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Abstract
Similarities in sequences and 3D structures of allergenic proteins provide vital clues to identify
clinically relevant IgE cross-reactivities. However, experimental 3D structures are available in the
Protein Data Bank for only 5% (45/829) of all allergens catalogued in the Structural Database of
Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP). Here, an automated procedure was used
to prepare 3D-models of all allergens where there was no experimentally determined 3D structure
or high identity (95%) to another protein of known 3D structure. After a final selection by quality
criteria, 433 reliable 3D models were retained and are available from our SDAP Website. The new
3D models extensively enhance our knowledge of allergen structures. As an example of their use,
experimentally derived “continuous IgE epitopes” were mapped on 3 experimentally determined
structures and 13 of our 3D-models of allergenic proteins. Large portions of these continuous
sequences are not entirely on the surface and therefore cannot interact with IgE or other proteins.
Only the surface exposed residues are constituents of “conformational IgE epitopes” which are not
in all cases continuous in sequence. The surface exposed parts of the experimental determined
continuous IgE epitopes showed a distinct statistical distribution as compared to their presence in
typical protein-protein interfaces. The amino acids Ala, Ser, Asn, Gly and particularly Lys have a
high propensity to occur in IgE binding sites. The 3D-models will facilitate further analysis of the
common properties of IgE binding sites of allergenic proteins.
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Introduction
Allergy or type I hypersensitivity is an inflammatory systemic response, characterized by high
levels of specific immunoglobulin E (IgE) antibodies to normally innocuous environmental
substances. Allergic diseases affect a substantial portion of the population, with as many as
two million school age children in US allergic to some food type (Nowak-Wegzyn, 2007).
Symptoms are generally mild and treatable with over-the-counter antihistamines (Sampson,
1999a; Sampson, 1999b; Sampson, 2005), but in some cases, such as peanut (Bock et al.,
2001; Maleki and Hurlburt, 2004; Sicherer, 2003; Teuber and Beyer, 2004; Wensing et al.,
2003) or shrimp (Samson et al., 2004) allergies, ingestion can lead to life-threatening
anaphylactic shock (Teuber et al., 2006). For individuals allergic to a common food or pollen,
life can become severely proscribed, as they must avoid ingesting or breathing even minute
amounts of the proteins to which they are sensitive. Individuals with severe allergy to one
protein will often react to similar proteins that may be present in quite different plants or animals
(Aalberse and Stadler, 2006; Schein et al., 2007). Thus there is considerable interest in
identifying the molecular characteristics that correlate with IgE binding by proteins, so as to
distinguish proteins that could cause cross-reactivities (Breiteneder and Mills, 2005; Jenkins
et al., 2005).

The “Structural Database of Allergenic Proteins” (SDAP, http://fermi.utmb.edu/SDAP)
(Ivanciuc et al., 2003; Ivanciuc et al., 2002) was created to allow rapid analysis of closely
related allergens, globally (by FASTA and BLAST searching) or at the local sequence level,
using a physicochemical-property distance (PD value) to compare continuous IgE epitope
sequences (Schein et al., 2005; Schein et al., 2006a). Most of the information about how IgE
antibodies in the sera from atopic individuals bind to these proteins comes from comparing the
reactivity of discrete, often overlapping peptides from the protein sequence. However, without
structural information, the actual sequence that constitutes the IgE binding site of these
“continuous epitopes” cannot be clarified, as all the amino acids are rarely 100% exposed in a
folded protein. Further, we cannot predict or test “conformational IgE epitopes”, i.e., those
formed from several areas of the protein sequence. Only about 19% (45 Protein Data Bank
(PDB) structures + 114 close homologs) of the allergen sequences deposited in SDAP have an
experimentally determined 3D structure in the PDB, or have >95% identity to a homologous
protein of known structure. Further, there are no experimental structures for the most potent
allergenic proteins, including those from nuts and many fungi, where continuous IgE epitopes
have been defined. In this study, we set out to determine the probable structures of the remaining
81% of known allergens, by identifying suitable templates in the Protein Database (PDB) using
the TOME metaserver (Douguet and Labesse, 2001)
(http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_meta.html). We obtained reliable 3D models for
433 sequences, including the major allergens of peanuts, tree nuts, weed and tree pollens, fungi
and insects. Our approach also indicated which allergens were not good targets for modeling
with these methods, and could be recommended as candidates for the structural genomics
initiative. Allergens that belong to protein families (Finn et al., 2006)
(http://pfam.sanger.ac.uk/) for which there is no representative experimental structure known
are particularly highlighted for further study. We then used 3D-models of allergens for which
the IgE epitopes had been mapped, using peptide series, to determine which amino acids had
the highest surface exposure. We were thus able to do 5 the first structure based, statistical
survey of the amino acids that were likely to be involved in IgE binding.

