
Proceedings of the Summit on Environmental Challenges to
Reproductive Health and Fertility: Executive Summary

Tracey J. Woodruff, PhD, MPH,
Program on Reproductive Health and the Environment, National Center of Excellence in Women’s
Health, Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Francisco

Alison Carlson,
Collaborative on Health and the Environment

Jackie M. Schwartz, MPH, and
Program on Reproductive Health and the Environment, National Center of Excellence in Women’s
Health, Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Francisco

Linda C. Giudice, PhD, MD
Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Francisco

Abstract
The 2007 Summit on “Environmental Challenges to Reproductive Health and Fertility” convened
scientists, health care professionals, community groups, political representatives and the media to
hear presentations on the impact of environmental contaminants on reproductive health and fertility
and to discuss opportunities to improve health through research, education, communication and
policy. Environmental reproductive health focuses on exposures to environmental contaminants,
particularly during critical periods of development, and their potential effects on future reproductive
health, including conception, fertility, pregnancy, adolescent development and adult health.
Approximately 87,000 chemical substances are registered for use in commerce in the US, with
ubiquitous human exposures to environmental contaminants in air, water, food and consumer
products. Exposures during critical windows of susceptibility may result in adverse effects with
lifelong and even intergenerational health impacts. Effects can include impaired development and
function of the reproductive tract and permanently altered gene expression, leading to metabolic and
hormonal disorders, reduced fertility and fecundity and illnesses such as testicular, prostate, uterine
and cervical cancers later in life. This executive summary reviews effects of pre- and post-natal
exposures on male and female reproductive health and provides a series of recommendations for
advancing the field in the areas of research, policy, health care and community action.
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Background
On Jan 28–30, 2007, a Summit on “Environmental Challenges to Reproductive Health and
Fertility” was convened at the Mission Bay Campus of the University of California San
Francisco (UCSF). The Summit was the product of a collaboration between the UCSF Program
on Reproductive Health and the Environment in the Department of Obstetrics, Gynecology
and Reproductive Sciences, the UCSF National Center of Excellence in Women’s Health and
the Collaborative on Health and the Environment. This unique gathering coalesced the field
of environmental reproductive health by bringing together over 400 scientists, researchers,
health care professionals, trainees, health-affected groups, community and political
representatives and the media to discuss what is currently known about the impacts of
environmental contaminants on reproductive health and fertility. The compelling nature of the
collective science, with observations in humans, animal models and wildlife, raised concern
for the future health of individuals and families. The Summit also set the stage to improve
health through research, education, communication and changes in public health policy. This
executive summary presents the highlights from the accompanying Supplement on
Environmental Challenges to Reproductive Health and the Environment (1), which
summarizes the state of the science presented at the Summit, and outlines the key “next steps”
Summit participants recommended for research, policy, health care, community action and
safe work.

Defining the Field
Environmental reproductive health focuses on exposures to environmental contaminants
(synthetic chemicals and metals), particularly during critical periods of development (such as
prior to conception and during pregnancy), and their potential effects on all aspects of future
reproductive health throughout the life course, including conception, fertility, pregnancy, child
and adolescent development and adult health. (Figure 1).

Environmental Contaminants
Since World War II, there has been a dramatic increase in human exposures to both natural
and synthetic chemicals. As of 2006, there are approximately 87,000 chemical substances
registered for use in commerce in the U.S. (2). Common environmental pollutants include:
pesticides and herbicides such as atrazine and chlorpyrifos; volatile organic compounds such
as benzene, toluene and chloroform; heavy metals such as lead, mercury and arsenic; air
contaminants such as carbon monoxide, ozone, particulate matter and environmental tobacco
smoke; and persistent organic pollutants, such as the dioxins, polychlorinated biphenols
(PCBs), the pesticide dichlorodiphenyltrichloroethane (DDT) and its breakdown product
dichlorodiphenyldichloroethylene (DDE).

While many environmental contaminants can affect reproductive health (see Table 1), there is
an important class of chemicals called endocrine disrupting chemicals (EDCs) that interfere
with the production, release, transport, metabolism, binding, action, or elimination of natural
hormones in the body that are responsible for the maintenance of homeostasis and the regulation
of developmental processes. Some of the common EDCs discussed at the Summit include
bisphenol A (BPA), phthalates and certain pesticides (e.g., vinclozolin, dicofol, atrazine).
Many of these compounds alter estrogen, androgen, and thyroid signaling, which are essential
for normal embryonic development and reproductive activity in all vertebrates studied to date
(3–5). They can also alter the synthesis, storage on plasma proteins and hepatic
biotransformation and clearance of hormones (6) and disrupt neural and immune signaling
pathways (7–9) and the regulation of gene expression (e.g., DNA methylation, RNA stability,
protein degradation) (reviewed by (10)). In some cases, altered DNA methylation patterns have
been shown to be heritable (11,12).
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Studying the effects of EDCs on the reproductive system is a natural area of inquiry, as EDCs
can interact with the hormonal system, which regulates development and maintenance of the
reproductive system. However, since EDCs also target the neuroendocrine system, which plays
regulatory and homeostasis roles in the control of human physiology, exposure to EDCs has
broader implications for health.

