforced that the contacts
occur in only one of these types of arrangements.

It was also observed that if the first and last helix of a protein contact, they contact in an
anti-parallel fashion. This is natural to expect because a parallel arrangement would force
the beginning and end loops (N-terminal and C-terminal coils) to go in opposite direction.
This observation was investigated using a test set of 317 α-helical proteins. The average Cα-
Cα distance between the first three and last three residues of first and last helix was
calculated for each of these α-helical proteins. These four average distances were used to
determine the four possible arrangements of these helices (Figure 1). The helices were said
to be in contact when the average distance for one of these configurations was less than 9 Å.
In this set, a total of 17 cases were found where first and last helices were contacting. Out of
these 17 cases, the first and last helix contacted in an anti-parallel fashion 16 times. There
was only one case in which the first and last helix contacted in a parallel fashion. This
observation was written as a constraint in the form of Equation 16, which says that if there is
a contact between the first and last helix of a protein then it should not be in a parallel
fashion. Here, yhP(p,q) is a binary variable denoting the contact between helix p and helix q
in a parallel fashion.

(16)

2.3.2 Loop And Coil Contact Constraints—This set of constraints is motivated from
the fact that modeling a loop is very difficult and in the absence of such constraints the loop
residues are free to make any contacts. These unrestricted non-local contacts can prohibit
some of the important critical contacts resulting in a completely different topology. Equation
17 requires that the beginning and the end loop (N-terminal and C-terminal coils) of a
protein do not form any non-local contact.

(17)

A similar equation can be written for the loop residues (other than the N-terminal and C-
terminal coil residues) to prohibit non-local contacts. In the proposed model this constraint
has been included as a preprocessing step (as shown in Equation 35).
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2.3.3 General Contact Constraints—Equations 18 and 19 require that no three
consecutive contacts should take place in the same bin. This equation is motivated from the
observation that it is not very common to find three consecutive residues forming contacts
with a common residue at approximately same distance. Although, it is possible to find such
uncommon occurrences, this model aims at predicting typical (common) contacts using a
mathematically rigorous framework.

(18)

(19)

The following three equations correspond to Cystine residues of a protein. It is expected that
one Cystine residue will be part of at most one disulfide bridge. It has also been observed
that the distance between two disulfide bridge forming Cystine residues is always below 6.5
Å. Equation 20 illustrates this constraint.

(20)

When two Cysteine residues participate in a disulfide bridge formation then it has been
observed that the neighboring residues also form contacts because of spatial proximity
between the participating cysteine residues. Thus, whenever a disulfide bridge is formed
between residue i and j, then there should exist at least one contact in the neighborhood of
both residues i and j. Equation 21 and 22 illustrate this constraint.

(21)

(22)

2.3.4 Integer Cut Constraints—This optimization based formulation offers a great
advantage of generating multiple solutions. A single solution obtained using this formulation
corresponds to the one with the lowest contact energy. However, it is possible to generate a
rank-ordered list of solutions by using the following integer cut constraint (Equation 23).
The addition of this constraint allows the user to generate a specified number of contact
results in increasing order of optimal value (the objective function is being minimized). This
ability to generate a rank ordered list of results in a mathematically rigorous way adds to the
algorithmic advantage of the model.

(23)
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Set A in Equation 23 represents the set of all active yhp,q (i.e., yhp,q = 1) variables. The
cardinality of set A, card(A), is the total number of elements in set A. I represents the set of
inactive variables. The use of Equation 23 excludes the previous solution from the feasible
solution space for every subsequent iteration and a unique solution is obtained for each of
the iterations.

2.4 Preprocessing Constraints
The preprocessing step helps reduce the search space of the contact prediction problem by
fixing some of the contacts that one is most certain about. This type of information can be
obtained by observing and rigorously quantifying the distances between various residues of
a protein (i.e., intrahelical distances).