Methods
Template selection

The target sequences were submitted to the TOME metaserver
(http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_meta.html) (Douguet and Labesse, 2001) which
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distributed query sequences to three fold recognition servers (FUGUE(Shi et al., 2001),
mGenThreader (Jones, 1999) and 3DPSSM (Kelley et al., 2000)), collected the results of these
servers, reformatted and returned the results to the user. We classified the top hits from each
server as 0 for “reliable”, 1 for “medium” and 2 for “difficult” according to the E-value or the
Z-score (see Table I for cutoff values). When all three fold recognition servers recognized and
returned the same template, we added the scores from each of the three servers to obtain a
“confidence score” between 0 and 6. For confidence scores <3, a 3D-model was generated for
the longest alignment in the first round if 1) the matching region of the template with the target
sequence was longer than 30 amino acids, 2) there was no gap in the alignment greater than
20 amino acids and 3) the fold classifications according to SCOP (Andreeva et al., 2004; Lo
Conte et al., 2002; Murzin et al., 1995) of the top hits were the same. In the second round we
analyzed the targets which did not pass the SCOP classification filter of round one. For these
targets, we determined whether the regions of the suggested templates that were aligned with
the target sequences had a similar fold, with the program CE (Shindyalov and Bourne, 1998).
If the template regions had a root mean square deviation (RMSD) of less than 3Å to one another,
they were considered to have the same fold and again the longest alignment was chosen to
generate a 3D-model.

MPACK modeling
The main programs of our modeling procedure were EXDIS, DIAMOD (Mumenthaler and
Braun, 1995; Sanner et al., 1989) and FANTOM (Schaumann et al., 1990). EXDIS generated
geometrical constraints (lower and upper distance and dihedral angle constrains) out of the
template structure for the aligned regions. DIAMOD used these geometrical constraints to
generate a 3D-model structure for the target sequence which had the lowest violations of these
constraints. It used rotamer libraries and generated in the past reliably good geometries with
good bond distances and bond angles (Oezguen et al., 2002; Ravindranath et al., 2003; Schein
et al., 2001; Schein et al., 2006b; Xu et al., 2001; Xu et al., 1999a; Xu et al., 1999b). FANTOM
energies for the minimized 3D-model structures were generated, with constraints, using the
ECEPP/2 (Nemethy et al., 1983) force field. The information flow to and between these
programs and other programs for quality evaluation was controlled by a PERL script. Other
programs used for quality control of the models were PROFIT
(http://www.bioinf.org.uk/software/profit) and PROCHECK (Laskowski et al., 1988).
PROFIT was used to calculate the RMSD between the target 3D-model and template for the
aligned regions and PROCHECK was used to check the geometry of the 3D-models.

Residue surface accessibility
The GETAREA(Fraczkiewicz and Braun, 1998)
(http://pauli.utmb.edu/cgi-bin/get_a_form.tcl) program was used to determine the solvent
exposure of the residues in IgE binding peptide sequences determined for 16 allergens.
Residues with >25% solvent exposure were considered to be on the surface. Propensities were
calculated as ratio of probabilities (pi/Pi). For example the propensity for Ala was calculated
as the ratio of the probability to find an Ala in epitopes (on the surfaces) (pAla) and the
probability to find an Ala on the whole surfaces (PAla).

