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Abstract
Parameter estimation constitutes a major challenge in dynamic modeling of metabolic networks.
Here we examine, via computational simulations, the influence of system nonlinearity and the nature
of available data on the distribution and predictive capability of identified model parameters.
Simulated methionine-cycle metabolite concentration data (both with and without corresponding
flux data) was inverted to identify model parameters consistent with it. Thousands of diverse
parameter families were found to be consistent with the data to within moderate error, with most of
the parameter values spanning over 1000-fold ranges irrespective of whether flux data was included.
Due to strong correlations within the extracted parameter families, model predictions were generally
reliable despite the broad ranges found for individual parameters. Inclusion of flux data, by
strengthening these correlations, resulted in substantially more reliable flux predictions. These
findings suggest that, despite the difficulty of extracting biochemically accurate model parameters
from system level data, such data may nevertheless prove adequate for driving the development of
predictive dynamic metabolic models.
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Introduction
Recent technological advances are enabling improved quantification of intracellular metabolite
concentrations and fluxes (Brauer et al., 2006; Hollywood et al., 2006; Lu et al., 2006; Sauer,
2006). Constraints-based approaches to modeling metabolism, such as flux-balance analysis,
have substantial power for predicting metabolic fluxes in certain organisms (Edwards et al.,
2001; Schilling and Palsson, 1998; Steffen et al., 2002; Yuan et al., 2006). Despite this progress,
there remains the need to also develop dynamic metabolic models which incorporate
understanding of metabolite regulation to predict both metabolite concentrations and fluxes
(Di Ventura et al., 2006; Gombert and Nielsen, 2000). The development of such models has
been limited in part by the challenge of model parameter identification from laboratory data.

The nonlinear nature of metabolic dynamics calls for nonlinear parameter estimation (also
known as data inversion) methods. Gradient based approaches, such as the Gauss-Newton
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method, are fast for solving convex optimization problems. However, when the inverse
problem is non-convex, these approaches may fail to provide globally optimal solutions
(Glowinski and Stocki, 1981; Linga et al., 2006). Global optimization methods such as
simulated annealing (Eftaxias et al., 2002; Kirkpatrick et al., 1983), scatter search (Rodriguez-
Fernandez et al., 2006b), evolutionary computation (Fogel, 2000; Goldberg, 1989; Moles et
al., 2003; Tsuchiya and Ross, 2001), and variants (Rodriguez-Fernandez et al., 2006a), are
generally more reliable in these situations. The application of global methods has been reported
in a few studies modeling metabolic networks (Himmelblau et al., 1967; Moles et al., 2003;
Polisetty et al., 2006).

Another challenge of bio-network model identification arises from the existence of laboratory
noise. For most identification methods, the mean values of the data points are utilized to yield
one solution for each unknown model parameter, and variations in the extracted parameters
are subsequently estimated via linear propagation of the data noise. As a result, distributions
of the identified parameters tend to look regular due to the linear error propagation (Kutalik et
al., 2007), giving the impression that the mean parameter values are reliable estimates of the
true values. However, the combination of data noise and system nonlinearity (hence nonlinear
error propagation) can easily result in wide and highly irregular parameter distributions, where
the true parameter values can be located anywhere in the distributions.

In order to address the above issues, Feng and Rabitz developed a general nonlinear method
that yields not one, but a representative family of model parameters that can reproduce the
bionetwork behavior to within the laboratory error ranges (Feng and Rabitz, 2004). This family
then automatically forms the parameter distribution without having to perform explicit error
propagations. Initial application of this method (to simulated in vitro reactions related to
proofreading of tRNA loading) provided evidence that parameter distributions are better
captured by this method than by traditional techniques.

In this work, we apply this method to parameter estimation for a metabolic network model that
simulates the methionine cycle (Martinov et al., 2000; Reed et al., 2004). The focus is to
understand the properties of the extracted parameter families (including the reliability of the
predictions that they make) as a function of the input data provided. Biologically, the
methionine cycle was selected because it is a representative of cyclic metabolic pathways (an
important metabolic network motif), contains multiple positive and negative feedback
mechanisms, and describes a physiologically and medically important system (Figure 1).
Abnormalities of methionine cycle metabolism are associated with liver disease (Avila et al.,
2002), cancer (Lu and Mato, 2005), neural tube defects (Refsum, 2001), Alzheimer's disease
(Clarke et al., 1998), and cardiovascular disease (Mangoni and Jackson, 2002).