In order to obtain a representative set of protein structure tendencies, a large set of non-
homologous protein structures that span the Protein Data Bank (Berman et al., 2000) should
be selected. For this implementation, a set of structures that contain no more than 25%
sequence similarity, denoted as PDBselect25, (Hobohm and Sander, 1994) has been used to
develop the distance and angle bounds based on geometric tendencies. This PDBselect25
data set contains 2216 proteins and a total of 352,855 residues. Distance bounds are derived
by observing the distances between residues in different secondary structures of a protein.

Some of these observations for intrahelical contacts are included in the Figure 3. The rest of
the figures depicting occurrences of intrahelical distances are presented in Appendix 1.
Figure 3 considers the distribution of contact distance between a helical residue, hi and, hi
+3. This plot shows the distances that commonly occur for residues separated by 3 positions
within a helix. A single peak distribution of distance occurrences is clearly visible. In this
case, a lower bound of 4 Å and an upper bound of 6.0 Å appears to be appropriate to capture
the typical intrahelical hi, hi + 3 distance for protein structures. Similarly, distance bound for
hi, hi+4, hi+5 can be obtained from Figure 3. These observations are included as
preprocessing constraints as mentioned in Section 2.4.2.

The constraints included as a preprocessing step may not always be valid for all proteins.
However, the aim here is to realistically approximate the geometry of protein interactions in
a linear fashion. These preprocessing steps are discussed below.

2.4.1 General Constraints—It has been observed that the distance between residue i and
i + 1 is limited to the range of 3.0–4.0 Å. This information is used as a preprocessing step to
fix all the binary variables associated with this type of contact. This preprocessing is written
in terms of Equation 24. Similarly, Equations 25 and 26 are also included as a preprocessing
step to fix the binary variables corresponding to i, i+2 and i, i+3 contacts for each residue of
a protein.

(24)

(25)

(26)

Rajgaria et al. Page 10

Proteins. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.4.2 Helix Specific Constraints—The following set of constraints correspond to
intrahelical contacts. These constraints are included to enforce the observed contact
distances between various intrahelical residues, as shown in Figure 3. From this figure it can
be seen that in most of the cases, the intrahelical contact distance between residues hi and hi
+ 3 of a helix is in between 4.0–6.0 Å. This observation can be used to restrict binary
variables that denote a contact between an intrahelical pair hi and hi+3 beyond this contact
distance range (Equation 26). Similarly, the most likely intrahelical contact distance range
for residue pair hi and hi + 4 is 5.5–7.0 Å. This observation is also used to fix binary
variables corresponding to bin 1–3,7–9 for intrahelical pair hi and hi + 4 (Equation 28). A
similar constraint can be derived using Figure 3 for contact distance between intrahelical
residue pair hi, hi + 5 (Equation 30). Intrahelical contacts that are separated by 6 or more
residues are always more than 9 Å(bin 9). This observation is included in the form of
Equation 30.

(27)

(28)

(29)

(30)

It is also desirable to fix the distance range in which two different helices interact
(interhelical contacts). It has been observed that the contact distance between residues of
two neighboring helices is rarely less than 6 Å. For non-neighboring helices we impose a
minimum distance cutoff of 6.5 Å. These constraints are included as a preprocessing step
(Equations 31 and 32) to fix all the binary variables denoting contact between two helical
residues below 6 Å and 6.5 Å, respectively.

(31)

(32)

Equation 34 limits the contact between two interhelical residues, hi and hj based on their
hydrophobic identity. The following set of residues, ℋ, are considered to be hydrophobic :

(33)

A parameter ifHP(hi) is defined for each of the helical residue hi. This parameter is equal to
one when the residue is a hydrophobic residue (Equation 33) and is equal to zero otherwise.
Two non-local (separated by more than 5 residues) interhelical residues are allowed to form
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a contact (bin 1–8) only when both residues belong to the hydrophobic residue set as given
in Equation 33. This is an important preprocessing step because it sets all the binary
variables corresponding to interhelical, non-hydrophobic contacts equal to zero. Thus, the
proposed model only predicts hydrophobic contacts between two interacting helices.