Results
An analysis of the allergen sequences in the SDAP database indicated that 25 sequences were
very short, 45 had experimental structures in the PDB, and another 114 were nearly identical
(95% sequence identity) to other proteins of known structure (Table II). We set out to generate
3D models of the remaining 645 SDAP sequences. These target sequences were submitted to
the Fold Recognition (FR) server FUGUE (Shi et al., 2001), mGenThreader (Jones, 1999) and
3DPSSM (Kelley et al., 2000) via the metaserver TOME (Douguet and Labesse, 2001). The
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FR servers returned alignments with high confidence level for 501 sequences. The remaining
144 allergen sequences did not have clearly identifiable homolog templates at the time of the
study. We generated 3D models of the aligned regions for the 501 target sequences, which had
a sequence identity between 10 and 94% (Fig. 1) to the selected templates and considered only
those which fulfilled three quality criteria. These were: 1) the overall conformational energy
after FANTOM (Schaumann et al., 1990) minimization was negative, which indicated
favorable local packing of the side chains, 2) the RMSD to the template for the aligned regions
was less than 1.8Å (Fig. 1) and 3) not more than 5% of the φ/ψ dihedral angles were in the
disallowed region of a Ramachandran plot(Ramachandran et al., 1990) (Fig. 2). Only 68 of the
501 target models failed to meet these criteria and we remained with good quality 3D-models
for 433 sequences (37 from the second phase, see methods section). Most (396) of the 3D-
models had a backbone RMSD to the template lower than 1 Å, and for those with sequence
identity >60 % to the template, the backbone RMSDs were <0.7 Å. Given a good alignment
the modeling procedure is obviously capable of generating 3D-models which are structurally
very close to the templates. Only 3 % of the 3D-models have more than 3 % of the residues
outside of the allowed region and 44 % of the 3D-models have all residues in the core regions
of the Ramachandran plot.

The fourth criterion was that the PROCHECK (Laskowski et al., 1988) overall g-factor (a
combination value related to proper stereochemistry, that includes terms for torsion angles and
covalent geometry) was above −0.5. The g-factor was above this threshold for all the 3D-
models, although many had g-factors worse than the template (above the diagonal in Figure
3). The modeling procedure obviously also corrects major flaws, as some of the 3D-models
had better g-factors than the template. The lower the sequence identity, the higher the difference
in the local packing should be, and hence the worse the g-factor.

The models provide structural information about peptide epitopes
As noted, our 3D-models gave structures for some of the most important and immunologically
characterized allergens from many different sources. For example, we obtained a good 3D-
model for 94/139 amino acids of Par j 1, one of the major allergens of Parietaria Judaica pollen
(Asturias et al., 2003), the main cause of allergy in Mediterranean countries. The template was
a non-specific lipid transfer protein from rice (PDB code 1RZL; all alpha helix), that was 31%
(29/94 positions) identical to Par j 1 according to the mGenTheader alignment. The resulting
3D-model (Figure 4) has an RMSD of 0.6 Å to the template, and there were no residues in the
disallowed region of the Ramachandran Plot. “Continuous IgE epitopes”, that had been
previously characterized experimentally, mapped to one face of the protein. (Fig. 4c–f). In
contrast, the epitope sequences of the peanut allergen Ara h 1 (Schein et al., 2005) and the
fungal allergen Asp f 13 (Chow et al., 2000)map to various areas of the protein (Fig. 5). Further,
many of the amino acids in the reactive peptides have no surface exposure, and thus are
probably not part of an IgE binding epitope in the intact protein.