Exposure to Multiple Chemicals
Humans are exposed daily to a mixture of environmental contaminants in air, water and food.
In a recent biomonitoring study of over 150 contaminants, the U.S. Centers for Disease Control
and Prevention (CDC) reported that all 150 chemicals were detected in some portion of the
U.S. population and that several of the chemicals, such environmental tobacco smoke, lead,
mercury and phthalates, are detected in nearly all of the population (13). These and similar
biomonitoring efforts improve our understanding of current body burdens of environmental
contaminants. With this knowledge comes a need for better science on the health risks
associated with current patterns of exposure, including increased risks resulting from exposures
to multiple chemicals. For example, the majority of studies and regulatory focus has been on
exposures to individual phthalates, which may underestimate the actual risks, as recent studies
have found that simultaneous prenatal exposure to both di(n-butyl) phthalate (DBP) and di(2-
ethylhexyl)phthalate (DEHP) produced reproductive malformations in the offspring in a
cumulative, dose-additive manner (14). Finally, biomonitoring data indicate that more effort
is needed toward approaches that identify and mitigate exposure to harmful chemicals prior to
measuring harmful contaminants in people.

Susceptible Populations
Environmental chemicals can cause a broad spectrum of effects, which depend not only on
route of exposure and dose, but on the susceptibility of the individual to the compound. Age,
gender and genotype can influence susceptibility to disorders, anatomic abnormalities and
diseases from exposures. For example, we know that children are not small adults; they have
different behaviors, metabolism and responses to infectious and environmental challenges. The
elderly may also be a population at special risk to environmental chemicals.

Critical and Sensitive Windows of Susceptibility
A critical window of susceptibility is a time-sensitive interval during development when
exposures to environmental contaminants can disrupt or interfere with the physiology of a cell,
tissue or organ (15,16). It is a period characterized by marked cellular proliferation and
development and numerous changing metabolic capabilities in the developing organism (16,
17). Exposures to environmental contaminants during this window may result in adverse,
permanent and irreversible effects that can have lifelong and even intergenerational impacts
on health.

Researchers have suggested the need to also define sensitive windows of susceptibility.
Exposures during sensitive windows of susceptibility may still affect development or result in
eventual adult disease, but with reduced magnitude compared to the effect of exposure during
the critical window of susceptibility (16,18). For example, DES exposure reprograms the
expression of estrogen responsive genes in Eker rats exposed on post-natal days 3–5 or 10–12
(critical window of susceptibility), leading to increased incidence of uterine leiomyoma. In
contrast, rats exposed on post-natal days 17–19 (sensitive window of susceptibility) did not
experience this developmental programming and had a rate of uterine leiomyoma that was
elevated but not statistically different from control animals (19).
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Given that development continues after birth, critical and sensitive windows occur
periconceptually (prior to, during and shortly after the fertilization of the egg) and during
pregnancy; infancy, childhood and puberty (Figure 2).

Developmental Programming and Fetal Origins of Adult Disease
Studies from the 1990’s found that adverse effects on the fetal environment, such as poor
maternal nutrition, can result in an increased risk of adult onset of chronic conditions such as
coronary heart disease (20–22). These findings led to the fetal origins of disease hypothesis
(commonly known as the “Barker” hypothesis), which proposes that exposures to adverse
insults during critical or sensitive windows of development can permanently reprogram normal
physiological responses, and thus give rise to illnesses and metabolic and hormonal disorders
later in life (23–28).

The DES Example—Prenatal exposure to diethylstilbestrol (DES), a synthetic estrogen and
thus EDC, provides an unfortunate example of developmental programming. DES was given
to U.S. pregnant women between 1938 and 1971 under the erroneous assumption that it would
prevent pregnancy complications. In fact, in utero exposure to DES alters the normal
programming of gene families, such as Hox and Wnt, that play important roles in reproductive
tract differentiation (28–31). As a result, female offspring exposed to DES in utero are at
increased risk of clear cell adenocarcinoma of the vagina and cervix, structural reproductive
tract anomalies, infertility and poor pregnancy outcomes, while male offspring have an
increased incidence of genital abnormalities and a possibly increased risk of prostate and
testicular cancer (32). These observed human effects have been confirmed in numerous animal
models which have also provided information on the toxic mechanisms of DES. Animal
experiments have also predicted changes later found in DES-exposed humans, such as
oviductal malformations (33), increased incidence of uterine fibroids (34–36) and second-
generational effects (37,38) such as increased menstrual irregularities (39) and possibly ovarian
cancer (40) in DES-granddaughters and increased hypospadias in DES-grandsons (41,42).

DES is but one example of how exposure to EDCs can disrupt developing organ systems and
cause abnormalities, many of which only appear much later in life or in the subsequent
generation (43), such as endometriosis, fibroids and breast, cervical and uterine cancer in
women; poor sperm quality and increased incidence of cryptorchidism and hypospadias in
men; and subfertility and infertility in men and women (28),

Signals from Wildlife
For over a century, wildlife and laboratory animals have been used to predict the human health
effects of various environmental contaminants. Although each species has its unique attributes,
a growing literature indicates that substantial conservation exists in the underlying molecular,
cellular and physiological systems associated with vertebrate reproduction (44). For example,
estrogen, androgen and thyroid signaling are essential for normal embryonic development and
reproductive activity in all vertebrates studied to date (3–5). Furthermore, wildlife studies
demonstrate the effects of levels and mixtures of exposures in our environment in genetically
diverse populations (44). Therefore observations from wildlife are directly relevant to assessing
potential environmental influences on human reproduction.