(34)

2.4.3 Loop Specific Constraints—In the proposed model, we limit the contacts that any
loop residue can have by allowing only local contacts. For any loop residue i, contacts are
only allowed with residue (i−2, i−1, i+1, and i+2). However, if loop residue i, is Cysteine,
then this constraint is not applied (to allow for the disulfide bride formation). This constraint
is illustrated in Equation 35.

(35)

2.4.4 Helix and Sheet Specific Constraints—This subsection discusses the
preprocessing steps that are included to limit the interaction between an α-helical residue hi,
and a β-strand residue sj. Although this model has been specifically developed for α-helical
proteins, some constraints and variables denoting contact between helical and strand
residues have also been included. Inclusion of these constraints makes the model applicable
for cases where a protein is primarily an α-helical protein but also has a small percentage of
β-strand residues. An enhanced model to address α-β, and β proteins is being developed and
will be part of a future publication.

Equation 36 requires that a contact between a helical and a strand residue that are separated
by less than 4 residues (local contact) should not occur below a distance of 6 Å. A similar
equation (Eq 37) is included to restrict the non-local contacts between such residues.
Equation 37 requires that non-local residues (residue separation more than 4) of a helix and
a strand should always occur in bin 9. These equations are not applied if both the interacting
residues are Cysteine.

(36)

(37)

3 Sequence similarity
To evaluate the effect of sequence identity on the test results, sequence similarity was
calculated between the 1250 Cα-Cα HRFF training proteins and the four test sets used in this
work. PISCES, a method to identify a list of sequences with a maximum allowable sequence
identity, was used (Wang and Dunbrack(Jr.), 2003). A maximum allowable sequence
identity of 35% was used for all of these comparisons.
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To calculate the sequence similarity between the Cα-Cα HRFF training and test set 1 (Cheng
and Baldi, 2007), an-all-against all comparison was performed. For test set 1 (11 α-helical
proteins), 11 × 1250 = 13750 comparisons were performed. Out of these 13750
comparisons, There was only one pair of proteins with sequence identity greater than 35%.
A similar calculation was performed for the test set 2 (25 α-helical proteins) (Vicatos et al.,
2005). For these 25 proteins, a total of 25 × 1250 = 31250 comparisons were performed and
no pair of proteins had sequence identity more than 35%. Similarly, none of the proteins
from test set 3 (25 α-helical proteins) and test set 4 (20 α-helical proteins) had sequence
identity more than 35% when compared with the HRFF training proteins. Thus, there is no
sequence similarity between the Cα-Cα HRFF training set and the test sets used in this work
for a similarity threshold of 35%.

Sequence similarity was also calculated for the 317 α-helical proteins that were used to
establish helix contact constraints (Section 2.3.1). The sequence similarity between these
317 proteins and all test proteins were calculated to estimate a possible bias (if any) in the
results. All against all sequence similarity comparison was performed between all the 81 test
proteins (test set 1- test set 4) and the set of 317 proteins. Out of these 317 × 81 = 25677
comparisons, there were only 7 proteins pairs with sequence identity greater than 35%.

4 Results and Discussion
An integer linear optimization model was developed to find the hydrophobic contacts
between different residues of a protein. These predicted contacts can be used as explicit
constraints in protein structure prediction methods to narrow down the search space thereby
generating more realistic and accurate structures. The objective function of this formulation
is to minimize the sum of contact energies while satisfying a set of constraints that were
included in the model. These constraints were written as either a preprocessing step or
model equations and were included in the model to produce physically realistic solutions. A
high resolution Cα-Cα distance dependent force field (Rajgaria et al., 2006) was used to
calculate the contact energy between different residues. This force field was generated by
requiring that the native structure of a protein always has lower energy than the near-native
structures of the same protein. Minimizing contact energy based on this force field should
result in contacts that mimic the native structures. Integer cut constraints were also used to
generate a rank-ordered list of contact predictions. About 3–5 predictions were obtained for
each of the test cases. In most of the cases, the best prediction was in the top three
predictions.

