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Abstract
Epidemiological studies routinely use central-site particulate matter (PM) as a surrogate for exposure
to PM of ambient (outdoor) origin. Below we quantify exposure errors that arise from variations in
particle infiltration to aid evaluation of the use of this surrogate, rather than actual exposure, in PM
epidemiology. Measurements from 114 homes in 3 cities from the Relationship of Indoor, Outdoor
and Personal Air (RIOPA) study were used. Indoor PM2.5 of outdoor origin was calculated: 1)
assuming a constant infiltration factor, as would be the case if central-site PM were a “perfect
surrogate” for exposure to outdoor particles; 2) including variations in measured air exchange rates
across homes; 3) also incorporating home-to-home variations in particle composition, and 4)
calculating sample-specific infiltration factors. The final estimates of PM2.5 of outdoor origin take
into account variations in building construction, ventilation practices, and particle properties that
result in home-to-home and day-to-day variations in particle infiltration. As assumptions became
more realistic (from the first, most constrained model to the fourth, least constrained model), the
mean concentration of PM2.5 of outdoor origin increased. Perhaps more importantly, the bandwidth
of the distribution increased. These results quantify several ways in which the use of central site PM
results in underestimates of the ambient PM2.5 exposure distribution bandwidth. The result is larger
uncertainties in relative risk factors for PM2.5 than would occur if epidemiological studies used more
accurate exposure measures. In certain situations this can lead to bias.

Introduction
Numerous epidemiological studies have shown a positive association between ambient
(outdoor) particulate matter (PM) concentrations and cardiovascular and respiratory morbidity
and mortality (1-4). Adverse effects are more closely associated with fine particles (PM2.5)
than coarse (3,5-7). Since a causal association requires exposure (8), the epidemiological
findings have prompted initiation of many exposure studies (9). Pooled (frequently called
cross-sectional) exposure studies have consistently found poor correlations between ambient
PM2.5 concentrations and personal exposure to PM2.5 (9-16). These poor correlations were
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initially used to argue that ambient PM is a poor surrogate for exposure to PM and to question
the epidemiological conclusions (11,17,18). In response, Wilson (6) and Mage (19) argued that
the seeming contradiction between the exposure studies and epidemiological findings is “a
logical syllogism”. They argued that the composition and properties of ambient particles differ
substantially from those generated in other microenvironments and that the epidemiological
studies use central-site ambient PM as a surrogate for exposure to “PM of ambient origin”, not
as a surrogate for total PM exposure. This argument is now supported by longitudinal exposure
studies, which show higher outdoor – personal PM correlations for individuals (20-22). As a
result, recent exposure analyses are being conducted to characterize exposure to ambient and
non-ambient particles (i.e., when, where, how and how much), to quantify exposure errors
arising from the use of a central site surrogate, and to understand the effect of such errors on
epidemiological conclusions.

The indoor environment is an important location for exposure because people spend more than
85% of their time indoors (23). PM in indoor environments consists of (a) ambient particles
from regional and local sources that have infiltrated indoors and persist (1), (b) primary
particles emitted indoors (24), and (c) secondary PM formed indoors from reactions of
precursor gases of indoor and outdoor origin (25,26). Particles generated indoors and outdoors
have different sources and are likely to have different chemical and physical properties and
different toxicities (27,28).

In this work PM2.5 mass and species and air exchange rates measured in the Relationship of
Indoor, Outdoor and Personal Air (RIOPA) study were used to quantify the residential outdoor
contribution to indoor PM2.5 concentrations using several approaches with increasingly more
realistic assumptions (i.e., decreasing constraints on particle infiltration behavior). The results
provide an improved mechanistic understanding of parameters influencing indoor PM2.5 of
ambient origin and thus a subset of parameters influencing community exposure to ambient
PM2.5. Results aid assessment of exposure error in epidemiological studies.