In the early 1990s, studies began to associate environmental contamination with altered
reproductive performance in wild populations of fish, amphibians, reptiles and birds (45). For
example, studies in fish demonstrate increased rates of feminized male phenotype and reduced
fertility from environmental exposures to: ethynylestradiol, a synthetic estrogen found in birth
control pills and increasingly in treated sewage effluent; tributyltin, an anti-fouling agent used
on boats; BPA; tetrabromobisphenol A, a widely used flame retardant; and nitrate, a common
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fertilizer (44). Studies in alligators inhabiting pesticide-contaminated lakes report reduced
fertility and increased occurrence of multioocyte follicles (ovarian follicles with multiple rather
than the normal single oocyte) (46); alterations in folliculogenesis resulting in multioocyte
follicles have been associated with infertility and early embryonic loss in DES-treated mice
(47,48). Exposure of reptilian embryos to endogenous (estradiol-17β), pharmaceutical (e.g.,
ethynylestradiol, diethylstilbestrol) or industrial (e.g., DDT, DDE, BPA, trans-nonachlor)
estrogens during a critical window of development induces sex reversal at male incubation
temperatures, leading to increased female sex ratios (49–52). And, exposure to even lower
concentrations of these contaminants alters steroidogenesis of the ovary or testis in neonates
and juveniles (53). Fish and amphibians also experience effects following exposure to
endocrine-active compounds, including aberrant gonadal morphology (e.g., the presence of
oocytes in the testis, alterations in Leydig and Sertoli cell morphology or number) (54,55).
This literature documents the endocrine-disruptive effects of a wide array of commercial
chemicals and byproducts, including: pesticides; sewage contaminants, such as surfactants
(e.g., octylphenol and nonylphenol) and pharmaceutical agents; plasticizers (e.g., phthalates);
flame retardants (e.g., PCBs, polybrominated diphenol ethers, tetrabromobisphenol A) and
industrial pollutants (e.g., heavy metals, dioxin, polycyclic aromatic hydrocarbons) (for
reviews, see (3,6,56–58)). Furthermore, these effects were caused by exposure to levels of
chemicals found in the environment.

Concerning Trends
There have been a number of concerning trends in human reproductive health. The incidence
of testis cancer, primarily a disease of young men, has increased in Europe, with a lifetime risk
approaching 1% (59). In addition, young men born today in Europe have remarkably low
average sperm counts and a high prevalence (~1 in 6) of abnormally low sperm counts likely
to cause fertility problems (60). New data in three cities (Boston, U.S., Copenhagen, Denmark
and Turku, Finland) demonstrate a significant secular trend in serum testosterone (61–63). The
details vary somewhat, but together these studies suggest that testosterone has declined about
1% per year for the past 40–50 years. This decline is consistent with the reduction in sperm
concentration reported by Carlsen in 1992 (64) and these two trends taken together increase
the plausibility of a significant decrease in male reproductive function. For girls in the U.S.,
there has been a reported decline in age of onset of breast development and menarche over the
last 30 years (65). Rapid changes in health endpoints are of concern because they suggest
environmental and lifestyle, and thus avoidable, causes..

Compelling New Science: Moving Beyond Genetic Determinants
Genetic mutations are known to alter gene expression and lead to disease. Environmental
exposures have typically been thought of as influencing genetics and health by causing
mutations. For example, it has long been known that radiation leads to genetic mutations and
increased risk of disease, such as cancer.

However, research during the past decade has revealed that many environmental exposures
also act through modification of the epigenome (the collection of biochemical reactions that
determine the gene expression) of cells, leading to either immediate or latent adverse effects
on reproduction. For example, recent epigenetic research has revealed a possible mechanism
by which in utero exposure to BPA heightens susceptibility to prostate cancer in adult rats:
BPA altered the normal process of silencing, through hypermethylation, the phosphodiesterase
type 4 variant 4 gene that occurs with aging, thus elevating gene expression (66). BPA also
permanently alters expression of HOXA10, a gene necessary for uterine development (67).
Epigenetic studies have also shown that DES causes alterations in uterine tissue architecture
and morphology and heightens susceptibility to uterine adenocarcinoma by inducing
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permanent changes in several estrogen-responsive uterine genes (28) These are but a few
examples of how the field of epigenetics has and will continue to contribute to our mechanistic
understanding of the impact of environmental contaminants on reproductive health.

Environmental Contaminants and Effects in Males
Reproductive Effects of Early Life Exposures

Testicular Development and the Environment—Over the past 10–15 years, the central
role that deficient androgen production and action during fetal testis development may play in
the origin of disorders has been well documented and is reviewed in Sharpe and Skakkebaek
(68).