We find that exceptionally diverse and inter-correlated parameter sets exist that generate time-
dependent methionine cycle behavior indistinguishable (within modest error estimates) from
the published model. These parameter sets not only recapitulate the data used in their
identification, they also result in similar model predictions under different perturbations.
Sequential addition of flux and biochemical constraints modestly reduced the parameter ranges.
Despite the remarkable diversity of the identified parameters, those extracted from
concentration data generally yielded reliable concentration predictions. Addition of flux
constraints into the parameter search identified parameter sets that were also flux predictive.
These findings suggest that, while identification of the true (biochemically accurate) metabolic
model parameter values (Teusink et al., 2000) from metabolomic data will generally be difficult
owing to system nonlinearity and data noise, development of dynamic models with substantial
predictive power may nevertheless prove feasible. This overall message is consistent with
recent analysis of parameter sensitivities in other systems biology models (Gutenkunst et al.,
2007).
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Materials and Methods
Methionine cycle model

A previously published mathematical model of the methionine cycle developed initially by
Martinov et al. (2000) and expanded by Reed et al. (2004) was used to generate the simulated
data. The model consists of four non-linear ordinary differential equations describing the rate
of change of methionine (Met), S-adenosylmethionine (AdoMet), S-adenosylhomocysteine
(AdoHyc), and homocysteine (Hyc) (see Figure 1). These four metabolites interconvert via
eight different enzyme catalyzed reactions:

Table 1 lists the functional forms of the flux expressions for each of the eight reactions. The
formulation of the model here is identical to that of Reed et al. (2004), except for elimination
of any over-parameterization. Specifically, in the expression for VMETH, the parameter
KMETH

m/[A] from the original publication was absorbed into VMETH
max, where [A] represents

an arbitrary methylation substrate. In the case of VMS, the reaction was initially formulated as
an ordered bi-bi reaction of the substrates. However, since [5mTHF] is a constant in the model,
VMS was re-written as a simple, one substrate Michaelis-Menten expression. Table 2 lists the
parameter values used in the revised, reference model. This model was used to generate all the
data supplied to the inversion algorithm in the simulations.

Simulated perturbations
Perturb-and-observe experiments were simulated with influxes to the system limited to
methionine (Metin) and/or homocysteine (Hcyin), as described in the Results. The magnitudes
of the perturbations were chosen to approach but not exceed the largest values that could be
simulated by the model while retaining consistency with the thermodynamic constraints (i.e.,
larger perturbations resulted, due to limitations of the published models, in negative fluxes
through reactions that are chemically essentially irreversible). Concentrations of ancillary
compounds (not described by the ordinary differential equations of the model; e.g., 5mTHF)
were assumed to be constant. The greatest change in the dynamics of the system occurs within
1 hour after each perturbation. Simulated data points were collected every 2.4 min over this
60 min period to supply the inversion algorithm with dynamically rich data for parameter
identification. A total of 200 metabolite time points were used for data inversion (4 metabolites
× 25 time points/perturbation × 2 perturbations). When fluxes (amounts of metabolites per unit
volume enzymatically transformed per unit time; i.e., metabolite flows) were also used in the
inversion, flux data for each of the five interconversions in the pathway were gathered at each
time point as well. A relative error of 15% was assigned to each concentration and flux data
point to simulate experimental noise. The typical reported error in metabolomic and fluxomic
experimental studies ranges from ∼ 15% to > 50% (Ikeda et al., 1996; Ruijter and Visser,
1997) and sampling 25 time points per perturbation somewhat exceeds the time-resolution of
the most intensive dynamic metabolomic studies to date (Brauer et al., 2006).

The inversion algorithm
A routine based on genetic algorithms (GAs) (Goldberg, 1989) was used for the model
parameter identification. An initial population of the unknown parameter vectors was
generated, with each parameter value randomly selected within the range of 10-2 to 105. The
“fitness” score of each parameter vector in the population was determined by an objective
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function which measured how well the parameter vector generated the simulated data. The half
of the population with the better fitness scores was retained and the rest were replaced by new
parameter vectors generated through crossover and mutation of existing parameter vectors,
with the total (parameter vector) population size held constant at 5000. The mating process
operated as follows: two parent parameter vectors were chosen statistically with a probability
derived from their respective fitness scores. Each element of each parent parameter vector had
a probability Nr = 0.7 of exchanging values with the same element of the corresponding mate
parameter vector (genetic recombination) and a probability Nm = 0.1 of being replaced with a
random value determined by a Gaussian distribution (genetic mutation). Once the new
population of parameter vectors was generated, the process of selection and mating continued
until the objective function was minimized.

The objective function can take a variety of forms depending on the type of input data and the
nature of the system. The objective here was to minimize the difference between data generated
by the model (with the parameter values selected via the inversion algorithm) and the simulated
laboratory data. The form of the objective function F used is given by Equation 1:

(1)

where Nt is the number of time points at which data was gathered, Neq is the number of species

whose concentrations were measured,  is the simulated laboratory concentration
measurement for the j-th species at the i-th time point, εci,j is the laboratory error associated

with the j-th species at the i-th time point (set here to 15%),  is the concentration calculated
by the model (using the GA-generated parameter vectors) for the j-th species at the i-th time

point, Nflx is the number of system fluxes measured,  is the j-th simulated laboratory flux

measured at the i-th time point,  is the laboratory error associated with the j-th flux at the i-

th time point (set here to 15%); , the j-th system flux calculated by the model (using the
candidate parameter vector) at the i-th time point; wc is a weight factor for the concentration
data, and wflx is a weight factor for the flux data. The objective function was calculated by
evaluating the following conditional for each data point: if the absolute difference between

 and  falls within the error εci,j, then  receives a score of 1; otherwise  was scored

using the continuous function  that increases linearly from 1 as the deviation of

 from  increases. The scores for each data point were summed and averaged over all
time points and measured species/fluxes. For weighting factors related by wc + wflx = 1, F=1
is the minimum/optimal value. Candidate parameter sets that receive a fitness score F=1 were
considered acceptable solutions. For the inversion of concentration data alone, wflx =0 and
wc =1. For the inversion of both concentration and flux data, wflx =0.5 and wc =0.5.