The effectiveness of a contact prediction can be measured by calculating its accuracy.
Accuracy is defined as the ratio of correct predictions to total predictions. Accuracy can also
be defined in terms of true positives (TP) and false positives (FP) as shown in Equation 38.
It can be seen from Equation 38 that the higher the value of accuracy, the better the contact
prediction model becomes.

(38)

(39)

Another metric used to measure the performance of contact prediction method is coverage
(Equation 39). Coverage is defined as the ratio of correct predictions to the number of
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contacts in the native structure. A high coverage value means that the model is capable of
predicting most of the contacts of a protein. To calculate accuracy, all the predicted contacts
were compared with the native contacts. If the predicted contact was within the distance
range corresponding to the actual native contact [as given in Table I] then the contact is
counted as a true positive or correct contact. Otherwise the contact is considered a false
positive. The total number of true positives is then divided by total number of predicted
contacts to calculate accuracy. Coverage is calculated by taking the ratio of true positives to
the total number of native contacts.

A high value of both accuracy and coverage is expected from a good contact prediction
method. However, good accuracy does not mean good coverage and vice versa. Since, the
current approach only predicts the hydrophobic contacts, coverage is not important for this
approach. The proposed method was developed with the aim to produce higher accuracy.
We believe that even a few good (true) contacts can help a structure prediction method
produce good protein structures. Thus, the constraints that are part of the present formulation
were written with the aim to produce accurate contacts even if it meant disallowing some of
the native contacts (hence producing a low coverage value). For example, if we allow the
number of permissible contacts for each helical residue hi, to be from 3 to 4, then the
coverage of predicted contacts will increase while decreasing the accuracy of the contacts.
Similarly, reducing the number of permissible contacts might increase the accuracy at the
expense of reduced coverage. Hence, the proposed method also offers the flexibility of
optimizing one of the two goals by varying the right hand side of constraint equations. This
method was tested on α-helical proteins of four independent test sets. The testing results and
comparisons on all these test sets are presented in following subsections.

4.1 Protein Test Set 1
The first test set was taken from the recent work by Cheng and Baldi (2007). In this work,
the authors developed a residue contact prediction method (SVMcon) using Support Vector
Machines. This method uses a set of five input features. Using these feature sets, the method
then uses Support Vector Machines to predict if a pair of residue forms a contact. A contact
is said to have occurred if the distance between the Cα atoms of two residues are less than 8
Å. If the distance between the Cα atoms of two residues is more than 8 Å then these residues
are said to have no contact. This method then analyzes the prediction results in terms of non-
local contacts that are 6, 12, and 18 residues apart. SVMcon performs best for the contacts
that are 12 residues apart.

Cheng and Baldi (2007) tested SVMcon on a set of 48 proteins covering all SCOP (Murzin
et al., 1995) structural classes. Our proposed method was only tested with the α-helical
proteins of their test set. There are 11 α-helical proteins in this test set with protein lengths
varying from 52 to 190 residues. Our prediction results on this test set are presented in Table
II. Table II presents the performance of our method for 11 α-helical proteins for residue
separation of 6, 12 and 24 residues. The third column reports the accuracy of our method for
predicted residue contacts that are 6 residues apart. The number of true positive contacts
(TP) and total contacts (TP+FP) are also listed in column three of this table. The average
accuracy of the proposed method is 0.706. The highest and lowest value of accuracy was
obtained for protein 1ELRA and 1ECAA, respectively. The average value of coverage for
these 11 test proteins was also calculated (not shown in Table II). For residue separation
value of 6 the average coverage value was 0.287. For α-helical proteins, Cheng and Baldi
(2007) reported an average 0.24 for both accuracy and coverage for residue separation of 6
or more residues.