There is a relatively high incidence of male reproductive disorders that manifest at birth
(cryptorchidism, hypospadias) or in young adulthood (testicular germ cell cancer (TGCC) and
infertility) (69,70). These four disorders are increasing in prevalence in the West (69). They
are risk factors for each other and they share several, pregnancy-related risk factors (68–70).
Skakkebaek hypothesizes that TGCC, cryptorchidism and some cases of hypospadias and low
sperm count comprise a testicular dysgenesis syndrome (TDS) with a common origin in fetal
life (69). The hypothesis proposes that “abnormal testis development (dysgenesis), which could
have numerous primary causes, leads secondarily to hormonal or other malfunctions of the
Leydig and Sertoli cells during male sexual differentiation, leading to increased risk of
reproductive disorders of the testicular system” (Figure 3) (68–70).

This hypothesis has been supported by findings in an animal model of TDS involving fetal
exposure to the phthalate DBP as well as by new clinical studies described in Sharpe and
Skakkebaek (68). Exposure of rats in utero to DBP induces a TDS-like syndrome in the male
offspring (71–73); this is manifest as dose-dependent induction of cryptorchidism, hypospadias
and impaired spermatogenesis and infertility. Focal dysgenesis (73,74), subnormal fetal Leydig
cell function (71–73) and subnormal Sertoli cell proliferation (75) and possibly function (73),
consistent with changes predicted in the TDS hypothesis, are also demonstrated (69).
Furthermore, the characteristics of the focal dysgenesis induced by fetal DBP exposure in rats
(73,74) – malformed seminiferous cords, Sertoli cell-only tubules with immature-appearing
Sertoli cells and the abnormal occurrence of intratubular Leydig cells – are all also reported in
testes of men with TGCC (76–78).

A particularly important recent development is the observation that inhibition of androgen
production or action in rodents, resulting from transgenesis (79), DBP exposure (75) or
flutamide treatment (80), reduces Sertoli cell number substantially in the perinatal period and
leads to downstream TDS disorders. Thus, androgens appear to play a determining role during
the most important periods of Sertoli cell proliferation (fetal and early postnatal life) (68,81)
(Figure 3). This finding is consistent with data in humans showing that Sertoli cell number
increases during fetal life (when testosterone levels are high) and during the period of the
neonatal testosterone rise (81,82). Since Sertoli cell number in adulthood is the primary
determinant of sperm production and counts in men (81), it is hypothesized that reduction in
testosterone levels in the fetal testis, as a secondary consequence of dysgenesis leading to
reduced Sertoli cell numbers, could lead to low sperm counts in adulthood (Figure 3). This is
an important finding because Sertoli cells in the fetal testis in all species so far examined do
not express androgen receptors. Therefore, anti-androgens appear to exert toxic effects on male
reproductive development through multiple pathways (75)

The TDS syndrome is further supported by studies that induce hypospadias in CD1 mice
through exposure to EDCs during the critical period of urethral development. These chemicals
include 17α estradiol, pesticides such as vinclozolin, pharmaceutical products such as the
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antihistamine loratadine and the flame retardant, benzophenone-2 (83). A recent human study
by Swan et al. found in utero exposure to phthalates associated with shortened (and thus less
masculine) male anogenital distance, which has been observed in animal studies (84).

Based on the increasing prevalence of TDS disorders and recent evidence for declining
testosterone levels in men, endocrine disrupting chemicals in our environment are likely to
become ever more important in shaping the reproductive health of young men in the present
and next generation.

Prostate Development and the Environment—Similar to the testis, male accessory sex
glands and organs are also vulnerable to environmental EDCs, with adverse effects in
adulthood. The developing prostate gland is particularly sensitive to estrogens and high-dose
exposures during a critical developmental window results in prostatic intraepithelial neoplasia
(PIN) in adult rodent models (85). Early life exposure to estrogenic substances could sensitize
the developing prostate to later risks from increasing estrogen levels that occurs in the aging
male. A study of rats treated neonatally to BPA followed by hormones that mimic the aging
male in adulthood showed a significantly higher PIN incidence and score compared to controls
(rats exposed only to BPA neonatally or those given only the aging hormones in adulthood)
(86). As discussed above, this heightened predisposition to prostate carcinogenesis results from
permanent alterations to the prostate epigenome (66).

Reproductive Effects of Adult Exposures
Hauser and Sokol (87) review human and animal evidence on exposure to several classes of
environmental contaminants during adulthood and adverse male reproductive outcomes. In the
past two decades, numerous animal and clinical studies have provided evidence that a variety
of chemicals can disrupt the hypothalamic-pituitary-testicular axis by acting as hormonal
antagonists or agonists or by disrupting the biochemical processes regulating hormone
secretion and sperm function (87).

Consistent with the effects of prenatal exposure discussed above, rodent models of pubertal
and adult exposure to phthalate esters report testicular toxicity characterized by testicular
atrophy, reduced sperm counts, altered Leydig cell structure and function, Sertoli cell toxicity
and increased germ cell apoptosis (68). These studies indicate an age-dependent sensitivity to
exposure, with prenatal exposure causing the most, and adult exposures the least, severe effects.
Studies of phthalate exposure and male reproductive health in humans are limited and
inconsistent. For example, certain phthalate metabolites (MBP and MBzP) were associated
with decreased sperm quality among U.S. (88) but not among Swedish men (89). The
differences across studies, such as the ages of the population (older in the U.S.) or the source
of the men (general population in Sweden and infertile couples in the U.S.), may account for
some of the differences in study results, but may also suggest that a subpopulation of men may
have increased susceptibility to phthalate exposure (87).