Methods
Sample collection and analysis

Study design, sampling, analysis, and quality control measures are described in Supporting
Information and in previous publications (5,16). Briefly, residential indoor and outdoor
PM2.5 samples were collected from summer, 1999 to spring, 2001 in 212 homes in Houston
(TX), Los Angeles County (CA), and Elizabeth (NJ) as part of the RIOPA study (29). One
hundred sixty-two of these homes were sampled a second time approximately three months
later. PM2.5 samples were collected in Harvard Impactors on Teflon filters for 48 hours at 10
lpm (16) and analyzed for mass (16) and functional groups (30); a subset were analyzed for
trace elements (31).

Indoor and outdoor samples were also collected concurrently on a quartz fiber filter (QFF)
followed by polyurethane foam (PUF) for 48 h at 10 l/m (25 cm/s face velocity) in a subset of
homes for measurement of particulate organic carbon (OC), elemental carbon (EC), and gas-
and particle-phase polycyclic aromatic hydrocarbons and chlordanes (32-35). In this study, a
QFF was also placed downstream of the Teflon filter in the Harvard Impactor. This quartz fiber
backup filter sample provides an estimate of the organic vapor adsorbed on the concurrently
collected quartz fiber front filter in the second sampler. Backup filter OC was subtracted from
the concurrently collected front filter OC to obtain particulate OC concentrations (32,36). The
air exchange rate for each home during each 48-hr sampling period was determined from the
house volume and concentration of a perfluorocarbon tracer emitted at a constant rate (29,
37).
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The contribution of outdoor PM2.5 to the indoor environment
As described below, PM2.5 mass and species concentrations were used to calculate the
contributions of outdoor and indoor-generated PM2.5 to indoor PM2.5 concentrations using
several approaches with increasingly more realistic assumptions. Results from these methods
were then compared, and insights into exposure errors discussed.

The 114 RIOPA homes that had one complete set of 48 hr measurements (i.e., OC, EC,
elements, mass, and air exchange rate) were used. Samples from these homes were selected
for “complete chemical analysis” in order to create a PM speciation data set reasonably evenly
distributed between the three cities, across seasons and between homes in close proximity (<
200 m) and farther from identified local sources. Table S1 in Supporting Information
summarizes measurements for these 114 homes. Table S2 in Supporting Information provides
the distribution of measurements across cities and seasons.

Assuming perfect instantaneous mixing and assuming that factors affecting indoor
concentrations are constant or change slowly throughout the monitoring period, the steady state
indoor PM2.5 mass concentration can be described with a single compartment mass balance
model. Indoor PM2.5 concentrations are described as the sum of PM generated outdoors
(ambient contribution) and PM generated indoors (non-ambient contribution), as follows:

(1)

where Ci is the indoor PM2.5 mass concentration, Ca is the ambient (outdoor) PM2.5 mass
concentration, FINF is the dimensionless infiltration factor, Cpig is the concentration of indoor-
generated PM found indoors, and Cai is the concentration of ambient-generated PM found
indoors. In the mass balance model, FINF is given by Pa/(a+k), where P is the dimensionless
penetration coefficient, a is the air exchange rate (h-1), and k is the particle loss rate (h-1). Also
in the mass balance model, Cpig is Qi/V(a+k), where Qi is the indoor source strength (μg/h),
and V is the house volume (m3). In reality, air exchange rate, P and k differ from home-to-
home, day-to-day and species-to-species.