Columns 6 and 7 of Table II denote the performance of our method when contacting
residues are separated by at least 12 and 24 residues. The proposed method results in an
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average accuracy of 0.692 and 0.774, respectively. Similarly, the average coverage for these
two cases is 0.276 and 0.146. For some of the test cases (i.e., 1HXIA, 1ELRA, and 1HCRA)
there were no predictions for residue separation value of 24. For these cases, accuracy value
was not reported.

The topology of these test proteins was also calculated from the predicted contacts. In
almost all cases, the correct topology was predicted. For example, in the case of protein
1IG5 anti-parallel contact between helix 1 and 2, 1 and 5, 2 and 3, and, 4 and 5 was
predicted by our contact prediction method. 1IG5 also has 5% beta strand residues (2 small
β strands). Our method also predicted an anti-parallel sheet formation between β strand 1
and 2 (denoted as S1 and S2 in Figure 4). These anti-parallel contacts are also found in the
native structure of protein 1IG5 as shown in Figure 4.

For all the previous results, secondary structure information was derived using DSSP which
in turn uses the tertiary structure of the protein. For new proteins, this accurate secondary
structure information will not be available and one will have to rely on secondary structure
prediction techniques that only use the sequence information. Another test was conducted to
estimate the sensitivity of the proposed method with respect to the secondary structure
information. PSIPRED (Jones, 1999) uses multi-stage feed forward neural networks for
secondary structure prediction by incorporating profile information derived from position
specific scoring matrices. It was used to generate the secondary structure information for all
the 11 proteins of Test Set 1. Residue contacts were calculated using this new set of
secondary structure information and the results are presented in Table III. An average
accuracy of 0.637, 0.638 and 0.570 was found for residue separation of 6, 12 and 24. The
average true positive and false positive distance was 9.39 Å and 15.51 Å. For most of the
cases, the accuracy does not change by much except protein 1E29. Protein 1E29 is a 135
residue protein with 6 α-helices and 2 β-strands. PSIPRED predicts 7 α-helices and 3 β-
strands, where the extra helix is predicted between helix 4 and helix 6. The presence of this
extra helix causes an incorrect topology prediction, thereby producing a low accuracy value
of 0.159. The average accuracy obtained using secondary structure information from
PSIPRED is slightly lower than one obtained using DSSP. The consistent accuracy of the
proposed method when true secondary structure information is not present further
establishes the effectiveness of the proposed method.

Another analysis was carried out to estimate the average distance of true positives and false
positives. For a blind experiment, one can not determine whether a predicted contact is a TP
or FP until the structure of protein under consideration is determined. A high value of
accuracy is desired from any contact prediction method but it is important to estimate and
measure the impact of false positive predictions. If a contact prediction method has a high
value of accuracy but it produces some (few) false contacts that are far off in the native
structure then this method might not produce a good set of restraints (for 3-D protein
structure generation). Thus, a good prediction scheme should not only have a high accuracy
value but the false positives should not correspond to unrealistic distances in the native
structure of the protein either.

For all of the test proteins in test set 1, the average distance of true positives and false
positives was calculated from the native structure. These values are reported in columns four
and five of Table II. The average true positive and false positive distance is 8.86 and 14.15
Å, respectively for all contacts that were separated by more than 6 residues. This average
false positive distance is only 2.15 Å more than our prediction range. If these contacts were
to be used to derive restraints for 3D structure prediction in the form of quadratic penalty
terms in the objective function then there will not be large violations because of the false
positives in the predictions. The average distance between all non-contacting residues, that
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are 6 residues apart, was calculated for all the 11 proteins of this test set using their actual
structures. This distance can be compared with the average false positive distance produced
by the proposed method. The average distance for this test set was 20.82 Å which is much
higher than 14.15 Å. An average value of 8.86 Å for true positive contacts implies that on an
average non-local contacts are separated by about 9 Å. This result is also consistent with our
contact definition.