PCBs are another industrial contaminant for which data on prenatal and adult exposures in
humans are available. For example, epidemiologic studies of high-dose exposures from
accidental food contamination report abnormal sperm morphology, higher oligozoospermia
rates and reduced hamster oocyte penetration 20 years after exposure (90). Effects on sperm
quality resulting from prenatal exposure were similar: abnormal morphology, decreased
motility and reduced hamster oocyte penetration (91). Studies to date of lower-dose,
environmental exposures to PCBs support an association with reduced semen quality,
specifically reduced sperm motility (92).

Heavy metals such as lead were among the first recognized human reproductive toxicants
(93). Animal, clinical and epidemiologic studies have demonstrated that exposure to lead
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disrupts all levels of the reproductive axis, with the central nervous system and testis appearing
to be the most sensitive organs and puberty a critical window of susceptibility (94–96).
Epidemiologic studies report a dose-related suppression of spermatogenesis, normal or
decreased serum testosterone and inappropriately normal urinary gonadotropins in the face of
low testosterone levels in men with higher blood lead levels (97). Recent findings suggest that
lead may also induce chromosomal abnormalities and lead to infertility by interfering with the
acrosome reaction in spermatozoa (98). Human studies evaluating other heavy metals suggest
that cadmium, mercury and boron may also disrupt male reproduction (99).

Dibromochloropropane (DBCP) is the most characterized agricultural chemical with respect
to male reproductive toxicity. Occupational exposure to DBCP produced: azoospermia and
oligospermia, damaged germinal epithelium, genetic alterations in sperm (such as double Y-
bodies), reduced male fertility, increased rates of spontaneous abortions in wives of exposed
workers, hormonal imbalances and altered sex ratio in offspring (100). Reversibility of effects
following cessation of exposure are variable (101,102). The reproductive toxicity of other
agricultural chemicals such as organophosphate pesticides, vinclozolin and DDT is less well
characterized in humans; nevertheless, animal and human studies demonstrate these chemicals
to have adverse effects on semen quality as well as anti-androgen properties (100).

Additional classes of chemicals that are of particular interest due to widespread human
exposure and animal evidence of reproductive toxicity, but for which human data are lacking
or minimal, include those used in consumer products, such as BPA, parabens and phthalates,
pyrethroid pesticides and air pollution (87).

Environmental Contaminants and Effects in Females
Reproductive Effects of Early Life Exposures

Prenatal exposure to environmental factors can modify normal cellular and tissue development
and function through developmental programming, such that women may have a higher risk
of reproductive pathologies and metabolic and hormonal disorders later in life (23–27).
Woodruff and Walker (28) review new research on the effects of environmental estrogen
exposure during key developmental windows on normal reproductive development of the
ovaries and the uterus and the link to specific disease states in the adult.

Ovarian Follicular Development and the Environment—The ovarian follicle is the
functional unit of the ovary and is comprised of an oocyte surrounded and supported by the
somatic granulosa and theca cells (28). The health of the follicle can impact the health of the
woman as well as the health of her offspring. For example, decreased numbers of follicles,
multiple eggs per follicle and incomplete follicular development can all result in decreased
fertility. The precise mechanisms involved in early ovarian follicle formation are not known,
but are essential in organizing the fetal ovary and establishing the postnatal follicle number
that will provide the female with sufficient oocytes for a lifetime of fertility (28).

Estrogen and activin are two known factors that play an important role in regulating oocyte
and follicle development and function (103–112) and aberrant development and ovarian
pathologies are observed in mice exposed to neonatal estrogen or activin. Neonatal exposure
of rats to estradiol benzoate has been show to delay follicle and interstitial development
(113). Neonatal exposure to DES or the natural estrogen estradiol (E2) results in lack of corpora
lutea in adult mice (114), suggesting that these effects persist beyond reproductive tract
development and impact fertility in the adult. Neonatal exposure to DES, E2, or the
phytoestrogen genistein also induces formation of multi-oocytic follicles in mice (115–117) –
an effect that is also reported in alligators exposed to environmental estrogenic contaminants
(see above) (46). Additionally, activin administered during the critical, postnatal period of
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primordial follicle formation changes the number of postnatal follicles (28,118). Current
mechanistic studies are exploring whether neonatal estrogen exposure alters activin signaling
in the ovary; preliminary findings of decreased activin subunit gene expression and impacted
activin signaling in the mouse ovary support this hypothesis (28)

Uterus Development and the Environment—Women exposed to DES in utero during
critical periods of reproductive tract development developed several types of reproductive tract
abnormalities, as well as an increased incidence of cervical-vaginal cancer later in life (118).
Animal studies that simulate the human DES experience have since shown that exposure of
the developing reproductive tract of CD-1 mice to DES imparts a permanent estrogen imprint
that alters reproductive tract morphology, induces persistent expression of the lactoferrin and
c-fos genes and induces a high incidence of uterine adenocarcinoma (119–121). Experiments
in rats have shown exposure to DES during the critical window of uterine development leaves
a hormonal imprint on the developing uterine myometrium in rats that were genetically
predisposed to uterine leiomyoma (28), increasing the risk for adult uterine leiomyoma from
65% to greater than 90% and increasing tumor multiplicity and size (35). DES-induced
developmental programming appears to require the estrogen receptor α (122), suggesting that
signaling through this receptor is crucial for establishing developmental programming.

