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ABSTRACT The field of protein structure prediction has seen significant advances in recent years. Researchers have
followed a multitude of approaches, including methods based on comparative modeling, fold recognition and threading, and
first-principles techniques. It is noteworthy that the structure prediction of membrane proteins is comparatively less studied by
researchers in the field. A membrane protein is characterized by a protein structure that extends into or through the lipid-lipid
bilayer of a cell. The structure is influenced by the combination of the hydrophobic bilayer region, the direct interaction with the
bilayer, and the aqueous external environment. Due to the difficulty in obtaining reliable experimental structures, accurate
computational prediction of membrane proteins is of paramount importance. An optimization model has been developed to
predict the interhelical interactions in a-helical membrane proteins. A database of a-helical membrane proteins of known
structure and limited sequence identity can be constructed to develop interaction probabilities. By then maximizing the
occurrence of highly probable pairwise or three-residue interactions, realistic contacts can be predicted by imposing a number
of geometrical constraints. The development of these low distance contacts can provide additional distance restraints for first
principles-based approaches to the tertiary structure prediction problem. The proposed approach is shown to successfully
predict interhelical contacts in several membrane protein systems, including bovine rhodopsin and the recently released human
b2 adrenergic receptor protein structure.

INTRODUCTION

Despite the multitude of available methods for protein

structure prediction, the advances in the study of membrane

proteins have not been as quick to follow. Whereas there

are more than 46,000 experimentally determined structures

available through the Protein Data Bank (1), only 144 pro-

teins are membrane proteins with experimentally validated

transmembrane segments (2). Due to the difficulty in ob-

taining reliable experimental structures, accurate theoretical

prediction of membrane proteins is of paramount importance.

This significance becomes even more striking given the

number of membrane proteins and their role in drug devel-

opment. It has been estimated that integral membrane pro-

teins make up ;20–30% of the total proteins across a variety

of organisms (3,4). As much as 30% of commercial drugs are

known to target G-protein-coupled receptors (5), a family

of membrane proteins characterized by an a-helical bundle of

seven helices.

Although it is difficult to crystallize membrane proteins to

determine their three-dimensional structure, the analysis of

membrane topology through biochemical methods is much

more feasible. There have been major advances in the pre-

diction of transmembrane regions of proteins. Due to the

distinctive patterns of hydrophobic regions within the mem-

brane and polar loop regions beyond the membrane, hydro-

phobicity and polarity have been used to predict these regions.

These methods can be evaluated based on their ability to

correctly predict the membrane-spanning regions, as well as

the sidedness of a protein. One popular method, TMHMM,

uses a global implementation of a hidden Markov model to

make its predictions (3). Different approaches, such as

MEMSAT, are based on a combined form that accounts for

local level effects and incorporates them into global heuristics

(6). Independent studies of these types of prediction methods

have identified MEMSAT and TMHMM as high-performing

methods in this area, although prediction performance was less

impressive for eukaryotic proteins (7,8). Recent contributions

in this area have considered combining a hidden Markov

model with evolutionary information (9), combining a hidden

Markov model with a molecular mechanics energy-scoring

function (10), applying a support vector machine algorithm

(11), and combining a variety of algorithms through a con-

sensus approach (12).

Since a large percentage of membrane proteins form

a-helical bundles, many efforts have been made to compare

and contrast these proteins with soluble a-helical proteins.

Membrane proteins seem to satisfy the backbone hydrogen

bonds in the low dielectric environment (13). Eilers et al.

have used the technique of occluded surface to demonstrate

that membrane proteins have higher packing values than

soluble proteins (14). Part of the reasoning behind this effect

is the tendency of membrane proteins to have a higher oc-

currence of small amino acids, such as GxxxG or AxxxA

motifs, in the helical interface (15).

By applying an atom-based probability model, Adamian

and Liang were able to analyze membrane helical pairwise

propensity at the helix interface (16). A major conclusion of

their analysis is that membrane proteins and soluble proteins
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do indeed pack differently and the same pairwise interaction

can have dramatically different propensities in the soluble

and membrane environments. Other research in the area has

shown that it is almost a rule that consecutive transmembrane

helices pack against each other and these a-helices have a

strong preference for antiparallel interactions (17). The recent

application of interhelical three-body interactions in mem-

brane proteins has led to unique triplet propensity values that

are important for membrane protein folding and assembly

(18). Gimpelev et al. found that the majority of transmem-

brane helix pairs could be modeled by templates from sol-

uble helix pairs, establishing a model to sample interhelical

contacts that may form in membrane proteins (19). Knowl-

edge-based pair potentials have been developed for trans-

membrane helix pair configurations and were shown to have

predictive power in tests of rigid docking of transmembrane

helix pairs (20).

Even though membrane-spanning regions can be predic-

ted with a reasonable level of accuracy and transmembrane

helix-helix interactions have been thoroughly studied, there

have been few attempts to develop a method to predict

the tertiary structure of transmembrane proteins. Waldispühl

and Steyaert proposed a structure prediction algorithm that

combines local and global constraints to model transmem-

brane protein secondary and super-secondary structures (21).

One research group has explored the conformations of

membrane protein folds for a-helical bundles. Using an input

of a-helix ranges and a set of distances between pairs of

atoms, they were able to describe a method to enumerate all

the possible conformations that satisfy the distances (22).

This approach is especially useful as an initial step to a local

refinement method, such as a custom penalty function de-

rived from a statistical analysis of membrane protein struc-

tures (23). It should be noted that the interhelical prediction

models proposed in this article could be used to develop a set

of input distances for this method.

Research on computer simulations using a coarse-grained

lattice model has shown initial success in predicting mem-

brane protein structure. By applying a composite energy

function to differentiate between amino acids in the mem-

brane and those in the water, a rough estimate of the helical

structure (without loops) was assembled using Monte Carlo

simulations (24). Incorporated into this effort was an exten-

sion of the two-stage folding model proposed for membrane

proteins (25). This model divides the a-helical membrane

protein folding into two steps: inserting the helices into the

membrane and then subsequently assembling the helices into

the final a-helical bundle structure. A more detailed model of

transmembrane protein energetics has four stages: partition-

ing, folding, insertion, and association (26). Determining the

DG values for each step along this path allows for a complete

thermodynamic description of the system.

A hybrid method has been developed to predict the

structure of G-protein-coupled receptors (27). The protocol

for this approach has five main steps:

1. Step 1. The TM2NDS program is used to determine the

transmembrane regions by a hydropathicity scale.

2. Step 2. Each individual helix is constructed and opti-

mized using torsional molecular dynamics.

3. Step 3. The helical axes are oriented according to an

electron density map as the initial step in the assembly of

the a-helical bundle.

4. Step 4. A coarse-grain optimization program, COAR-

SEROT, is applied to rotate the helical orientations

through all possible angles about the helical axes.

5. Step 5. The loop regions are added and the entire protein

is subject to a final optimization step.

This method was able to predict the transmembrane region of

bovine rhodopsin to ;3 Å RMSD with inputs of only the

primary sequence and the data from the electron density map.

Traditional protein structure prediction approaches have

also been applied to membrane protein systems. A recent

review highlights the successes and limitations of compara-

tive modeling efforts for rhodopsin-based homology tech-

niques (28). A notable approach that does not fall within

the rhodopsin-based homology category is the PREDICT

methodology (29). By iterating through a series of decoy

generation and subsequent selection steps, PREDICT relies

only upon the primary sequence and the structural constraints

imposed by the membrane environment. Other methods that

do not require homology to rhodopsin include a prediction

approach that utilizes ensemble generation followed by

clustering analysis (30) and another that applies a scoring

function obtained through qualitative insights to pairs of

transmembrane helices (31). Zhang et al. have applied their

TASSER structure prediction approach to .900 G-protein-

coupled receptor proteins and validated their predictions

using a benchmark set of known membrane proteins (32).