4.2 Protein Test Set 2
The second test set used to compare the performance of our method was taken from Vicatos
et al. (2005), where a new method based on correlated mutations analysis (CMA) has been
presented. Correlation analysis was performed using a new set of descriptors based on the
physiochemical properties of residues. Initially a large set of descriptors was identified but
Principal Component Analysis was performed to reduce this to a small set of descriptors that
accounted for most of the variations. It was found that the use of new descriptors resulted in
more accurate predictions compared to other CMA methods. To define a contact, Vicatos et
al. (2005) used a distance cutoff of 6 Å. According to their definition, a contact was said to
occur only when the distance between contacting residues was less than 6 Å. Also, only non-
local contacts that were separated by 8 or more residues were considered. Prediction results
were found to be most accurate for two descriptors, PRIN1 and PRIN3. These components
were found to have strong correlation with hydrophobicity and pkN values of amino acids. A
set of 127 proteins (from different structural classes) were tested and the main descriptor
PRIN1 (which has a strong correlation to hydrophobicity) was found to produce the most
reliable results. In this work, we test our contact prediction method on the α-helical proteins
of the test set of Vicatos et al. (2005). The remainder of this document will refer to this as
test set 2.

The proposed method was only tested on the α-helical proteins of this test set. All proteins
with more than 3 β-strands or 10% β residues were not included in this test. This results in a
set of 25 α-helical proteins. This set was further divided into two parts. The first part
constitutes only single domain proteins. Proteins with more than one domain were included
in the second part of Table IV.

Table IV presents the test results of our method on test set 2. The contacts that are separated
by 6, 12 and 24 residues are reported in this table. An additional column reporting accuracy
values for contacts separated by 8 or more residues is also included in this table, as
published in Vicatos et al. (2005). For contacts that are separated by 6 or more residues, an
average accuracy of 0.640 was obtained for 16 single domain proteins. The highest accuracy
was obtained for protein 1AOY where all the predicted contacts were true positives. The
average accuracy for multi-domain proteins was 0.554. The tertiary structure of multi-
domain proteins is also stabilized by the contacts from other domains of the same protein.
These external contacts have not been modeled in the proposed approach and thus a lower
value of accuracy is obtained for these proteins (i.e., 1PPR, 1JI6).

The average TP and FP distance was also calculated for this test set. These values are
reported in columns four and five of Table IV. An average value of 8.79 Å and 9.28 Å was
obtained for true positive contacts for single and multi-domain proteins. This average value
is also consistent with the average value obtained for test set 1. The average value of false
positive distance for single and multi-domain proteins was 14.15 Å and 14.36 Å,
respectively. The average false positive distance for single domain proteins of test set 2 is
roughly same as test set 1. The average distance between non-contacting residues, that are at
least 6 residues apart, was also calculated for this test set and was found to be 23.05 Å. This
distance is also higher than the average false positive distance of 14.15 Å and 14.36 Å. A
higher value of average false positive distance was produced for protein 1JI6. This protein
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has 3 domains with domain 1 containing all the α-helices and domain 2 and 3 containing all
the β-strands. The α-helices of domain 1 contact strands from other 2 domains and some of
these contacts are responsible for the compact tertiary structure of this protein.

4.3 Protein Test Set 3
The third test set used to measure the effectiveness of the proposed method was taken from
the work published by McAllister et al. (2006). This work presents an optimization based
framework to generate interhelical distance restraints between hydrophobic residues in α-
helical globular proteins. This method was tested on 25 α-helical single domain proteins.
The length of these proteins range from 38 to 150 residues and the number of helices
varying from 2 to 8. Our method was tested on all of the 25 proteins and testing results are
reported in Table V. The average accuracy obtained for contacts that are at least 6, 12, and
24 residue apart was 0.638, 0.618 and 0.641 respectively. This method produced a coverage
of 0.27, 0.24 and 0.14 for the three values of residue separation. The average true and false
positive distance for this test was 9.18 Å and 13.9 Å respectively. These distances are in the
same range as found on the previous two test sets. Similarly, the average distance between
all non-contacting residues, that are at least 6 residues apart, was also calculated for all the
25 proteins using their actual structures. The average distance for this est set was 21.23 Å.