Studies have now been extended beyond DES to demonstrate that other environmental
estrogens reprogram gene expression in the uterus (28): exposure to genistein and BPA during
the period of maximum sensitivity to developmental programming induces the expression of
the estrogen-responsive genes calbindin and progesterone receptor. Neonatal BPA exposure
attenuated estrogen-responsive genes whereas genistein exposure induced an even higher level
of estrogen responsiveness than DES exposure. In contrast to DES, exposure to these
environmental estrogens does not disrupt ovarian function in adult females, which continue to
cycle normally.

Reproductive Effects of Adult Exposures
Mendola et al. (123) review the growing body of epidemiologic and occupational studies
demonstrating that environmental exposures can interfere with all developmental stages of
reproductive function in adult females, including puberty, menstruation and ovulation, fertility
and fecundity and menopause.

Puberty—Environmental contaminants can accelerate or delay pubertal development. Lead
exposure delays puberty in girls, even at very low levels (<5 micrograms per deciliter) (124–
126). Earlier age at puberty has been observed with phthalate exposure (127) and correlates
with serum DDT (128), DDE (129) and PCBs (126).

Menstrual and Ovarian Function—Variations in menstrual and ovarian function have
been observed following consumption of drinking water disinfection byproducts (DBPs) and
fish contaminated with PCBs and other pollutants; similar associations were noted in studies
using biological markers of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), DDT, DDE and
PCBs (123). These studies generally describe functional variations (e.g., long or short cycles,
changes in luteal or follicular phase) that indicate an underlying perturbation of hormones
rather than the development of clinical disorders, although long-term effects are not known.

Shorter cycles have been observed for occupational exposure to lead (130) and to
chlordibromoethane in drinking water (131). Longer cycles have been observed in studies of
EDCs such as TCDD (132), hormonally-active pesticides (133), serum PCBs (134) and
multiple industrial chemicals (e.g., ethylene glycol ethers) used in the semi-conductor industry
(135). Menstrual disorders such as missed periods and abnormal uterine bleeding were also
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observed (130,133,134). Other studies found menstrual abnormalities, such as abnormal
menstrual bleeding with no change in cycle length, associated with PCBs or metal exposure
(136,137). Follicle-stimulating hormone is decreased in women exposed to pentachlorophenol
(138). Progesterone and estrogens are reduced in women exposed to DDT and DDE (139,
140).

Endometriosis has been widely studied in relation to environmental exposures. Most studies
considering PCBs have found increased serum levels among endometriosis cases, compared
with controls (123). Phthalate esters have also been associated with endometriosis among some
women (141,142).

Fertility and Fecundity—Fertility and fecundity studies include time-to pregnancy and
spontaneous abortion outcomes as well as studies of infecundity (lack of fecundity) and other
measures of subfertility (123). Lead is consistently observed to be a reproductive toxicant,
causing decreased fertility and increased pregnancy loss (130,143). Pregnancy loss has also
been found to be associated with DDE in most studies (144–146).

Working with or applying pesticides, primarily in agricultural and horticultural settings,
appears to consistently reduce fertility and fecundability (147–152). Preconception exposure,
but not exposure during pregnancy (153), appears to elevate risk for spontaneous abortion
(154). Pesticides are detrimental to both fecundity and fertility in the limited number of animal
studies conducted to date (155,156).

Additional environmental exposures, including solvents, radiation and other compounds, are
also associated with decrements in female fertility, but the literature is limited or inconclusive
(123). In particular, studies on solvent exposure in a variety of settings (157–159) suggest
decreases in fertility. One study in humans found an increase in recurrent miscarriage
associated with BPA (160), a finding that is consistent with the disruption of oogenesis through
meiotic disruption and aneuploidy in mice exposed to environmentally relevant levels of BPA
(161,162).

Menopause—Menopause has not been extensively studied, but earlier age at menopause has
been observed with exposure to serum dioxin (163), DDT, DDE and other pesticides (164–
166). Animal studies report disruption of folliculogenesis in mice exposed to lead (167) as well
as follicle destruction after exposures to mancozeb, dibromoacetic acid, polycyclic aromatic
hydrocarbons, cyclophosphamide and 4-vinylcyclohexene diepoxide (168–173), suggesting
possible mechanisms relevant to human disorders associated with these exposures.

Environmental Exposures During Pregnancy and Adverse Birth Outcomes
Windham and Fenster (174) review the epidemiologic literature on exposure to certain
environmental contaminants during pregnancy and adverse birth outcomes, such as low birth
weight, intrauterine growth retardation (IUGR), preterm delivery and stillbirth.