The role of interhelical contacts in the overall folding

process for membrane proteins is uncertain. The proposed

approach in this article operates under the hypothesis that

specific residue types have a higher likelihood of forming an

interhelical contact than others. The goal of this article is to

identify these more probable interactions and subsequently

maximize their occurrence, thereby yielding the most likely

interhelical contacts that can be used as distance restraints for

tertiary structure prediction approaches.

METHODS

The interhelical contact prediction models of this article aim at predicting

interhelical contacts between the transmembrane a-helices of membrane

proteins to derive lower and upper distance bounds on these contacts for

tertiary structure prediction applications. A data set of membrane proteins

was compiled using a database of known structures and homology consid-

erations. This data set of membrane proteins was used to develop pairwise

and three-body interhelical contact probabilities. These probabilities serve as

input to two mixed-integer linear programming approaches. One approach

attempts to maximize the sum of the pairwise interhelical residue contacts.

The second approach builds on the concepts of the pairwise model to max-

imize the three-body interhelical residue contacts.
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Construction of a data set

The proteins included in the data set were selected from the Membrane

Protein Topology Database (MPTopo), assembled by researchers in the

Stephen White laboratory (2). This database is frequently updated to include

the latest experimentally determined membrane protein structures. The 80

proteins classified as 3D_helix in September 2007 were selected for further

evaluation. These 80 proteins were submitted to the PISCES web server to

create a nonredundant list of protein structures by chain (33). A maximum

sequence identity of 35% was allowed to cull these membrane protein

structures by their individual chains. A visual inspection of the resulting

protein chains was employed to remove structures with no interhelical

contacts or no clear formation of an a-helical bundle. The final data set

contains a total of 26 unique proteins and a total of 42 protein chains. This

data set is presented in Table 1.

A helix of at least 10 amino acids was classified as a transmembrane helix

for the purposes of mining interhelical contact probabilities, as described in

the section Calculating Pairwise Probabilities and the section after it, Cal-

culating Triplet Probabilities. Helices shorter than 10 amino acids are just as

likely to be present outside the lipid bilayer, whereas the proposed model is

designed to predict the contacts between the membrane layers. With this

restriction in place, a protein was removed from the data set if it had fewer

than two transmembrane helices. By removing these proteins, only those

proteins with possible helix-helix contacts were considered. The numbers of

a-helices presented in Table 1 comprise the total number of a-helices in the

protein, not just the transmembrane helices.

The development of a set of membrane protein structures for both training

and testing purposes was unrealistic due to the limited number of structures

available. Therefore, six proteins from the training data set presented here

were also selected to be members of the test set. Any potential for bias was

removed by developing a unique set of interhelical contact probabilities for

each of the six test proteins that was calculated using all of the proteins in the

data set except for the specific test protein being evaluated.

Calculating pairwise probabilities

For the development of probabilities, two amino acid residues from separate

helices are considered a PRIMARY contact if they have a Ca-Ca distance

between 4.0 and 10.0 Å. Although many such PRIMARY contacts can be

present between two helices, only the minimum distance PRIMARY contact

for each helix pair is counted. For every PRIMARY contact, the presence of a

WHEEL contact is considered. If the PRIMARY contact is between residues

in positions (i, j), then there are eight possible parallel WHEEL contacts and

eight possible antiparallel WHEEL contacts. A PRIMARY contact and

several possible WHEEL contacts are illustrated in Fig. 1. In both the parallel

and antiparallel case, only the WHEEL contacts between 4.0 and 12.0 Å are

included in the probability calculations.

After a detailed analysis of the initial data, it became apparent that certain

types of residue-residue interactions dominated the minimum interhelical

contacts. The most frequent of these interactions was in the case of nonpolar-

to-nonpolar contacts. However, there were also a significant number of

nonpolar-to-polar interactions. The important role of polar interactions

within helical contacts has been experimentally verified by the dependence of

an engineered leucine zipper on an Asparagine residue (34,35). For the

construction of this model, the nonpolar set of residues is defined as

NP ¼ Ala; Phe; Gly; Ile; Leu; Met; Pro; Val; Trp; (1)

and the polar residues are

P ¼ Cys; Asn; Gln; Ser; Thr; Tyr: (2)

As expected, the charged residues participated in few interhelical contacts.

The insertion of a charged residue into the membrane layer is too energetically

unfavorable to allow for many charged types to participate in interhelical

contacts. It is interesting to note the difference between membrane and soluble

proteins. Instead of the polar interactions that form in membrane proteins, it

is generally believed that the driving force for soluble protein folding is the

hydrophobic effect (36). This hypothesis is supported by the success of an

interhelical hydrophobic-to-hydrophobic residue contact prediction model

applied to soluble a-helical proteins (37).

Both the PRIMARY and WHEEL pairwise probabilities are divided into

antiparallel and parallel classifications. The distinction between parallel and

antiparallel is straightforward for two helices in the same plane, but in three-

dimensional space the question of how two helices interact is not as clear.

Accordingly, the definitions used for parallel and antiparallel in three di-

mensions had to be established through additional metrics. A procedure

for determining the orientation of a pair of helices has been described pre-

viously and is applied to the development of probabilities outlined here as

well (37).

Once the number of minimum distance contacts has been counted, the

probabilities can be developed. The probabilities are simply defined as the

number of residue-residue contacts divided by the total number of contacts.

To reduce the complexity and size of the optimization problem, the residue-

residue pairs that only have a single occurrence in the data set are removed

from the probability table. The probability set, MIN-1, calculated for the

pairwise model is provided as Supplementary Material in Data S1. A set of

probabilities was also calculated based on an odds ratio given the frequency

TABLE 1 A data set of a-helical membrane proteins; listed

are the PDB identifier, the number of amino acids, and the

number of helices

PDB name AAs Helices PDB name AAs Helices

1e12-A 253 9 1occ-H 85 4

1ehk-A 562 18 1oed-C 260 4

1eys-C 382 18 1okc-A 297 17

1eys-L 280 17 1ots-A 465 22

1eys-M 324 17 1q16-C 225 13

1f88-A 348 15 1qle-B 252 5

1fx8-A 281 16 1rwt-A 232 10

1h2s-A 225 10 1u7g-A 385 21

1h2s-B 60 2 1xio-A 261 8

1j4n-A 271 12 1yew-A 382 8

1jb0-A 755 36 1yew-B 247 11

1jb0-F 164 9 1yew-C 289 10

1jb0-K 83 3 1zoy-A 622 17

1jb0-L 154 9 1zoy-B 252 10

1kqf-C 217 14 1zoy-C 140 5

1nek-C 129 5 1zoy-D 103 4

1nek-D 115 4 2ahy-A 110 4

1occ-A 514 22 2bbh-A 269 7

1occ-B 227 5 2ic8-A 182 11

1occ-C 261 8 2j7a-A 500 26

1occ-E 109 6 2j7a-C 159 10

FIGURE 1 Two interacting a-helices interacting in an antiparallel man-

ner, where residues i and j form a PRIMARY contact, and the residues

(i13), (i14) can each interact with (j � 3), (j� 4) to form WHEEL contacts.

This figure is adapted from McAllister et al. (37).
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of an amino acid occurrence. However, this method was unable to match the

performance of the simpler probabilities calculated (data not shown). Further

analysis is needed to assess the merits of the odds ratio-based approach for

application in this optimization model.

A second set of pairwise probabilities, denoted as AL-P, was developed

based on the work of Adamian and Liang (16). As part of their comparison

between globular and membrane a-helical proteins, they analyzed the rela-

tive frequencies of pairwise interhelical contacts according to residue types.

These contacts were selected based upon atomic interaction criteria, rather

than Ca-Ca distances, and considered all interactions where an atomic in-

teraction resulted. The probabilities derived from these pairwise contacts are

available as Data S1. It should be noted that these probabilities are unable to

predict WHEEL contacts because conditional probabilities could not be

derived.