Statistical survey of amino acid propensities in IgE binding sequences
Most of the epitopes of allergens in SDAP were determined using synthetic peptides
corresponding to segments of the protein sequence, and measuring the reactivity to IgE in
patient sera by immunoblotting or protein dot-spots. A number of studies have shown that
substituting individual amino acids in these peptides can totally abrogate IgE binding, but have
failed to show a clear pattern for which amino acids are most likely to be important in forming
the actual epitope surface (Cocco et al., 2003). Our 3D-models allowed us to determine which
amino acids in these peptides would be surface exposed, and thus most likely to be involved
in binding.
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Comprehensive peptide studies are costly and time-consuming, and have only been done in
detail for a small group of allergens. Here we analyzed the statistical distributions of amino
acids for all allergens with experimentally known continuous IgE epitopes and known 3D-
structure, either experimental or modeled structures. Experimental structures were available
for only 3 of these well studied allergens (the fungal allergen Asp f 1(Yang and Moffat,
1996) (1AQZ), Jun a 1 (1PXZ) from cedar pollen(Czerwinski et al., 2005) and Ves v 5 (1QNX)
from yellowjacket(Henriksen et al., 2001)). Our 3D-models provided structural information
for another 13 proteins for which the IgE epitopes had been characterized, including Ara h 1
and Ara h 2 of peanuts, Asp f 13, Asp f 2, Asp f 3 from the fungus Aspergillus fumigatus, Cha
o 1, Cry j 1, Jug r 1 from cedar pollens, Par j 1 and Par j 2 from weed pollen, Gal d 1 from
chicken egg white, and Pen a 1 from shrimp. We mapped the linear peptides on the 16 protein
3D-structures, and used GETAREA (Fraczkiewicz and Braun, 1998)
(http://pauli.utmb.edu/cgi-bin/get_a_form.tcl) to determine which residues in the IgE binding
peptides had significant surface exposed area. As shown in the examples of Fig.5, the
GETAREA results defined a subset of the residues of these peptides that could form the IgE
binding site. The statistical propensity of residues to occur in these binding sites was then
compared with the amino acid propensities for occurrence in the interface of 72 protein-protein
complexes (Negi and Braun, 2007).

The surface propensities for allergens were similar to those for the proteins that formed the
complexes, with the exception that there were somewhat more charged amino acids (Figure
6a). However, comparison of the propensities for amino acids to occur in the potential IgE
binding sites with that of interface regions in other types of protein complexes revealed
surprising differences (Fig. 6b). The large hydrophobic residues, such as Phe, Trp, Tyr, Ile,
Leu and Met, that characterize protein interfaces, were much less likely to be in the epitope
interfaces. While most of the amino acids were less likely to occur in epitopes, compared to
their overall interface propensities, five amino acids were more likely to be in epitopes: Ala,
Ser, Asn, Gly and most particularly, Lysine. These findings will allow us to formulate testable
hypotheses about IgE binding sites on other allergenic proteins.

Discussion
We describe here the first systematic attempt to model all allergenic proteins (Table II, Fig. 1–
3), and the first systematic comparison of the properties of known IgE epitopes based on both
their sequence and probable structure. We observed a distinct pattern of preferred amino acids
in the antibody binding sites (Figure 4 and 6), an unexpected result that is rendered more
significant since the survey covered fungal, pollen and food allergens from many different
PFAM classes. As most of the information about IgE binding to allergenic proteins is based
on continuous peptide studies, reliable 3Dstructures were essential to designate the surface
exposed residues that are most likely to form the binding site for IgE.

These 3D structures for allergens can help in the annotation of biochemical function or in
predicting cross-reactivity among homologous proteins that goes beyond overall sequence
similarity(Chapman et al., 2007). For example, the cockroach allergen Bla g 2 was considered
first as an aspartic protease based on sequence similarity to proteins of this family. The X-ray
crystal of Bla g 2 showed a zinc-binding cleft, and that the conformations of the residues in
the suggested active site are distorted in such a fashion as to preclude catalytic function
(Gustchina et al., 2005).

The mapping of conserved residues in a family of related allergens on the protein surface can
explain observed clinical cross-reactivity. For example, the venoms of insects show
considerable cross-reactivity among many insect species(Caruso et al., 2007). Ves v 5
represents a family of venom allergens produced by insects ranging from wasps to fire ants
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(King, 1996; King et al., 2001). The Ves v 5 homologues of the allergens from the Vespula
genus the Vespula and the Vespa/Dolichovespula genera. are all serologically cross-reactive,
yet not all generate cross-reactions in sensitive individuals. This may be due to dramatic
differences in conserved surface areas of the allergens, as mapped on the 3D structure of Ves
v 5 (Henriksen et al., 2001). Almost all the surface residues are conserved among the
Vespula, but only 5 conserved patches are shared with the Vespa/Dolichovespula genera.. Most
of these patches conserved across both genera are smaller than the critical size below the
expected size of antibody binding sites of 800 to 1000 Å2.