The residential outdoor contribution to indoor PM2.5 was calculated in four ways with
increasingly more realistic assumptions. The first approach (the Random Component
Superposition Model; RCS) assumes the infiltration factor, FINF, is constant across homes
(38) as would be the case if central site PM2.5 were a perfect surrogate for PM2.5 of outdoor
origin. The second approach (Mass Balance Model) uses the measured air exchange rate for
each home and assumes that the penetration of particles into the home (P) and loss rate
coefficient (k) of particles indoors are constant across the homes. In this way FINF varies only
with air exchange rate. The third approach (External Mixture Model) uses measured air
exchange rates and determines species-specific P and k values that do not vary from home-to-
home or day-to-day. In this way FINF varies with PM composition as well as air exchange rate.
The fourth approach (Microscopic Mixture Model) uses all measured major PM2.5 species
collected concurrently at the same home to calculate an infiltration factor for that sample.
Because only concurrently-collected data at a single home are used to determine the infiltration
factor for that home and day, the distribution of infiltration factors across all sampled homes
(many sampled on different days) takes into account the possibility that variations in building
construction, ventilation practices, particle size distributions, particle composition, and the
chemical/thermodynamic properties of particles might occur across homes and days,
introducing home-to-home and day-to-day variations in particle infiltration behavior.
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Random Component Superposition Model
The random component superposition statistical (RCS) model (38) computes a constant
infiltration factor, FINF, from the linear regression of all measured outdoor PM2.5 mass
concentrations on indoor concentrations (see Equation 1). The product of FINF with each
outdoor concentration, Ca, provides an estimated mean, median and standard deviation of the
outdoor contribution (Cai) to indoor PM2.5. This model assumes a linear superposition of the
ambient and non-ambient contributions to indoor PM2.5, and lack of correlation between these
two components. The accuracy of FINF obtained this way increases as the number of
measurements increases. This is because the slope (FINF) is easily influenced by outliers. The
standard deviation of the outdoor contribution to indoor PM2.5 obtained by the RCS model is
not affected by this limitation.

Mass Balance Model
Indoor and outdoor PM2.5 mass concentrations are shown in Figure 1. Mass balance model
results were obtained by fitting measured indoor (Ci) and outdoor (Ca) PM2.5 mass
concentrations and air exchange rates (a) to the mass balance equation (Equation 1) using
nonlinear regression (NLIN in SAS). This results in the estimation of a single particle
penetration coefficient (P) and particle loss rate coefficient (k) for the 114 home dataset. P was
constrained to be physically plausible (0 ≤ P ≤ 1). Ambient and nonambient contributions to
indoor PM2.5 concentrations were then calculated for each home using these constant values
of k and P, measured indoor and outdoor PM2.5 concentrations, measured air exchange rates
and Equation 1. The biggest limitation of this method is that the estimates of P and k obtained
by nonlinear regression are not truly independently determined. P and k estimates are more
stable when indoor source strengths are not highly variable. The impact of reasonable variations
in P and k on the outdoor contribution are quantified in the sensitivity analyses below.

External Mixture Model
In the previous section, infiltration factors were calculated allowing air exchange rate to differ
from home to home but using a fixed P and k across homes. In reality, P and k will vary from
home to home and day to day. P varies with particle size and house structure. The indoor particle
loss rate coefficient, k, is determined by many factors including the indoor surface-to-volume
ratio, housing structure, near-surface air flows, turbulence and the particle size distribution.
Particle composition and size distribution are dictated by particle formation mechanisms. If
variations in P and k are predominantly dictated by the particle size distribution, the next most
logical model improvement would be to provide species-specific P and k values. Assuming
fixed species-specific P and k values is like treating the aerosol as an external mixture of
chemical species. The overall PM2.5 infiltration factor for a single home could then be
calculated as a linear combination of its components' infiltration factors:

(2)

where

FINF --- infiltration factor for a single home (dimensionless)

FINFi --- infiltration factor of the ith component of PM2.5 in a single home (dimensionless)

wi --- mass fraction of the ith component of PM2.5 in a single home (dimensionless)

Pi --- Penetration coefficient of the ith component in a single home (dimensionless)
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a --- air exchange rate of a single home (h-1)

ki --- loss rate of the ith component in a single home (h-1)

Indoor and outdoor concentrations of four PM2.5 species are shown in Figure 2. Species-
specific but home-averaged P and k values were estimated for each of 22 measured species by
nonlinear regression (NLIN in SAS) of the 114 measured indoor concentrations of species i
(Ci) on the concurrently measured outdoor concentrations of species i (Ca) and air exchange
rate (a). P was constrained to values between 0 and 1. Species-specific P and k values were
used to calculate FINF for each home as described in Equation 2. To calculate wi (see Equation
2) sulfur was converted into (NH4)2SO4; OC was converted into organic matter multiplying
by an estimated molecular weight/carbon weight of 1.4; oxides of Al, Si, Ca, Ti, K and Fe were
used to calculate soil weight; and other elements were also converted to oxidant form (39,
40). Each species mass was divided by the sum of measured species to calculate wi. It is
recognized that mass reconstruction is not perfect (i.e., sulfate is not always fully neutralized
in the east, the organic molecular weight per carbon weight is sometimes greater than 1.4, and
a portion of the measured mass was not accounted for by measured species), however it
provides a reasonable weighting of the species-specific P and k values. As for the mass balance
model, P and k are not truly independent and P and k values are more stable for species with
less variable indoor source strengths. Also, it must be noted that one major species, nitrate,
was not measured. The impacts of these limitations on estimates of the outdoor contribution
to indoor PM2.5 are explored in sensitivity analyses below.