Calculating triplet probabilities

A three-body (or triplet) interaction consists of a contact between residues

(i, j) and residues (i 1 1, j), where i and i 1 1 reside on helix m and j is from

helix n. These triplet probabilities are calculated using a method similar to

the approach for the pairwise helix probabilities. A set of three residues is

considered a triplet if the average Ca-Ca distance of both residue pairs is

between 4.0 and 10.0 Å.

Two main sets of probabilities have been developed for use in this model.

The first probability set, MIN-2, considers only the two most minimum

distance triplet contacts for each helix-helix interaction in the data set.

The motivation for using only the minimum distance triplets is the idea

that they represent the ‘‘best’’ contacts. The initial generation of the

probabilities for this set separated the values into both parallel and anti-

parallel interactions.

Once the number of contacts has been calculated, the triplet probabilities

can be calculated by dividing the number of contacts of a specific triplet by

the number of triplet contacts across all proteins in the data set. At this point,

any specific triplet contact that only occurs once in the data set is removed

from the set of probabilities. This removal reduces the complexity of the

problem by only considering the more frequent triplet occurrences. The es-

tablished probabilities for the MIN-2 set are available as Data S1.

The second set of triplet probabilities tested for this model, denoted as

AL-T, was developed by Liang and co-workers (18). Working from a smaller

data set, they selected contacts based upon atomic interaction criteria, rather

than Ca-Ca distances. Instead of considering only the minimum distance

triplets, their set of contacts enumerated all the three-body interactions that

met the interaction criteria. Then any triplet with at least 10 contacts was

included in the published analysis. The probabilities derived from their set of

triplet contacts are available as Data S1.

Pairwise contact prediction model

The first model developed for transmembrane helix contact prediction con-

siders pairwise interactions. A pairwise interaction is characterized by two

residues from separate helices that have a short Ca-to-Ca contact distance.

The probabilities are developed using a distance range of 4.0–10.0 Å for

PRIMARY contacts and the predicted interactions are expected to have

distances ,12.0 Å in most cases or possibly ,14.0 Å for more difficult

systems. Using the probabilities developed in the section Calculating Pair-

wise Probabilities, the model aims at maximizing the occurrence of the most

probable residue pairs.

Indices and sets

The indices m, n are used to represent the helices in the protein being

modeled. Each helix that is longer than 15 amino acids is included in the sets

M,N. The indices i, j, k, l represent a residue in set I, where set I is composed

of all the residues in the amino acid sequence of a protein.

Binary variables

This model requires the use of several binary variables that take the value of

1 if the variable is active, and 0 if it is inactive.

yA

mn ¼
1 if helix m has an antiparallel contact with helix n
0 otherwise

�

y
P

mn ¼
1 if helix m has a parallel contact with helix n
0 otherwise

�

w
mn

ij ¼

1 if the nonpolar=polar or nonpolar=nonpolar pair

ði; jÞ forms a PRIMARY residue contact for the

helical pair m; n
0 otherwise

8>><
>>:

w
mn

kl;ij¼

1 if the nonpolar=polar or nonpolar=nonpolar pair

ðk; lÞ forms a WHEEL residue contact for the given

helical pair ðm; nÞ and given w
mn

ij

0 otherwise

8>><
>>:

Due to the complexity of the transmembrane helix model, the allowable

contacts for a specific residue are restricted to be from the helices imme-

diately before and after a specific helix. For example, a residue in the first

helix in a protein is allowed to contact a residue in the second helix in that

protein or a residue in the last helix in that protein. These allowable contacts

comprise the set of contacts that the models will try to predict. As a result of

the considerable size and complexity of membrane proteins, this set is only a

subset of the possible contacts in the protein.

Parameters

The following is a complete list of parameters used in the model. Of particular

note are subtract and max_contact, which have their basis in the prediction of

a-helical topology in globular proteins (37). The subtract parameter allows the

user to consider a subset of the possible helix-helix pairs, with the goal of

identifying the lowest-distance contacts. By allowing the model to select from

a subset, stronger interhelical interactions may be identified and predicted.

max_contact specifies the number of residue-residue contacts that may be

predicted between a specific pair of helices. A value of 2 is appropriate for

smaller systems, especially those with only a single pair of helices. However, a

value of 1 often produces better results for larger proteins because the model

focuses on the best possible interactions for each allowed helix pair.

pA
ij —PRIMARY probability that a specific pair (i, j) forms an antipar-

allel residue contact.

pP
ij—PRIMARY probability that a specific pair (i, j) forms a parallel

residue contact.

pA
kl;ij—WHEEL probability that a specific pair (k, l) forms an antiparallel

residue contact given a residue contact between (i, j).

pP
kl;ij—WHEEL probability that a specific pair (k, l) forms a parallel

residue contact given a residue contact between (i, j).

ðpA
kl;ijÞ

U
—Maximum pA

kl;ij over all contact combinations.

ðpP
kl;ijÞ

U
—Maximum pP

kl;ij over all contact combinations.

ðZA
mnÞ

U
—Twice the value of the largest probability pA

ij over all nonpolar/

polar and nonpolar/nonpolar combinations.

ðZP
mnÞ

U
—Twice the value of the largest probability pP

ij over all nonpolar/

polar and nonpolar/nonpolar combinations.

max_contact—Maximum number of contacts allowed between helices

m and n.

counth(m)—2 if helix m has at least two nonpolar or polar residues not

WHEEL to each other.

subtract—Nonnegative integer that specifies how many m to n helical

interactions to remove from the solution with maximal helical packing.

Nhel—Number of helices in the protein.
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Level 1 formulation

The objective function of the Level 1 formulation attempts to maximize the

probabilities of each residue-residue contact to result in the greatest sum. It

can be formulated as shown in Eq. 3:

max +
m

+
n;m,n

y
A

mn 3 +
i;j

w
mn

ij 3 p
A

ij 1 y
P

mn 3 +
i;j

w
mn

ij 3 p
P

ij

" #
: (3)

The product of the binary variables y and w results in a nonlinear objective

function. The linearization of this objective function is performed using

standard techniques (38) and is presented as Data S1.

The constraints in the level 1 pairwise model formulation are separated into

five categories relating to basic model relationships, geometric observations,

model complexity considerations, membrane protein observations, and model

features.

Basic model. The model is more tightly restrained by taking advantage of the

relationships among wmn
ij ; yA

mn; and yP
mn: The first of these constraints, Eq. 4,

requires that a wmn
ij residue-residue contact can only be specified if there is

either a parallel or an antiparallel contact between the helices m, n

+
j

w
mn

ij # y
A

mn 1 y
P

mn "ði;m; nÞ: (4)

Like Eq. 4, Eq. 5 connects the binary variable representing the (i, j) residue-

residue contacts, wmn
ij ; to the yA

mn and yP
mn binary variables for an interacting

helix pair (m, n). When the sum over wmn
ij is equal to zero for a given helix

pair (m, n), the helices cannot be in contact. The following constraint specifies

this observation, and is especially useful when integer cuts are applied to

generate a rank-ordered list of contact predictions,

y
A

mn 1 y
P

mn �+
i

+
j

w
mn

ij # 0 "ðm; nÞ: (5)

Geometric observations. The same pair of transmembrane helices (m, n)

cannot interact in both an antiparallel and a parallel fashion. By requiring the

sum of yA
mn and yP

mn to be #1, the constraint expressed in Eq. 6 requires the

interaction be either parallel or antiparallel,

y
A

mn 1 y
P

mn # 1 "ðm; nÞ: (6)

If parallel contacts between consecutive helices have been disallowed (see

Eq. 15), the type of allowable contact has been specified between the first and

last helix of a membrane protein. For the case of an even number of helices

.2, the interaction between helices (1,Nhel) must be antiparallel. However, in

the case of an odd number of helices, the final contact is parallel. For the case

of a membrane protein with only two helices, their interactions have already

been specified as antiparallel by Eq. 15. In this case, Eq. 7 is redundant, and it

is removed from the model. The modulus operator, MOD, is used to

determine whether the number of helices is odd or even:

+
m

+
n;m,n

y
A

mn # Nhel �MODðNhel; 2Þ½ � Nhel . 2: (7)

If more than one residue-residue contact is allowed between a given pair of

helices (m, n), the positions of these two contacts must be constrained to prevent

kinks in the helix. By requiring the number of residues on helix m between (i, k)

to be within three residues of the number between (j, l) on helix n, the severity of

any predicted kinks can be reduced to a reasonable level. In addition to

implementing that requirement, Eq. 8 also prevents a second PRIMARY contact

from being predicted in the WHEEL position of the first PRIMARY contact, as

w
mn

ij 1 +
l

w
mn

kl # 1

"ði; j; kÞj ðjdiffði; kÞj � jdiffðj; lÞjÞ. 3

or jdiffði; kÞj, 5 or jdiffðj; lÞj, 5; (8)

where diff(i, i9) refers to the difference in sequence numbering between i and i9.