Exposure to ETS reduces mean birth weight (or slightly increasing the risk of IUGR), with
suggestive evidence of an effect on preterm delivery as well (175,176). Studies of water
disinfection byproducts (DBPs) support an association between DBP exposure and IUGR, with
little consistent effect on preterm delivery (174,177–179). The weight of epidemiologic
evidence also suggests that high levels of exposure to DDT or DDE is associated with adverse
fetal growth outcomes and preterm delivery (174). Studies of organophosphate exposure and
reproductive outcomes have suffered from lack of a standard validated measure of exposure.
However, despite inconsistencies in study results, the weight of evidence and precautionary
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principle suggest that exposure to organophosphates should be avoided during pregnancy
(174).

Moving Forward
At the Summit, participants from research, academic, health care, government, advocacy and
community sectors identified the most important needs and directions for advancing
reproductive environmental health through research, health care, policy community action and
occupational health.

Research
Participants in the research breakout group focused on identifying the critical research
directions and key needs for advancing the science database on environmental reproductive
health. They identified priority actions in two main areas: communication and research
priorities that will benefit from continued dialogue among government agencies, basic
scientists, epidemiologists, clinicians and the general public, who all have critical voices in the
discussion.

1. There is a need for better communication to foster collaborations—To enhance
collaborations among researchers and between researchers and granting agencies, the group
proposed the following:

• Fostering technologies that encourage collaboration, such as listservs and web-based
databases of tissue banks.

• Working with government agencies and universities to promote collaboration among
researchers, such as broadening the definition of a principal investigator to include
project leaders in a program project or center grant.

• Developing opportunities for researchers to meet and discuss collaborations in
• environmental reproductive health research, such as at professional society meetings.

2. Critical research directions in environmental reproductive health—The
following priorities were identified:

• Human and animal studies that are longitudinal and take into account the full life
cycle, including prenatal exposures (e.g. The National Children’s Health Study);

• Leveraging existing mechanisms of data collection to incorporate semen analysis into
the CDC’s NHANES study.

• Biological measurement collection and banking should be incorporated into
• epidemiological study designs for future research.
• Development of biomarkers of exposure and pre-clinical indicators of disease in

animals and humans, and better biomarkers of human fertility.
• Regulatory obstacles need to be addressed, such as interpreting and working with the

Health Insurance Portability and Accountability Act rules.
• Increased funding for emerging areas of research for individual chemicals and

mixtures and their effects on epigenome; fetal programming and transgenerational
effects; low-dose effects; non-traditional dose-response curves; and cross talk among
endocrine systems and receptors.

• How do we identify new emerging contaminants?

Woodruff et al. Page 11

Fertil Steril. Author manuscript; available in PMC 2009 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Health Professional Communication
Participants in this break out group, comprised primarily of health professionals and health-
affected groups or patient advocates, discussed what clinicians need to educate and advocate
for patients. Participants agreed that:

• Clinicians need to be well-informed about the sources and effects of environmental
and workplace contaminant exposures, especially in relation to periconceptional,
prenatal, early infancy and childhood windows of susceptibility.

• Due to the complexity of analyzing exposures and difficulty in predicting precise
health effects in a given individual, the clinician must address uncertainty when
communicating with patients on these issues.

• Health professionals need to take a precautionary stance and provide patients specific
advice on avoiding exposures.

• Clinicians and scientists can help interpret complex scientific research for legislators
and the public to support better regulation of contaminants, leading to reduced
exposures.

Some important needs of health care professionals include:
• Clear, simple-to-use health information tools that list contaminants and sources of

exposure and steps to take to reduce exposures and health effects of specific
exposures. Tools need to be developed collaboratively by scientists, clinicians and
advocacy and community groups in order to be relevant and appropriate to a diversity
of populations.

• Education on reproductive environmental health should be included in health
professional and public education

• Health care professionals should take a work history and inquire about patients’
exposures, ideally before pregnancy. This is not the current standard of practice.

Examples of Health Information Tools available to Health Professionals—The
Pediatric Environmental Health Tool Kit provides easy to use, anticipatory, age-appropriate
guidance on how to minimize harmful pediatric environmental exposures
(http://psr.igc.org/ped-env-hlth-toolkit-project.htm). The Hazard Evaluation System and
Information Service is comprised of informational materials, training and a workplace hazard
helpline for workers and health professionals for a number of workplace reproductive and
developmental hazards (thttp://www.dhs.ca.gov/ohb/HESIS/hesispubs.htm.)

Policy
Participants from all sectors represented at the Summit identified four key policy needs:

1) Advance models for comprehensive chemicals evaluation at local, state and
national levels and develop effective chemical regulation—Because there is such a
lack of data on chemicals that are already on the market, comprehensive testing should be
required for chemicals remaining on the market and pre-market testing should include
reproductive environmental health outcomes. The testing should: evaluate effects on both the
environment and human health; assess exposures at different stages of development; and
identify cumulative and synergistic impacts. The review of the testing results needs to include
mechanisms for reducing, limiting or removing chemicals that pose reproductive
environmental health risks.
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2) Improve the science base: increase resources and improve methods to
enhance research on reproductive environmental health—Key areas include
improving research design to: better identify developmental effects that can occur from
exposures during important reproductive windows: track impacts that can be passed on through
multiple generations; assess low dose effects and effects from multiple exposures to chemicals;
and develop improved and faster screening technologies to more quickly identify potentially
harmful chemicals.