Microscopic Mixture Model
The microscopic mixture model uses all measured PM2.5 species and allows P, k and a to differ
from home to home and species to species. Figure 3 shows the indoor and outdoor
concentrations of individual PM2.5 species measured concurrently in a New Jersey (Fig. 3a)
and Texas (Fig. 3b) home. The data in each figure represent individual PM2.5 species measured
concurrently in the same home. Some species have substantial indoor sources, as evidenced
by indoor concentrations that exceed their outdoor concentrations. Other species appear to be
distributed around a regression line. All concurrently measured species in the same home are
acted upon by the same air exchange rate. If all species also had the same size distribution, and
were chemically/thermodynamically stable, then concurrently measured species in the same
home would all have the same infiltration factor, which would be given by the slope in the
regression of Ci on Ca. However, PM species have varying size distributions and some have
indoor sources. Assuming indoor and outdoor generated PM2.5 are independent, the PM2.5
infiltration factor for one home during the 48 hr sampling period can be estimated by regressing
the indoor species concentrations on the outdoor species concentrations measured concurrently
in that home using robust regression. Because the infiltration factor is calculated independently
for each home and sampling period, the distribution of infiltration factors across all homes
(many sampled on different days) allows for variations in the size distribution and chemical
stability of individual species. One reason for the variation in species size distribution is that
species are to some degree externally mixed and to some degree internally mixed. Because the
infiltration factor is calculated independently for each home and sampling period, variations
in the microscopic mixing properties of the particles are taken into consideration.

A robust regression method, called least-trimmed squared regression (S-plus, Insightful, Inc.),
was used to regress the indoor PM2.5 species concentrations on the outdoor PM2.5 species
concentrations collected concurrently at a single home, yielding a PM2.5 infiltration factor
(slope) for each home. In this analysis outliers represent species for which there are significant
indoor sources. Therefore it is desirable to considerably down-weight outliers in the regression
used to estimate the infiltration factor. The least-trimmed squared regression is very robust
with respect to outliers in the response and predictor variables, even when as many as half of

Meng et al. Page 5

Environ Sci Technol. Author manuscript; available in PMC 2008 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the data points are outliers (41). The product of the estimated home infiltration factor and the
corresponding measured outdoor PM2.5 concentration is the contribution of outdoor PM2.5 to
the indoor PM2.5 concentration in μg/m3 (i.e., “PM of outdoor origin”) for that home.

This method allows for home-to-home and day-to-day variations in air exchange rate, particle
penetration, and particle loss rate that can occur due to variations in parameters such as house
structure, air conditioner use, ventilation practice, particle size distribution, particle
composition, and the thermodynamic stability of particle species. It assumes that indoor and
outdoor sources are independent, perfect instantaneous mixing indoors, that factors affecting
indoor concentrations are constant or change slowly throughout the monitoring period. The
biggest limitation is that one major PM2.5 species, nitrate, was not measured. The impact of
this limitation is explored below.

Results and Discussion
Random Component Superposition Model

With this model (38) a constant infiltration factor, FINF, of 0.35 was obtained (Figure 1).
Regression results were not unduly influenced by outliers or by the highest point on the x-axis.
(Removal of the two outliers alone and with the highest point on the x-axis yielded FINF = 0.35
and 0.36, respectively, where outliers were defined as having an absolute studentized residual
greater than three.) [Note the coefficient of determination between indoor and outdoor PM2.5
mass concentrations was quite low (R2 = 0.09), as expected since indoor sources vary
considerably from home-to-home and day-to-day and, in reality, particle infiltration behavior
varies as well.] The mean, median and standard deviation of the estimated residential outdoor
contribution (Cai) to indoor PM2.5 was 5.9 μg/m3 (40%), 5.2 μg/m3 (35%) and 3.6 μg/m3 (22%)
for the 114 study homes, respectively.