For a set of parallel helices, if residue k . i in helix m, then it must also be

true that residue l . j. If this is not the case, then the two predicted

PRIMARY contacts are not consistent with the parallel classification given

by the yP
mn binary variable. This constraint is shown below as Eq. 9. A similar

constraint is included to require the proper numbering and classification

scheme for the antiparallel case in the constraint expression in Eq. 10.

w
mn

ij 1 +
l

w
mn

kl 1 +
m

+
n;m ,n

y
P

mn # 2

"ði; j; kÞjl . j

and jðjdiffði; kÞj � jdiffðj; lÞjÞj, 3: (9)

w
mn

ij 1 +
l

w
mn

kl 1 +
m

+
n;m ,n

y
A

mn # 2

"ði; j; kÞj j . l

and jðjdiffði; kÞj � jdiffðj; lÞjÞj, 3: (10)

If there is a shorter helix in contact with a longer helix in the pair (m, n),

the allowable set of contacts can be further tightened by considering the

length of the loop between the two helices. If the loop region only contains

a few residues (as is the case in many consecutive transmembrane helices),

it cannot stretch far enough to allow contacts from the beginning of the

first helix to the end of the second helix. To quantify this insight, Eqs. 11

and 12 have been implemented. The assumptions for these constraints

consist of:

1. At least one residue is required for the turn.

2. The i, (i 1 4) distance for residue i in any given helix is ;6.0 Å.

3. The vertical distance a loop residue can span is 3.0 Å.

The third assumption may be restrictive, as the average distance between two

Ca atoms is ;3.8 Å. However, it is unlikely that the loop region will be able

to stretch in a perfectly straight manner considering the large amount of

flexibility in most loop regions. As the model is applied to additional

transmembrane proteins, the values of 3.0 Å and 6.0 Å can be changed to

more conservative values if necessary. In these equations, loop_length(m, n)

is the length of the loop between the helix pair (m, n) and len is the length of a

specific helix:

w
mn

ij ¼ 0

"ði; jÞjð3:0 3 ðloop�lengthðm; nÞ � 1Þ
1 j 3 6:0=4Þ# ðlenðmÞ � i 1 1Þ3 6:0=4Þ (11)

w
mn

ij ¼ 0

"ði; jÞjð3:0 3 ðloop�lengthðm; nÞ � 1Þ
1 ðlenðnÞ � i 1 1Þ3 6:0=4Þ# j 3 6:0=4 (12)

Model complexity. Equation 13 allows helix m to have at most counth(m)

contacts. For almost all transmembrane helices, counth(m) is equal to 2.

However, in the rare case where it is not possible for helix m to have two

predicted contacts because of the structure of the probability set, then

counth(m) can be set to 1 to tighten the bounds on yA
mn and yP

mn;

+
n

y
A

mn 1 y
P

mn # counthðmÞ "ðmÞ: (13)

For a given helix, any specified amino acid is allowed to be in contact with at

most one other amino acid on a specific helix. This simplification is

introduced to predict only the most probable contacts and reinforces the

focus of the model predictions on accuracy instead of coverage. Due to the

structure of the modeling language, the index m is always assumed to be ,n
to reduce the number of variables in the formulation. Therefore, Eq. 14 is

needed to implement this restriction:
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+
j

w
mn

ij 1 w
mn

ji # 1 "ðiÞ: (14)

Membrane protein observations. The majority of a-helical membrane pro-

teins contain consecutive helices that interact in an antiparallel fashion. To

have a parallel interaction between two consecutive helices, a nonhelical

segment that stretched the length of the helix would need to exist. Since this

model has been developed for transmembrane helices that span the mem-

brane bilayer, the loop region between the two residues would need to span

the bilayer to allow for a parallel helix-helix interaction between two con-

secutive helices. The energetics of inserting a loop segment across a mem-

brane layer are unfavorable, so Eq. 15 is included to prevent parallel helical

interactions between two consecutive helices. The use of methods to predict

membrane-spanning regions could verify this constraint in future im-

plementations,

+
m

+
n;ðn�mÞ¼1

y
P

mn ¼ 0: (15)

Transmembrane helices are often of approximately the same length and they

tend to line up in a similar fashion from top to bottom to form a bundlelike

structure. It is highly unlikely that a PRIMARY contact prediction yielding

little overlap between helices is an accurate representation of the protein.

Equations 16 and 17 prevent the model from predicting contacts where the

overlap between helices (m, n) is ,90% of the shorter helix length. Although

this value is a strict overlapping requirement, it is justified by the energetics

of the helices in the membranes that lead to alignments of this type,

w
mn

ij 1 y
A

mn # 1 "ði; j;m; nÞ; (16)

if overlap between ðm; nÞ , 90% of shorter helix

w
mn

ij 1 y
P

mn # 1 "ði; j;m; nÞ; (17)

and if overlap between ðm; nÞ , 90% of shorter helix:

Model features. The next constraint, Eq. 18, allows the optimization model to

predict at most max_contact number of contacts between a specified pair of

helices (m, n). Using a parameter value of one is useful for the contact pre-

diction of large proteins with many helices. However, a max_contact value of

two provides more constraints for the subsequent tertiary fold prediction.

Therefore, for most proteins, both values of the max_contact parameter are

explored as

+
i

+
j

w
mn

ij # max�contact 3 ðyA

mn 1 y
P

mnÞ "ðm; nÞ: (18)

Sometimes it is desirable to predict fewer than the maximum possible

number of helix-helix contacts (m, n). Equation 19 introduces the parameter

subtract to limit the number of helical interactions. A subtract value of zero

allows the maximum number of interhelical contacts to be equal to the

number of helices, as specified by Eq. 13. Each additional increment of

the subtract parameter effectively removes a helix-helix contact from the

allowable prediction. A larger subtract value leads to looser helix packing,

and it is postulated that the model will then be able to predict the most

essential and most accurate helical contacts:

+
m

+
n;m,n

y
A

mn 1 y
P

mn # +
m

counthðmÞ
2

� subtract: (19)

In some cases, the best contact prediction (ranked by average distance or

some other measure) does not correspond to the most probable solution and it

is informative to look at several solutions ranked by probability. The true

power of this model results from the ability to generate a rank-ordered list of

contact predictions. Equation 20 implements the concept of an integer cut,

restricting the model to a unique set of binary variables for each iteration.

After each successive solve of the above model, the previous solution can be

excluded from the feasible solution space using this equation. Here A is the

set of active variables, which are all the variables that assume a value of 1.