The importance of conformational epitopes and their impact on our understanding of the
molecular basis for cross-reactivity was also experimentally demonstrated for pollen allergens
(Bonds et al., 2008). Four linear IgE epitopes of Jun a 1, the dominant allergen in mountain
cedar pollen, were mapped on the crystal structure of Jun a 1(Czerwinski et al., 2005), and
denaturation experiments gave evidence for the conformational nature of some of these
epitopes(Varshney et al., 2007). The IgE in many sera from Japanese patients detected Cry j
1 from Japanese cedar, and also Jun a 1 from Texas mountain cedar pollen extracts by
ImmunoCAP. Mapping the regions of the epitopes on a 3D model of Cry j 1 could explain the
extent to which these epitopes are responsible for the cross-reactivity between Jun a 1 and Cry
j 1 (Midoro-Horiuti et al., 2006). We anticipate that future analysis of the 3D models, now
available on our SDAP Website, will facilitate a similar analysis for other allergens, and further
define the structural basis of cross reactivity.

Our modeling method, which combined automatic methods with a minimum of human
intervention, proved to be a robust way to model the 3D structures of allergens (Fig. 1–3). The
automatic method was made possible by rapidly identifying likely templates with the TOME
metaserver. We also introduced standard classifiers to test reliability, so that the 3D-models
now catalogued in SDAP have been vetted to remove unlikely 3D-models, and those with sub-
optimal stereochemical properties. The 3D-models (Fig. 4,5), coupled with previously
determined experimental structures, can now be used to make comprehensive comparisons of
their properties and likely IgE epitopes (Fig. 6).

While many groups have used individual homology 3D-models of allergenic proteins (for
example (Bannon, 2001; Dodo et al., 2005; Gehlhar et al., 2006; Ivanciuc et al., 2003; Schein
et al., 2005; Soman et al., 2000)), the only previous source of automatically generated 3D-
models with quality criteria for allergenic proteins were those included in the online database,
MODBASE (Pieper et al., 2004), (http://salilab.org/modbase). However, only 9 of the proteins
with known IgE epitopes were present in MODBASE, compared to 13 in our study. We were
also able to manually inspect all our 3D-models, something that is not possible in larger
databases. The existence of additional structures will aid in the comparison of known IgE
epitopes, and allow testing of potential conformational epitopes. For example, we can combine
methods that detect sequences with a high degree of similarity to known epitopes, such as the
PD score in the SDAP database, with comparison of structure of the areas in the 3D model.
Initial tests of this methodology revealed that several epitopes of the peanut allergens are very
similar to one another in their physicochemical properties and structure (Schein et al., 2005).

Amino acid propensities in IgE binding sites
Mapping the previously determined epitopes on the 3D-models indicated that only a small
subset of the amino acid residues had sufficient surface exposure to be involved in binding IgE
in the intact protein. Our statistical survey of these sites indicated that certain amino acids,
particularly lysines, had a higher propensity to occur in IgE epitope sites. The potential
importance of surface lysines in binding IgE’s has been experimentally observed for the linear
epitopes of Phl p 5b (Gehlhar et al., 2006). We suggest that this observation is true for a broader
range of allergens. Although the number of allergens with known IgE epitopes is currently
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limited to 16 allergens, those allergens belong to 9 different PFAM families (Finn et al.,
2006) (http://pfam.sanger.ac.uk/), and thus represent a diverse sample. Overall, the binding
sites for the IgE molecules were considerably more hydrophilic than protein-protein interfaces
for other complexes. Our 3D-model of the Par j 1 protein (Fig. 4) illustrates this in detail: the
surface to which the continuous epitopes map is quite hydrophilic, and marked by highly
exposed lysine side chains.

Towards a 3D structural classification of all allergens
All generated 3D models have a reliable template with a well defined classification of the three-
dimensional protein structure of the allergen. This structural classification, defined according
to SCOP classes (Andreeva et al., 2004), divides the allergens in a hierarchical way according
to their similarity in the protein fold. This also provides another parameter for predicting cross-
reactivity. Antibodies bind to surface patches of folded proteins, so allergens with a similar 3D
structure are more likely to bind to the same IgE antibody(Aalberse, 2007; Aalberse and Stadler,
2006). However, this prerequisite is not sufficient for binding and future research is needed to
incorporate other structural information for a successful prediction of cross-reactivity. The
SCOP number for all 3D models is available from our SDAP website.