3) Improve the use of science in decision making—Participants noted that there are
a number of steps between development of scientific findings and then using those findings to
make decisions in a policy context. The process for doing this can be complicated and highly
technical. Further efforts should focus on: acknowledging uncertainty in the science and
allowing for action in the face of this uncertainty; increasing steps to limit undue influence or
bias in the review process; and incorporating low dose effects and exposure to multiple
chemicals into decision making and risk assessment.

4) Right to know: improve information given to consumers and workers on
environmental contaminants in products—Participants identified the need to address
the inadequacies of consumer product labeling and Material Safety Data Sheets, as well as the
obstacles that trade secret protections place on accessing information on consumer product
ingredients.

Community Action
Summit participants gathered to talk about the science in the context of environmental justice,
occupational health and reproductive justice. Participants noted that learning about potentially
hazardous chemicals in everyday products and in the workplace and their effects on babies in
utero are powerful personal motivators toward further education and activism. However,
placing the responsibility on women to avoid everyday toxins such as mercury in fish or
hazardous chemicals in common household products is not an effective strategy for protecting
reproductive health. Efforts by community members, scientists, epidemiologists, clinicians,
activists, communications strategists and spokespeople will be more successful if they work
towards a reformed and improved public health policy that adequately regulates chemicals and
reduces exposures.

Safe Work
Participants in the Safe Work break out group discussed the implications of the science and
key needs for improving worker health and safety. The group noted that more attention needs
to be paid to workers' exposures within the area of environmental health. Their discussion also
echoed themes from some of the groups, such as the need for better communication of the
science, and improved methods for making decisions in the face of uncertainty that consider
worker health. They also identified some unique needs of workers and proposed the following:

• Reduce permissible exposure levels to chemicals that harm reproduction and
development so that they are more in line with environmental exposure limits. In
addition, permissible exposure limits should reflect the toxicity of exposure to
mixtures of chemicals used in the workplace, rather than exposure to chemicals
individually.

• Exposure assessment and monitoring in occupational settings should be expanded.
• Expand occupational health researchers' access to workers so that health

consequences can be identified and corrected.
• Develop alliances that can improve health across different sectors.
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For example, making the connections between worker safety and hospital patient safety
(concerning phthalates) and fostering alliances between environmental health groups and labor
and worker groups.

Conclusions
The Summit provided a view of critical scientific information that underscored the need for
further efforts in areas to improve reproductive health. One common theme throughout the
Summit was communication and collaboration. Scientists bring unique and important
contributions to studying the impact of environmental contaminants on reproductive health. A
goal of moving forward from the Summit is to bring together epidemiologists, basic scientists,
clinicians and clinician researchers to approach the study of environmental contaminants on
reproductive health in an integrated way. However, such research is most valuable and could
be of highest benefit for human health if it is conducted in collaboration with health-affected
and community based groups that can facilitate focusing research questions on the most
pressing issues of the most affected constituencies.. Communication across scientific
disciplines and among scientists, health care providers, health-affected groups and the public,
as well as efforts in research, education and policy, are key to reducing the adverse impacts of
environmental contaminants and enhancing the reproductive health of this and future
generations.
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AMH  

anti-mullerian hormone

BPA  
bisphenol A

CDC  
US Centers for Disease Control and Prevention

CIS  
carcinoma-in-situ

DBCP  
dibromochloropropane

DBP  
di(n-butyl phthalate
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DBPs  
disinfection byproducts

DDE  
dichlorodiphenyldi-chloroethylene

DDT  
dichlorodiphenyl-trichloroethane

DEHP  
di(2-ethylhexyl phthalate

DES  
diethylstilbestrol

E2  
estradiol

EDCs  
endocrine disrupting chemicals

ETS  
environmental tobacco smoke

HCB  
hexachlorobenzene

Insl3  
insulin-like factor 3

IUGR  
intrauterine growth retardation

PCBs  
polychlorinated biphenols

PIN  
prostatic intraepithelial neoplasia

PTMC  
peritubular myoid cell

SCO  
Sertoli cell only

TCDD  
2,3,7,8 tetrachlorodibenzo-p-dioxin

TDS  
testicular dysgenesis syndrome

TGCC  
testicular germ cell cancer

UCSF  
University of California San Francisco

US  
United States
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Figure 1.
Key Definitions for Environmental Reproductive Health
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Figure 2. Windows of Susceptibility to Environmental Insults
Adapted from (253).
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Figure 3.
Schematic diagram to illustrate how dysgenesis of the early fetal testis is thought to lead to
abnormalities of somatic cell function, resulting in hormonal changes and the downstream
disorders that comprise testicular dysgenesis syndrome (TDS). The central role of testosterone
is highlighted by the blue boxes. Dashed lines show pathways that are hypothesized but
unproven (68).
Abbreviations: PTMC=peritubular myoid cell; Insl3=insulin-like factor 3; AMH=anti-
mullerian hormone; CIS=carcinoma-in-situ; SCO=Sertoli cell only.
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