Also, I is the set of inactive variables and card(A) is the cardinality of set A, or

in other words the number of members of set A:

+
ðm;nÞ2A

�
y

A

mn 1 y
P

mn

�
1 +
ði;jÞ2A

w
mn

ij � +
ðm;nÞ2I

�
y

A

mn 1 y
P

mn

�
� +
ði;jÞ2I

w
mn

ij # cardðAÞ � 1: (20)

Level 2 formulation

The Level 2 formulation uses information from the PRIMARY contacts

predicted in the Level 1 formulation to maximize the most probable WHEEL

contacts. By predicting the WHEEL contacts as well, the model provides a

direct method to distinguish among any rank-ordered PRIMARY contact

predictions with the same objective function value in Level 1. For the case of

a ‘‘blind’’ prediction problem, this second formulation can be especially

useful. Although it is possible to solve the Level 1 and Level 2 formulations

simultaneously, the current implementation is solved sequentially to allow

for faster predictions due to the size and complexity of the problem for larger

protein systems.

If the data set was large enough it would be desirable to use probabilities

that represent the odds of a specific (k, l) WHEEL contact given an (i, j)

PRIMARY contact, but it is not feasible with the limited size of the current

data set. Instead, the probabilities are calculated as the probability that po-

sition (k, l) will contain a WHEEL contact given that (i, j) form a PRIMARY

contact. But, to distinguish among WHEEL contact probabilities, the model

must also consider the probability of an (i, j) contact given an (k, l) contact.

This pp
ij;kl value effectively defines the (k, l) interaction as a PRIMARY

contact and calculates the probability of a WHEEL contact (i, j).

The objective function for the Level 2 formulation is presented in the

form of

+
i

+
j

f
A

ij 3 ypA

ij 1 f
P

ij 3 ypP

ij: (21)

In this equation, fA
ij and fP

ij are then defined as the product of the wheel

probability sum (as described above) and wmn
kl;ij; the binary variable

representing the presence of a WHEEL contact in position (k, l) given a

PRIMARY contact (i, j). Also, the binary parameters ypA
ij and ypP

ij are defined

as the appearance of a PRIMARY contact (i, j) in the Level 1 model,

f
A

ij ¼ +
k

+
l

w
mn

kl;ij 3 p
A

kl;ij 1 p
A

ij;kl

h i
"ði; jÞ; (22)

f
P

ij ¼ +
k

+
l

w
mn

kl;ij 3 p
P

kl;ij 1 p
P

ij;kl

h i
"ði; jÞ; (23)

yp
A

ij ¼ w
mn

ij 3 y
A

mn "ði; jÞ; (24)

yp
P

ij ¼ w
mn

ij 3 ; y
P

mn "ði; jÞ: (25)

Equations 26 and 27 are then implemented to ensure at most one WHEEL

contact (k, l) is specified for a given (i, j) PRIMARY contact.

+
k

+
l

w
mn

kl;ij # w
mn

ij "ði; jÞ : y
A

mn ¼ 1: (26)

+
k

+
l

wmn

kl;ij # wmn

ij "ði; jÞ : yP

mn ¼ 1: (27)

Triplet contact prediction model

The use of pairwise interhelical residue-residue contacts was an obvious first

choice to satisfy the objectives of this optimization model. However, there

are other methods that may work just as well. A recent article suggests that
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higher-order interactions may be necessary to properly model the system

(18). This optimization model considers the interaction between interhelical

triplet contacts. To enable proper description of the constraints implemented

as part of this model, two types of triplet residues are defined. The first is a

MAIN residue, which represents the central residue of the triplet that appears

on the helix that is opposite the helix containing the other two residues. These

other two residues are defined as SECONDARY residues. For example,

consider a triplet contact between Leucine and Valine on helix m and Glycine

on helix n. The Leucine-Glycine-Valine triplet contains the MAIN residue

Glycine and two SECONDARY residues Leucine and Valine.

By applying the probabilities developed in the section Calculating Triplet

Probabilities, this model seeks to predict the most probable triplet contacts

between transmembrane helices. Since this problem is formulated as an

optimization model, it will be able to maximize the sum of the triplet

probabilities to guarantee the highest probability allowed by the constraints.

Indices and sets

The definition of the indices and sets follows a similar convention to those of

the pairwise optimization model. The indices m, n, and p represent the helices

and i, j, k, and l contain all the residues of the protein, I. The new index for

this model, t, is used to define the type of triplet contact present. For a value of

t equal to 1, the third contact residue is in helix m, where m , n. Otherwise, if

t is 2, the third residue of the triplet contact is in helix n.

Binary variables

The binary variables yA
mn and yP

mn still represent the presence of a contact

between helices m, n. However, now the binary variable wmn
ijt ¼ 1 if the triplet

(i, j, k) forms a residue contact where k is included in the triplet defined by

index t.

Parameters

The parameters for the triplet optimization model, although modified to ac-

curately represent the new model, are still used to accomplish the same

objectives as the pairwise model.

pA
ijt—Probability that a specific triplet (i, j, k) forms an antiparallel

residue contact where k is included in the triplet defined by index t.

pP
ijt—Probability that a specific triplet (i, j, k) forms a parallel residue

contact where k is included in the triplet defined by index t.

ZA
mn

� �U
—Twice the sum of the largest probability pA

ijt over all antipar-

allel triplet probabilities.

ZP
mn

� �U
—Twice the sum of the largest probability pP

ijt over all parallel

triplet probabilities.

max_contact—Maximum number of triplet contacts allowed between

helices m and n.

subtract—Nonnegative integer that specifies how many m-to-n helical

interactions to remove from the solution with maximal helical packing.

Nhel—Number of helices in the protein.

Triplet formulation

Like the pairwise level 1 formulation, the triplet formulation also uses

standard optimization techniques to linearize the objective function with an

equivalent representation (38). The objective function is shown in Eq. 28 and

the details of the linearization are presented as Data S1.

OBJ ¼ +
m

+
n;m,n

(
y

A

mn 3 +
i

+
j

+
t

ðwmn

ijt 3 p
A

ijtÞ

1 y
P

mn 3 +
i

+
j

+
t

ðwmn

ijt 3 p
P

ijtÞ
)
: (28)

Regardless of the type of contact between residues, the counth(m) parameter

still defines the maximum number of allowable triplet contacts for the model.

In this formulation it is set to 2 in Eq. 29. Like the pairwise model, Eq. 30

requires that the same pair of helices (m, n) cannot interact in both a parallel

and antiparallel fashion, respectively,

+
n

y
A

mn 1 y
P

mn # 2 "ðmÞ; (29)

y
A

mn 1 y
P

mn # 1 "ðm; nÞ: (30)

Although they contain the new form of wmn
ijt ; the following two constraints

retain the same function as the pairwise model. Equation 31 still limits the

number of contacts per helix pair through the max_contact parameter and

Eq. 32 allows a triplet contact to be specified only when a helix-helix

interaction is present:

+
i

+
j

+
t

wijt # max�contact 3 ðyA

mn 1 y
P

mnÞ "ðm; nÞ; (31)

+
j

+
t

w
mn

ijt # y
A

mn 1 y
P

mn "ði;m; nÞ: (32)

The main difference between the triplet model and the pairwise model is the

formulation of Eq. 14. For the Level 1 formulation of the pairwise optimi-

zation model, this constraint specifies that a given amino acid can only be in

contact with, at most, one other residue. However, in the triplet scenario, this

restriction is not quite as clear. The following rules were established to

prevent conflicts. First, a MAIN triplet residue may not participate in another

triplet interaction as either a MAIN or a SECONDARY residue. The second

rule states that two neighboring SECONDARY residues cannot participate in

triplet contacts with multiple residues. Finally, a SECONDARY residue

cannot participate in more than two triplet contacts. For the case of two

allowable triplet contacts between each helix pair (m, n), the possible

scenarios can be enumerated as follows.

For a given triplet contact of type t equal to 2, the first rule disallows the

combinations in Figs. 2 and 3. This restriction is implemented in the model

by Eq. 33. In the figures, i is on helix m; j is on helix n; and k is on helix p.