Mass Balance Model
A particle penetration coefficient (P) of 1.0 and particle loss rate coefficient (k) of 1.5 were
obtained for the 114 home dataset. These values of the penetration coefficient and particle loss
rate are in reasonable agreement with previous literature values (16 and references contained
therein) including controlled dynamic experiments of PM2.5 penetration which includes
diffusional flow through cracks and fissures in the building envelope (42). PM2.5 mass is
dominated by accumulation mode particles (i.e., particles 0.1 – 1.0 μm in diameter).
Accumulation mode particles are not easily removed from an airstream by diffusion or
impaction. Therefore particles of this size are expected to have larger P values (i.e., P ≈ 0.9-1.0)
than coarse mode or ultrafine particles. The mean, median, and standard deviation of infiltration
factors for the 114 homes are 0.40, 0.38, and 0.19, respectively, calculated by the mass balance
approach. The estimated contributions of outdoor PM2.5 to indoor PM2.5 have a mean, median
and standard deviation of 6.7 μg/m3 (43%), 5.8 μg/m3 (42%), and 4.7 μg/m3 (26%),
respectively.

In a previous publication (16), the RCS model and the mass balance model were applied to all
212 RIOPA homes with measured PM2.5 mass. For this larger dataset, the average infiltration
factor was 0.46 calculated by both models. For the subpopulation in this paper, the selected
114 homes, the mean infiltration factor was 0.35 and 0.40 for RCS model and mass balance
model, respectively. The FINF in the earlier publication is most likely larger because the dataset
contained more data from California homes, and the mean air exchange rate for California
study homes is greater than the overall study mean.

To test the sensitivity of outdoor contribution estimates to uncertainties in P and k, the outdoor
contribution was estimated for three reasonable scenarios: 1) using P = 1.0 and k = 1.5, as
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estimated for the 114 homes; 2) using P = 1.0 and k = 1.2, obtained by nonlinear regression of
114 homes without the 2 outliers (outliers defined as having an absolute value of studentized
t > 3.0); and 3) using P = 0.91 and k = 0.79, the parameters estimated by Meng et al (16) for
all 212 homes with measured PM2.5 mass. The biggest difference in the outdoor contribution
to indoor PM2.5 was found between scenarios 1 and 3. For scenario 3 the mean outdoor
contribution was 7.8 μg/m3 or 50%.

External Mixture Model
Selected species scatter plots are found in Figure 2. Species-specific P and k values are provided
in Table S3 (Supporting Information). Penetration coefficients and loss rates were more stable
for species expected to have little or no indoor sources, such as S, V, and EC, than for elements
expected to have large and variable indoor source contributions, such as soil elements: Al, Si,
Ca, Ti (i.e. through resuspension). This is seen in the variation in calculated P and k values
when data from all RIOPA homes were included in the calculations and when different subsets
of data were used (see Supporting Information for species specific P, k estimates and sensitivity
analyses Tables S3-S4). The reason is that non-linear regression considers P, k and Cpig to be
constant, but Cpig varies considerably from home to home for species with indoor sources.
Generally, elements associated with coarse mode aerosol, such as soil elements, have smaller
penetration coefficients and larger loss rates than elements associated with fine mode particles,
such as S, V and EC.

The mean, median, and standard deviation of the resulting infiltration factors for the 114 homes
were 0.54, 0.54, and 0.16, respectively. FINF varies with home because air exchange rate and
species concentrations vary with home. The mean, median, and standard deviation of the
outdoor contribution to the indoor PM2.5 mass concentration were 8.4 μg/m3 (59%), 7.2 μg/
m3 (58%), and 5.8 μg/m3 (29%), respectively.