To obtain a complete structural classification of all allergens, we have prepared a list of
candidates to be recommended to the structural genomics initiative. The proteins that we were
not able to model reliably (supplementary data), belong to 71 different PFAM (Finn et al.,
2006) (http://pfam.sanger.ac.uk/) families (supplementary data). For 17 there is no
representative experimental structure in the PDB. These proteins are likely to have a novel
fold, as they are not similar to any protein of known structure. Therefore it would be highly
beneficial if the structural genomics projects or others would experimentally determine the 3D
structures of representatives of those 17 PFAM families (highlighted in the supplementary
data).

Conclusion
Our aim was to generate reliable homology 3D-models for those allergens whose structures
are not solved experimentally or do not have very close homologs with known structure. We
have generated good quality homology 3D-models for 67 % (433/645) of the allergens in this
category. All reliable 3D-models are available via appropriate links through the SDAP web
pages. There are still 212 allergen sequences without a clear template. Selected sequences from
the list of these “difficult modeling targets”, which could represent novel folds, are good
candidates for experimental structure determination. Analysis of the surface exposed areas of
known linear IgE epitopes indicated a distinct propensity of finding certain amino acid types
in epitopes as compared to protein-protein complex interfaces. The propensity to find Lys in
the epitopes is significantly higher and the propensities for Phe, Trp, Met and Ile significantly
lower. This reflects the properties of the IgE binding partner and/or the binding dynamics. The
binding process might be guided via electrostatic funneling which would explain the net
positive charge or at least the high density of Lys at the epitope region.

By mapping known continuous IgE epitopes on the surface of the 3D-models, we showed that
only select residues are surface exposed. This is especially the case for long peptides (larger
than ca. 10 amino acids). The 3D-models can be very useful in refining the sequences of these
peptides to better identify the real site of IgE binding. This will facilitate the design of apo-
allergenic proteins (Bannon, 2001; Dodo et al., 2005).

The 3D-models and known experimental structures in combination with the findings of the
amino acid distribution on the epitopes can be used to develop new methods and/or to increase
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the predictive power of existing ones for prediction of allergenicity (Aalberse and Stadler,
2006) and cross-reactivity (Bonds et al., 2008; Goodman, 2006).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Correlation plot of sequence identity and RMSD values between the 3D-models and their
templates in the aligned regions.

Oezguen et al. Page 12

Mol Immunol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Most of the 3D-models have >98% of their residues in allowed areas of the Ramachandran
Plots.
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Figure 3.
Distribution of the PROCHECK overall g-factor of the 3D-models and their corresponding
templates.
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Figure 4.
Linear epitopes map to a hydrophilic, lysine rich face of the 3D-model of the weed pollen
allergen Par j 1. Charged residues on the surface of linear epitopes are labeled. a) surface
electrostatic potential, b) ribbon plot showing the surface exposed side chains of the linear
epitopes, colored to indicate the different epitopes; c–f: rotations around the y-axis, starting
from the orientation of panel a, showing the epitopes colored coded as in b). This face is
positively charged while the back side is predominantly negative.
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Figure 5.
Linear epitopes of the allergens a) Ara h 1 from peanut and b) Asp f 13 from a fungus are only
partially surface exposed. The surface is transparent and the different epitopes are demarcated
by different colors.
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Figure 6.
The propensities of the amino acids, relative to their overall occurrence in the protein sequence,
to occur on the surfaces of proteins (a) or in the epitope or interface residues (b), The
propensities for occurrence in IgE binding sites are based on the surface exposed residues of
linear IgE epitopes determined for 16 allergens (3 experimental structures, 13 3D-models). The
propensities for occurrence in the interface are based on a previous study of 72 protein
complexes (Negi and Braun, 2007).
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Table I
Cutoffs for the classification of fold recognition server results

Server Category 0 Category 1 Category 2

3D- PSSM log E ≤ −2 −2 < log E ≤ 0 log E > 0
mGenThreader log E ≤ −3 −3 < log E ≤ −1 log E > −1
FUGUE Z ≥ 6 6 > Z ≥ 3 3 > Z
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Table II
Summary of the modeling results

Sequences in SDAP 829

PDB structures 45
Very close homologs to PDB structures 114
Short sequences (< 30 amino acids) 25

Sequences to be modeled 645
FR alignments classified reliable 501
Good 3D-models 433

3D-Models did not pass quality filters 68
Difficult targets 144
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