These figures show the disallowed triplet configurations between three

consecutive helices by using the helical wheel representation to illustrate

the likely positions of the predicted contacts. This representation separates

FIGURE 2 Helical wheel representation of the first disallowed triplet

prediction overlap.
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two consecutive amino acids by 100�, consistent with the 3.6 residues per

turn present in an ideal a-helix. It is important to note that the idealized

figures are for illustrative purposes only, and that there are no inherent

assumptions in the model restricting the form of the helices. In all cases, the

disallowed predictions are due to the overlap or close proximity of helix m
and helix p,

w
mn

i;j;t¼2 1 +
k

ðwnp

j;k;t¼2 1 w
np

j11;k;t¼2Þ# 1 "ði; jÞ: (33)

Equation 34 is an implementation of the first rule that prevents the helical

residue j from participating in multiple contacts as the MAIN residue. It

disallows interactions of the type exemplified by Fig. 4,

w
mn

i;j;t¼1 1 +
k

w
np

j;k;t¼2 # 1 "ði; jÞ: (34)

The final constraint necessary to specify the first rule, Eq. 35, prevents

overlapping contacts similar to those shown in Figs. 5 and 6,

w
mn

i;j;t¼1 1 +
k

ðwnp

j;k;t¼1 1 w
np

j�1;k;t¼1Þ# 1 "ði; jÞ: (35)

Equation 36 is in place to limit the number of overlapping triplets on a helix

and to limit the type of allowed overlapping contacts similar to those shown

in Fig. 7. This constraint is required to specify the final rule listed above:

w
mn

i;j;t¼2 1 +
k

ðwnp

j�1;k;t¼1 1 w
np

j11;k;t¼1Þ# 2 "ði; jÞ: (36)

The final constraint necessary to enumerate the overlapping cases is Eq. 37.

By implementing the second rule for allowed overlaps, it disallows over-

lapping triplets like those shown in Fig. 8.

w
mn

i;j;t¼2 1 +
k

w
np

j;k;t¼1 # 1 "ði; jÞ: (37)

Similar to the pairwise formulation, constraints are necessary to further link

the variables yA
mn and yP

mn to wmn
ijt ; and to implement a subtract variable to

allow for multiple degrees of helical packing:

y
A

mn 1 y
P

mn �+
i

+
j

+
t

w
mn

ijt # 0 "ðm; nÞ; (38)

+
m

+
n;m,n

y
A

mn 1 y
P

mn # +
m

counthðmÞ
2

� subtract: (39)

Equations 40 and 41 remain unchanged from the pairwise formulation, still

requiring antiparallel contacts between neighboring helices and the correct

orientation between helix 1 and helix Nhel:

FIGURE 3 Helical wheel representation of the second disallowed triplet

prediction overlap.

FIGURE 4 Helical wheel representation of the third disallowed triplet

prediction overlap.

FIGURE 5 Helical wheel representation of the fourth disallowed triplet

prediction overlap.
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+
m

+
n;ðn�mÞ¼1

y
P

mn ¼ 0; (40)

+
m

+
n;m,n

y
A

mn # Nhel �MODðNhel; 2Þ½ �: (41)

The triplet formulation also contains similar constraints to prevent severe

kinks between contacting helices, to require the proper numbering scheme

for a given parallel or antiparallel classification, and to disallow contacting

pairs that result in a ,90% overlap of the shorter helix:

+
t

w
mn

ijt 1 +
l

wklt

� �
# 1

"ði; j; kÞj ðjdiffði; kÞj � jdiffðj; lÞjÞ. 3

or jdiffði; kÞj, 5 or jdiffðj; lÞj, 5; (42)

+
t

w
mn

ijt 1 +
l

w
mn

klt

� �
1 +

m

+
n;m ,n

y
P

mn # 2

"ði; j; kÞjl . j

and jðjdiffði; kÞj � jdiffðj; lÞjÞj , 3; (43)

+
t

wmn

ijt 1 +
l

wmn

klt

� �
1 +

m

+
n;m , n

yA

mn # 2

"ði; j; kÞj j . l

and jðjdiffði; kÞj � jdiffðj; lÞjÞj , 3; (44)

+
t

w
mn

ijt 1 y
A

mn # 1 "ði; j;m; nÞ

if overlap between ðm; nÞ , 90% of shorter helix; (45)

+
t

w
mn

ijt 1 y
P

mn#1 "ði; j;m; nÞ

if overlap between ðm; nÞ , 90% of shorter helix: (46)

Finally, to complete the triplet optimization formulation, Eqs. 47 and 48 limit

the stretching of loop regions and Eq. 49 allows for a rank-order list to be

generated from integer cuts of previous iterations:

w
mn

ijt ¼ 0

"ði; j; tÞjð3:0 3 ðloop�lengthðm; nÞ � 1Þ
1 j 3 6:0=4Þ# ðlenðmÞ � i 1 1Þ3 6:0=4Þ; (47)

w
mn

ijt ¼ 0

"ði; j; tÞjð3:0 3 ðloop�lengthðm; nÞ � 1Þ
1 ðlenðnÞ � i 1 1Þ3 6:0=4Þ#j 3 6:0=4; (48)

FIGURE 6 Helical wheel representation of the fifth disallowed triplet

prediction overlap.

FIGURE 7 Helical wheel representation of the only type of allowed triplet

prediction overlap.

FIGURE 8 Helical wheel representation of the sixth disallowed triplet

prediction overlap.
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+
ðm;nÞ2A

ðyA

mn 1 y
P

mnÞ1 +
ði;j;tÞ2A

w
mn

ijt � +
ðm;nÞ2I

ðyA

mn 1 y
P

mnÞ

� +
ðijtÞ2I

w
mn

ijt # cardðAÞ � 1: (49)

Both the pairwise and three-body interaction formulations are mixed-integer

linear programming models, and are implemented in the GAMS modeling

language (39), which calls the CPLEX (40) or XPRESS (41) mixed-integer

linear programming solvers.

RESULTS AND DISCUSSION

Once the optimization models have been formulated, it is

necessary to apply them to several test proteins to validate

them. Each model was presented with only the amino acid

sequence and the location of the transmembrane a-helices.

Although the location of the helices would be determined by

a secondary structure prediction approach for an unknown

protein, the experimentally determined locations were used

in this section for simplicity.

Since the goal of the model formulation is to develop

tighter constraints on the tertiary structure, the predicted

distances must fall within a given range to be useful. In the

analysis of a similar model for helical contacts within glob-

ular proteins, 14 Å was implemented as a target value for an

upper limit on the average PRIMARY and WHEEL contact

distance (37).

The performance of the optimization models proposed in

the section Pairwise Contact Prediction Model and the sec-

tion following it, Triplet Contact Prediction Model, is eval-

uated on a set of seven test proteins. The predictions for

1h2sB, a membrane protein with two transmembrane helices,

are presented in detail in Data S1. For analysis purposes, the

remaining test systems were divided into two sets based on

the number of transmembrane a-helices.

Bundles of 3–5 helices

Three membrane proteins with between three and five

transmembrane a-helices were selected to study the perfor-

mance of the proposed models on small systems. For each of

these three proteins, the evaluation metric is the best average

contact distance. Only those contact predictions that contain

at least four a-helical contacts or at least two a-helical con-

tacts per predicted helix pair are considered. This restriction

ensures the results are not skewed by a single outlier contact.

A three a-helix membrane protein, 1zoyD, was selected as

the second test protein. This protein structure is characterized

by the planar form of the helices, where the second helix

appears directly between the first and third helices, pre-

venting the complete formation of a typical a-helical bundle.