Microscopic Mixture Model
The mean, median and standard deviation of the infiltration factors obtained by robust
regression are 0.69, 0.70 and 0.23, respectively. Indoor PM2.5 of outdoor origin had a mean,
median and standard deviation of 12.0 μg/m3 (73%), 10.0 μg/m3 (74%), and 10.1 μg/m3 (36%),
respectively, using this approach. Additional robust regression results are provided in Table
S5 of Supporting Information.

Nitrate, a major component of PM2.5 in California that can have large losses during outdoor-
to-indoor transport (43), was not measured in the RIOPA study. A sensitivity analysis was
performed by conducting robust regression on RIOPA data from one California home (CA239)
after adding indoor and outdoor nitrate concentrations from another California study (43) with
similar atmospheric conditions. Robust regression results were unchanged with the addition
of nitrate.

Discussion
In this analysis we first assumed a constant infiltration factor across homes (RCS model), as
would be the case if central site PM were a perfect surrogate for exposure to PM of ambient
origin. Next we allowed air exchange rate to vary (mass balance model). Recognizing that size
distributions differ from species-to-species due to different formation mechanisms, we next
allowed both P and k to vary from PM2.5 species to species but required the behavior of a given
species to be constant across homes (external mixture model). Finally we estimated an
infiltration factor independently for each sample (home and day), allowing P, k and a to be
different from home to home and day-to-day in recognition of variations in particle, ventilation
and/or house characteristics (microscopic mixture model). The microscopic mixture model
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provides a unique infiltration factor for each home, providing minimal constraints on the
particle infiltration behavior. Table 1 summarizes the infiltration factors and the residential
outdoor contribution to indoor PM2.5 from each method. In Table S5 (Supporting Information)
infiltration factors obtained from the microscopic mixing model are provided by location.
Figure 4 shows the cumulative distributions of infiltration factors and of PM2.5 of outdoor
origin for the 114 homes for each model.

These estimates of PM2.5 of outdoor origin are important in part because they demonstrate that
PM2.5 emitted and formed outdoors is a substantial source of total PM2.5 exposure. This is not
at odds with the poor indoor – outdoor PM2.5 correlations observed in pooled exposure studies
since home-by-home and day-by-day variations in air exchange rate, particle properties, house
characteristics, ventilation practices, and indoor source strengths all introduce scatter in indoor
– outdoor relationships. With increasingly more realistic assumptions (i.e., decreasing
constraints on particle infiltration behavior) the mean contribution of outdoor sources to indoor
PM2.5 shifted from 40% (RCS) to 43% (mass balance), to 59% (external mixture) and to 73%
(microscopic mixture). The shift in the mean can be explained as follows:

(3)

The left hand side of the inequality is the infiltration factor calculated as with the RCS model,
from the mean penetration coefficient, mean air exchange rate and mean loss rate, i.e., assuming
the particle infiltration behavior is the same across all study homes. The right hand side is the
mean infiltration factor calculated using the least constrained method, i.e., the microscopic
mixture model. In this case, the infiltration factor for the ith home is calculated from a set of
home-specific parameters Pi, ki and ai. Because the mean of the function does not equal the
function of the means, it is not surprising that the mean infiltration factors estimated by RCS
and microscopic mixture approaches differ. The reason for the directionality of the shift is not
known.

This work also illustrates several ways in which the use of central-site PM2.5 as an exposure
surrogate underestimates the bandwidth of the distribution of exposures to PM of ambient
origin. Because people spend a large majority of time indoors this assessment of residential
indoor-outdoor relationships provides insights into several key exposure errors. With
increasingly more realistic assumptions (i.e., decreasing constraints on particle infiltration
behavior) the standard deviation of outdoor contributions across homes increased. If central
site PM2.5 were a perfect surrogate, then exposure variations across homes would occur only
because homes were sampled on different days. This is the case with the RCS method, which
yielded a standard deviation of 22%. When variations in the air exchange rate were taken into
consideration (mass balance model), the distribution of values of “PM of ambient origin” was
broadened to 26%. Accounting also for variations in particle properties (external mixture
model) broadens the distribution to 29%. Accounting also for variations in infiltration due to
differences in housing properties and the microscopic mixing properties of particles day-to-
day and home-to-home (microscopic mixture model) broadens the distribution to 36%. Spatial
variations in ambient PM2.5 concentrations and inter-personal variations in the time spent in
each microenvironment are likely to broaden exposure distributions as well. Thus, particle
infiltration behavior is a substantial contributor to exposure error. Air exchange rate, particle
properties and housing characteristics all appear to contribute substantially to home-by-home
and day-by-day variations in infiltration.