The average false positive distance for protein 2ILK was 24.0 Å. Although this protein is
classified as a single domain protein, this has a very peculiar topology where the last two
helices are not part of the compact protein structure. These two helices contact each other
and are quite far from rest of the protein. Because of this unusual topology, a high value of
average false positive distance is produced for this case.

4.4 Protein Test Set 4
The last test set was taken from the recently published work of Wu and Zhang (2008). In
this work the authors have compared different machine learning methods (sequence-based
and template-based) for residue contact prediction. They tested different contact prediction
methods on a test set of 554 non-homologous proteins with a pair-wise sequence identity
less than 25%. The length of these proteins varies from 50 to 300 residues. They classified
these proteins into “Easy” (220 proteins), “Medium” (98 proteins), “Hard” (220 proteins)
and “Very Hard” (16 proteins) targets based on the threading significance score [refer Wu
and Zhang (2008) for a complete description of their method].

Test set 4 was created from the ”Hard” and ”Very Hard” proteins of Wu and Zhang (2008)
test set. The α-helical and β-strand residue percentage was calculated for each of these cases
to identify α-helical proteins. There were 92 proteins (86 “Hard” and 4 “Very Hard” targets)
with more than 15% α-helical residues and less than 10% β-strand residues, which we
classified as α-helical proteins. Test set 4 includes these 4 very hard targets and 16 randomly
selected proteins from the 86 hard category proteins. Our method was tested on these 20
proteins and the results are presented in Table VI. The average accuracy for residue
separation of 6 was 0.658 and 0.679 for very hard and hard proteins, respectively. The
highest accuracy was obtained for protein 1II0 (84 residues) where the correct topology was
predicted with a contact prediction accuracy of 0.914. The average true positive and false
positive distance for the hard test proteins was 8.75 Å and 14.01 Å, which is in the same
range as found on the previous test sets. An overall value of ~ 14 Å for average false
positive distance across all four independent test sets underscores the effectiveness of the
proposed method.

A residue contact map for four proteins from these four test sets is shown in Figure 5. In
these plots the upper triangle shows the non-local hydrophobic contacts predicted by our
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method and the lower triangle shows all contacts (not just hydrophobic) that are present in
the native structure of the protein (shown in dark blue color). The contacts in the upper
triangle are shown using three different colors. Contacts shown by red color are true positive
contacts. False positives are shown by yellow color and missing contacts are shown by light
blue color. It is important to further highlight the fact that total number of off-diagonal
contacts shown in the upper triangle is less than the number of off-diagonal contacts shown
in the lower triangle. This is because only non-local hydrophobic contacts are shown in the
upper triangle whereas all types of contacts are shown in the lower triangle.

Protein 1ROP is a 56 residue protein made up of 2 helices [residue location: h1(3–28),
h2(32–55)]. The residue contact map for protein 1ROP is shown in the upper left hand side
of Figure 5. In the native structure, helix 1 contacts helix 2 in an anti-parallel fashion. The
same topology is obtained using the proposed method. For this case there were no false
positives (as is evident from the absence of yellow points in the upper triangle of this map).
This method was able to correctly identify 10 non-local interhelical contacts for this protein.
The native structure also has some non-hydrophobic interhelical contacts between helix 1
and helix 2. These contacts are not predicted by our method and are missing from the upper
triangle.