This membrane protein is a good test of the proposed models

because it requires a nonzero subtract parameter value to

achieve the correct topology prediction. The proposed models

for interhelical pair and three-body contact prediction are

applied for a subtract parameter value of 1, a max_contact

parameter range of 1–2, and a total of 20 iterations. The

results of these model applications are compared after 5, 10,

and 20 iterations in Table 2. The best average contact dis-

tance predictions for the pairwise model with both proba-

bility sets fall well below the 14.0 Å goal in the first five

iterations. The triplet model with the AL-T probability set

achieves a best average contact distance prediction of ;10.0

Å in the first 10 iterations. The triplet model does not perform

well, however, for this protein system when using the MIN-2

probability set because it is unable to find any nonzero triplet

contacts between the first and second a-helices of 1zoyD.

Therefore, despite the use of the nonzero subtract parameter

value, the limitations of the probability set prevent the model

from identifying the correct topology.

The second membrane protein in the test set of smaller,

a-helical proteins is 1yewC. This protein has an atypical,

four-helix bundle structure with helices 1 and 4 folding into

the opposite corners of the bundle. A subtract parameter

range of 0–1 and a max_contact range of 1–2 are used to

generate 20 contact predictions using each of the proposed

models for interhelical pair and three-body contact predic-

tion. The results of these model applications are compared

after 5, 10, and 20 iterations in Table 2. The triplet model with

the MIN-2 probability set produces the best overall contact

prediction for this protein. The atypical fold of this four-helix

bundle may be partially responsible for the difficulty and

further studies of this protein with relaxed restrictions on the

allowed interactions between helical pairs may be necessary

to improve the contact predictions.

The membrane protein 1eys-L was selected as a member of

the test set due to its unique topology. The five transmem-

brane a-helices of this protein form a mostly planar config-

uration instead of assembling into the more common bundle

topology. There are also three shorter a-helices that align

themselves parallel to the membrane interface and perpen-

dicular to the transmembrane a-helices. Neither the place-

ment nor the orientation of these interfacial helices is

considered by the contact prediction models. The proposed

models for interhelical pair and three-body contact prediction

TABLE 2 The best average contact distances of the small

membrane protein predictions using four probability sets;

the effect of the number of iterations is also shown; all

distances are in Å

PDB name Iterations Pair MIN-1 Pair AL-P Trip MIN-2 Trip AL-T

1zoyD 5 11.58 9.33 17.20 13.25

10 11.58 9.33 14.95 10.03

20 11.58 9.27 14.95 10.03

1yewC 5 14.92 16.05 12.68 16.76

10 14.92 16.05 12.68 15.86

20 14.92 15.60 12.68 15.47

1eysL 5 10.42 17.30 13.12 15.22

10 10.13 17.30 10.60 15.22

20 10.13 17.21 10.60 13.38
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are applied for subtract parameter values in the range 0–2, a

max_contact parameter range of 1–2, and a total of 20 iter-

ations. For this larger systems, all sets of contact predictions

that yield less than six pairwise interhelical contacts are

discarded. The best average contact distances when consid-

ering 5, 10, and 20 iterations are displayed for these runs in

Table 2. Both the pairwise and triplet-based models have

difficulty identifying good contact predictions when using the

probability sets based on the work of Liang and co-workers

(16,18). The MIN-1 and MIN-2 probability sets, using the

pairwise and triplet models, respectively, are both able to

predict a set of contacts ,11.0 Å in 10 or fewer iterations.

One high-scoring prediction using the pairwise model with

the MIN-2 probability set, a max_contact parameter value of

2, and a subtract parameter value of 2 is presented in Table 3

and Fig. 9.

Bundles of seven helices

Three larger membrane proteins containing seven trans-

membrane a-helices were selected to evaluate the ability of

the model to scale to larger membrane protein systems. The

best average contact distance is used as the metric for contact

prediction evaluation. For these larger systems, all sets of

contact predictions that yield less than six pairwise inter-

helical contacts are discarded. This restriction requires that a

significant number of contacts are predicted between multiple

pairs of helices for these larger systems.

The 225 amino-acid receptor membrane protein 1h2sA

binds to the signal transducer protein 1h2sB that is discussed

in the Data S1(42). This protein has seven transmembrane

a-helices that form an a-helical bundle. The seven-helix

bundle is one of the more common topologies for a-helical

membrane proteins. A subtract parameter range of 0–3 and a

max_contact range of 1–2 are used to generate 20 contact

predictions using each of the proposed models for interhelical

pair and three-body contact prediction. The best average

contact distances for iteration thresholds of 5, 10, and 20 are

presented in Table 4. Both probability methods and both

contact prediction models identify best average contact dis-

tance predictions at ,10 Å, an impressive result for such a

large protein system. Even the worst average contact distance

across all parameter values and iterations using the pairwise

model and the MIN-1 probability set was ,13 Å. A pre-

diction of 28 interhelical contacts with an average contact

distance of 10.15 Å was identified as a high-scoring predic-

tion using the pairwise model with the MIN-1 probability set,

a max_contact parameter value of 2, and a subtract parameter

value of 1. This contact prediction is presented in Table 5 and

Fig. 10. It is especially notable that the contact predictions

perform well despite the nonideal local structure present

within helices 5 (Fig. 10, front right) and 7 (Fig. 10, front
left). The kinks in these helices do not detract from the pre-

dicted contacts and illustrate the robust nature of the contact

prediction models.

Bovine rhodopsin (1f88) is a well-known and well-studied

membrane protein that consists of 348 amino acids and

seven transmembrane helices that range in length from 21 to

39 amino acids. This membrane protein is classified as a

G-protein-coupled receptor in that it is activated by light and

turns on the signaling pathway that allows for vision. Bovine

rhodopsin has been crystallized with a resolution of 2.8 Å

(43). Further studies of bovine rhodopsin have determined

FIGURE 9 A high-scoring set of contact predictions for 1eysL using the

pair model and the MIN-1 probability set.

TABLE 3 A high-scoring set of contact predictions for 1eysL

using the pair model and the MIN-1 probability set

Primary

contact

Primary

distance (Å)

Wheel

contact

Wheel

distance (Å)

Helix

pair

37V-109A 12.0 41F-105F 8.9 1-2

44L-104A 10.0 31V-107S 8.9 1-2

102A-137L 7.6 99I-140V 9.8 2-3

107S-132A 13.6 104A-136Y 12.4 2-3

180A-254V 6.7 184A-250F 7.6 4-5

196S-236A 15.6 199G-233G 13.6 4-5

TABLE 4 The best average contact distances (in Å) of two

larger membrane protein predictions using four probability

sets; the effect of the number of iterations is also shown

PDB

name Iterations

Pair

MIN-1

Pair

AL-P

Trip

MIN-2

Trip

AL-T

1h2sA 5 10.14 8.93 10.24 9.59

10 9.14 8.93 9.30 9.59

20 9.14 8.93 9.30 9.59

1f88A 5 12.38 11.18 9.68 10.37

10 12.38 11.13 9.66 10.03

20 11.29 11.13 9.66 10.03
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the structure with a better resolution (44), in the trigonal

crystal form (45), and for a photoactivated intermediate

structure (46). Both the pairwise and triplet contact prediction

models are applied to bovine rhodopsin using a subtract
parameter range of 0–3 and a max_contact range of 1–2 to

generate 20 contact predictions. The best average contact

distances for iteration thresholds of 5, 10, and 20 are pre-

sented in Table 4. One of the optimal contact predictions

using the MIN-2 probability set and the triplet model with a

max_contact parameter value of 2 and a subtract parameter

value of 1 is shown in Table 6. This prediction has an average

contact distance of 11.13 Å for 20 interhelical residue pairs.

This predicted set of contacts is illustrated on the crystal

structure in Fig. 11. The largest distances in this contact

prediction are between helices 3 and 4 (Fig. 11, both in

green), which partially results from the placement of these

helices in a crisscrossed arrangement in the bundle. The en-

semble of contact predictions for bovine rhodopsin, like the

predictions for the protein 1h2sA, contain a large number of

low average contact distance results. This observation is es-

pecially true for applications of the triplet model with both

probability sets.