The use of central site PM2.5 as a surrogate for exposure to PM of ambient origin in longitudinal
PM epidemiology does not account for the variation in exposures encountered across a
population on a given day. This limitation leads to larger error bars around relative risk factors,
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which makes it less likely that relative risk factors will be significant. Improved exposure
metrics would lead to smaller error bars around relative risk factors, improving the sensitivity
of PM epidemiology. However, in itself, exposure variability across the population is a
Berksonian error and will not lead to bias in longitudinal PM epidemiology (44).

Exposure errors introduced because of differences between the population average exposure
to “PM2.5 of ambient origin” and central site PM2.5 could introduce bias in relative risk factors
in certain situations (44). It is worth noting that the physically based model of Equation 1
suggests that these exposure errors are not uncorrelated with, but in fact proportional to, the
ambient concentration since a major contributor to this error is the difference, Ca – Cai. In
chronic epidemiological studies, time-averaged central site PM2.5 concentrations are assigned
to individuals retrospectively as surrogates for PM2.5 dose. It is possible, at least in theory, for
the mean ambient PM2.5 concentration to be higher in City A than City B, but the mean exposure
to ambient PM2.5 to be higher in City B because of a difference in the infiltration behavior
between cities. In fact, particle infiltration factors estimated for Texas homes are smaller than
for California homes in the RIOPA study, presumably due to the more extensive use of air
conditioning in Texas homes. Such a situation could result in a surrogate (a single-time
averaged central-site PM2.5 concentration) that does not vary with actual exposure to PM of
ambient origin. Seasonal variations in particle infiltration behavior in longitudinal (time series)
epidemiology could potentially cause bias in relative risk factors as well. The effect is likely
to differ with location. For example, FINF is higher in New Jersey study homes and lower in
Texas study homes in the summertime, when 24 hr average PM2.5 concentrations tend to be
highest. This introduces seasonal variations in exposure error. (Differences in the seasonality
of infiltration behavior in Texas and New Jersey are presumably due to differing ventilation
practices, e.g., air conditioner and window use.)

A particular strength of the RIOPA study is that measurements were made in three
geographically diverse locations with distinctly different climates and different mixes of
ambient sources (29). Thus insights derived from these 3 cities can largely be generalized to
other US locations. Between city differences (i.e., Table S5) provide some insight into regional
differences in infiltration behavior. Two US locations that are not well represented by RIOPA
are: 1) woodsmoke-dominated areas of the Northwest and 2) areas of the Upper Midwest with
extremely cold winters and well-insulated homes.

This paper focuses on PM2.5 mass, the concentration of which is reasonably homogeneous
across urban areas (1). Some PM2.5 components, for example primary motor vehicle
combustion products, have more dramatic spatial variations. In addition, changes in particle
composition with outdoor-indoor transport are likely to occur because the size distribution and
thermodynamic behavior of major PM2.5 species vary considerably. Changes in the
composition of ambient PM2.5 with outdoor to indoor transport warrant further examination.
Presentation of this type of species-specific exposure information is needed to evaluate the
plausibility of PM and health hypotheses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Indoor and outdoor PM2.5 mass concentrations from 114 RIOPA homes. Line is the linear
least squares regression line
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Figure 2. Indoor and outdoor concentrations of sulfur, silicon, organic carbon (OC) and elemental
carbon (EC) by location: California (CA), New Jersey (NJ) and Texas (TX)
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Figure 3. Indoor and outdoor PM2.5 species concentrations and robust regression lines for a New
Jersey (NJ123) and a Texas (TX 036) home. Organic carbon and sulfur are off scale
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Figure 4. Cumulative distribution of indoor PM of outdoor origin (a) and infiltration factor (b)
calculated by the four methods
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