Protein 1ELR is a 128 residue protein made up of 7 helices [residue location: h1(2–16),
h2(20–33), h3(38–51), h4(54–70), h5(75–91), h6(95–108), h7(112–127)]. The residue
contact map for protein 1ELR is shown in the upper right hand side of Figure 5. In the native
structure, each helix contacts the next helix in an anti-parallel fashion. the same topology is
obtained using the proposed method. All of these interhelical contacts are shown in red color
in the contact map for protein 1ELR. There are two false positives (show by yellow points in
the upper triangle of this map). These two false positives correspond to contact between
helix 2 and helix 3. The proposed method was able to correctly identify 33 out of 34 non-
local interhelical contacts for this protein. The native structure also contains some non-local
and non-hydrophobic contacts between loops and helices of this protein. These contacts
were set as “no-contact” as part of the preprocessing step of this model and therefore, they
are missing in the upper triangular part of the figure. Similar plots have been shown for
protein 1NRE (81 res) and 1R1R (85 res) in Figure 5. This figure demonstrates that the
presented method can be effectively used to capture critical contacts of a helical protein.

From Table II–Table VI, it can be seen that our method consistently produces an accuracy
value of ~ 66% across all test sets. The consistent performance across all test sets further
establishes the effectiveness of this method.

5 Conclusion
We have presented a new integer linear optimization based formulation to predict inter-
helical hydrophobic residue contacts in α-helical proteins. A binary variable is defined for
each residue pair of a protein and a high resolution force field is used as a lookup table to
assign a distance dependent energy value for these residue pairs. The formulation then
minimizes the sum of contact energies while satisfying a set of constraints. These constraints
are based on the commonly observed contact distances between various elements of a
secondary structure of a protein. This model also offers the flexibility of incorporating
additional constraints where a user can add unique and problem specific constraints to the
model. The ability to generate more than one solution highlights the algorithmic advantage
of the model. The presented method was tested on four different test sets of α-helical
proteins and produced an average accuracy of ~ 66% for single domain proteins. This level
of accuracy is higher than other contact prediction methods. It is believed that integration of
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this approach with other structure generation and structure prediction algorithm can
definitely aid in protein structure prediction.
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Appendix 1: Intrahelical distance distribution

Figure A.I: Distribution of distance occurrences for intrahelical residues at position (i,i+2)
within the PDBselect25 dataset.

Figure A.II: Distribution of distance occurrences for intrahelical residues at position (i,i+7)
within the PDBselect25 dataset.
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Figure A.III: Distribution of distance occurrences for intrahelical residues at position (i,i+8)
within the PDBselect25 dataset.
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Figure 1.
Four possible anti-parallel and parallel arrangements for consecutive helices. The top 2
arrangements denoted by AP1 and AP2 are anti-parallel arrangements and the bottom 2
arrangements denoted by P1 and P2 are parallel arrangements. Each contacting helix can be
divided in two parts (A and B for helix P; C and D for helix Q). AP1 occurs when part A of
helix P contacts part D of helix Q. Similarly, AP2, P1, and P2 occur when B–C, A–C and B–
D contacts take place.
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Figure 2.
Cartoon depicting one scenario of a contact between two helices of different length. The
length of helix P is very small compared to the length of helix Q. Under these circumstances
it is possible for the smaller helix to contact the full length of the bigger helix.
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Figure 3.
Distribution of distance occurrences for intrahelical distances within the PDBse-lect25 data
set.
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Figure 4.
3D representation of the native structure of protein 1IG5. The proposed method correctly
identified the topology of this protein(AP contacts between H1–H2, H1–H5, H2–H3, H4–
H5 and S1–S2).
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Figure 5.
Residue Contact Map of Protein 1ROP, 1ELR, 1NRE and 1R1R. Dark blue color represents
contacts (hydrophobic and non-hydrophobic) in the native structure (lower triangle). Red
color represents correctly predicted contacts (TP). Yellow color represents incorrectly
predicted contacts (FP). Light blue color represents missing contacts.
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Table I

Distance dependent contact range definition based on predicted bin.

Bin ID Predicted Cα-Cα Contact Distance Range [Å]

1 3.0–8.0

2 3.0–9.0

3 3.0–10.0

4 3.0–11.0

5 4.0–12.0

6 4.0–12.0

7 4.0–12.0

8 4.0–12.0
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