As one of the largest protein systems studied, the com-

plexity of the mixed-integer linear optimization model that

must be solved for bovine rhodopsin (1f88-A) is described in

further detail here. The largest of the models is the pairwise

contact prediction model with the AL-P probability set, re-

sulting in a model with 3368 binary variables and 170,934

constraints. Despite the large size of this model, it can be

solved to optimality in 87 seconds using the CPLEX solver

TABLE 5 A high-scoring set of contact predictions for 1h2sA

using the pair model and the MIN-1 probability set

Primary

contact

Primary

distance (Å)

Wheel

contact

Wheel

distance (Å)

Helix

pair

12A-49V 7.2 9Y-53V 9.4 1-2

25A-38V 10.3 21A-42G 12.2 1-2

4L-195A 8.4 8F-198V 7.5 1-7

21A-213L 9.3 17V-210F 11.2 1-7

70A-118V 12.3 73-115G 10.5 3-4

91A-95S 12.3 88G-99G 10.2 3-4

108V-131A 6.7 111A-128G 8.1 4-5

114A-126L 7.0 111A-130G 5.0 4-5

133A-168V 13.3 130G-172A 11.7 5-6

149A-154S 9.1 145M-158S 13.1 5-6

161V-212A 11.3 158S-216A 11.9 6-7

172A-203V 13.4 175P-200L 12.0 6-7

FIGURE 11 An optimal set of contact predictions for bovine rhodopsin

using the triplet model and the MIN-2 probability set.

TABLE 6 An optimal set of contact predictions for bovine

rhodopsin (1f88A) using the triplet model and the MIN-2

probability set

Three-body contact Three-body distances (Å) Helix pair

(40L,41A)-292A 11.2,14.0 1-7

49M-(299A,300V) 11.1,11.1 1-7

(80A,81V)-124A 10.2,11.0 2-3

117A-(167C,168A) 11.5,9.0 3-4

132A-(152H,153A) 13.9,12.8 3-4

(163M,164A)-207M 10.8,10.5 4-5

(215P,216L)-257M 14.0,12.6 5-6

(253M,254V)-308M 9.6,12.5 6-7

(271V,272A)-288M 6.9,7.7 6-7

FIGURE 10 A high-scoring set of contact predictions for 1h2sA using the

pair model and the MIN-1 probability set.
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(Ver. 9.1) on a 3.2-GHz Intel Pentium 4 processor. The re-

sulting complexity of the two interhelical contact models

paired with the probability sets are presented in Data S1as

Table S3. Due to the limited number of membrane protein

structures available for probability set development, the

triplet models have fewer binary variables. This number is

likely to increase (as the number of nonzero probability

values increase) when more membrane protein structures

become available.

The proposed optimization models have also been vali-

dated by considering additional protein systems. One such

system is the recently studied human b2 adrenergic receptor,

a membrane protein with seven transmembrane a-helices.

Two teams of researchers have succeeded in crystallizing this

G-protein-coupled receptor by stabilizing the third inside

loop (47,48). This protein was not available when the original

protein data set was constructed and shares no significant

sequence similarity to the other proteins in the data set. Both

the pairwise and triplet contact prediction models are applied

to this novel protein structure using a subtract parameter

range of 0–3 and a max_contact range of 1–2 to generate 20

contact predictions. The best average contact distances for an

iteration threshold of 20 and a variety of max_contact and

subtract parameter values are presented in Table 7 after the

proposed methodology is applied. Regardless of the param-

eter values and probability sets selected, a best average

contact distance value of ,14 Å is always identified for the

human b2 adrenergic receptor protein. Table 8 highlights one

high-scoring set of contact predictions with the triplet model

and the AL-T probability set. This prediction has an average

contact distance of 9.87 Å and is shown in Fig. 12.

SUMMARY AND DISCUSSION

The results of applying the two novel optimization models of

the section Pairwise Contact Prediction Model and the sec-

tion following it, Triplet Contact Prediction Model, to the set

of seven test systems are quite promising. The best average

contact distance values consistently fall between 8.0 and 12.0

Å for six of these seven systems. The performance of the

contact predictions for the three largest protein systems,

1h2sA, 1f88A, and 2rh1A, is particularly impressive. The

results of the contact predictions for the test set do not clearly

suggest that one probability set or one optimization model

should be used in favor of another. Although further study is

still required, the triplet model with the MIN-2 probability set

may be the best choice currently available for a blind pre-

diction of interhelical contacts in membrane proteins. Several

of the contact predictions, including the prediction for 1zoyD

with the triplet model and the MIN-2 probability set, appear

to be limited by the small size of the data set used in the

section Construction of a Data Set. The probability sets based

on the contact type distributions identified by Liang and co-

workers would also likely benefit from a larger set of mem-

brane proteins with known structures.

The contact predictions presented here represent only

a small fraction of the number of contacts that exist in a

membrane protein. If two neighboring transmembrane pro-

TABLE 7 The best average contact distances (in Å) of the

human b2 adrenergic receptor protein predictions using four

probability sets and a variety of parameterizations

max_contact subtract Pair MIN-1 Pair AL-P Trip MIN-2 Trip AL-T

1 0 12.90 12.31 12.09 9.87

1 1 10.34 11.30 11.04 10.77

1 2 9.78 11.50 11.03 10.45

1 3 9.04 12.07 11.49 9.69

2 0 12.78 13.56 12.90 1l.72

2 1 13.57 13.73 12.84 12.13

2 2 13.04 11.65 12.26 11.40

2 3 10.48 12.88 11.75 11.13

TABLE 8 A set of contact predictions for the human b2

adrenergic receptor protein using the triplet model and the

AL-T probability set

Three-body contact Three-body distances (Å) Helix pair

37G-(90G,91A) 11.4,7.6 1-2

(45L,46A)-320G 9.1,6.0 1-7

(75L,76A)-124L 7.6,11.2 2-3

115L-(162G,163L) 5.9,8.9 3-4

167L-(202A,203S) 13.5,11.2 4-5

226A-(271A,272L) 11.0,8.4 5-6

(275L,276G)-324L 12.3,14.1 6-7

FIGURE 12 A set of contact predictions for the human b2 adrenergic

receptor protein using the triplet model and the AL-T probability set.
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teins are perfectly parallel or antiparallel, several residue

contacts exist at each helical turn. Of these 20–30 contacts

that may exist between a pair of consecutive transmembrane

helices, we aim to accurately predict 2–4 of the closest

contacts and sacrifice coverage of all existing contacts. Due

to the restricted conformation of a-helices, much of the in-

formation gained from additional contact predictions would

be redundant for structure prediction efforts. An important

area of future research is to use the information gained from

this contact prediction model to predict the interhelical con-

tacts among all helical pairs in the transmembrane bundle.

CONCLUSIONS

The problem of interhelical contact prediction in membrane

proteins with transmembrane helices was addressed by

1. The construction of a nonredundant data set of membrane

proteins.

2. The development of interhelical contact probabilities.

3. The application of mixed-integer linear programming

models to identify the most probable set of interhelical

contacts subject to a number of constraints.

These approaches were divided into the maximization of the

most probable pairwise contacts and the maximization of the

most probable three-body contacts. A two-stage optimization

model was proposed for the prediction of pairwise inter-

helical contacts, where PRIMARY contacts are predicted

first and WHEEL contacts are subsequently identified in a

second stage. The alternative approach maximizes the

probability of three-body interhelical contacts using a mod-

ification of the pairwise model. The proposed approach is

shown to successfully predict interhelical contacts in seven

membrane protein systems, including bovine rhodopsin and

the recently released human b2 adrenergic receptor protein

structure.

The importance of computational prediction methods for

membrane proteins is underscored by the limitations of current

experimental structure determination methods. Despite the

success of the proposed methodology, further investigation

into methods for developing interhelical contact probabilities

should be explored to ensure the proposed optimization

models perform up to their potential.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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