Constraints describing properties of isolated enzymes
Biochemically constrained search ranges for select parameters were based on previously
published data from in vitro kinetic studies performed for the various enzymes of the
methionine cycle. The third column of Table 2 lists the constraints and relevant references from
which they were derived. Here we provide a brief justification for them. The constant
KMATI

m for MATI was determined by Sullivan and Hoffman to be 41 ± 4 μM (1983). We
selected a constraint of 41 ± 8 μM, with the additional breadth of the range selected to correct
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for potential in vitro versus in vivo differences in the Km. KMATI
i was calculated based on a

product inhibition study (Sullivan and Hoffman, 1983) which found that at [Met] = 25 μM and
[AdoMet] ∼ 375 μM resulting in ∼ 50% inhibition of MATI activity. Based on the reaction
rate formulation for VMATI in Table 1, this implies that the Ki for MATI is ∼ 230 μM.
Experimental values but not error estimates for GNMT, KGNMT

m and KGNMT
i have been

reported (Heady and Kerr, 1973;Kerr, 1972). Absent experimental error estimates for KMATI
i,

KGNMT
m and KGNMT

i, we assigned a constrained search range of ± 25% the nominal value.
The Michaelis-Mentin constant KBHMT

m for the BHMT reaction rate was independently
determined by Finklestein (1972) and Garrow (1996) as 12 μM and 32 μM, respectively. We
assigned a biologically constrained search range for this parameter of 9 - 40 μM (25% below
the lower experimental estimate to 25% above the higher one).

Computational implementation
The ODE model of the methionine cycle was integrated using a stiff Gear integrator (Petzold
and Hindmarsh, 1997). The genetic algorithm was from GAlib (Wall, 1995). The parameter
distributions were generated as follows: identified parameter sets from three independent
inversion runs were combined into a single data set with redundant copies of any particular
identified parameter vector removed. For each parameter, the logarithmic parameter search
range [-2,5] was subdivided into 50 equally sized bins of length 0.14. The frequency with which
identified parameter values fell in each of the bins was determined, producing a distribution
of outcomes along the range [-2,5]. Several thousands of parameter sets were identified in each
run, which was sufficient to provide a converging distribution for each parameter.

Results
Diverse parameter sets reproduce simulated dynamic concentration data

The simulated concentration data shown in Figure 2 was supplied to the inversion algorithm
to identify families of parameter vectors that reproduce the data. The algorithm identified over
30,000 parameter vectors consistent with the simulated concentration data within error
estimates of ±15%. The resulting parameter values are plotted in the histograms of Figure 3
(blue lines; the green lines show analogous results with inclusion also of flux data and the red
lines with further addition of biochemical constraints; see below). In these histograms, the Y-
axis represents the fractional occurrence of particular parameter value ranges (shown on the
X-axis) among the parameter vectors consistent with the simulated data. A sharp distribution
in Figure 3 indicates that only a narrow range of the particular value could reproduce the
simulated data of Figure 2. A spiky distribution indicates that a diversity of values are consistent
with the data, but the likelihood is higher for certain parameter values. A broad, smooth
distribution indicates that all (or very many) values of that parameter are acceptable.

The most notable feature of the blue lines in Figure 3 is the exceptional breadth of most of the
parameter ranges, which cover the entire dynamic range of 107 for eight parameters
(VMATI

max, kMATI
m, kMATI

i, VGNMT
max, kGNMT

m, kGNMT
i, VMS

max, and kMS
m) and exceeded

a range of 103 for seven parameters (VMATIII
max, kMATIII

m2, VMETH
max, α1, β2, VBHMT

max,
and kBHMT

m). While some of the parameters in this latter category, such as VMETH
max, favor

a smaller range of values, scattered cases demonstrate that other divergent values are
acceptable. Only two parameters, α2 and β1, were identified to within a ∼ 10-fold range.

Correlations within identified parameter vectors explain the parameter value diversity
While indicating that divergent parameter vectors can produce similar kinetic behavior, the
above results do not imply that random parameters selected from the identified individual
parameter ranges can do so. Notably, we found that only 1 in 2×106 parameter vectors, when
randomly sampled from the identified ranges, replicated the concentration data within the 15%
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error range. Thus, while any particular parameter can generally take on a huge diversity of
values, the network behavior is conserved only for parameter vectors with highly correlated
members.

To better understand the model features resulting in the remarkable diversity and correlation
of feasible parameter values, we examined the roles of particular parameters in the ODE model.
The parameters that exhibit the most diversity in identified values are associated with the
enzymes MATI, GNMT, and MS. Each of these enzymes is involved in one of the three
conversions of the methionine cycle that is catalyzed by multiple enzymes (Figure 1). Most of
the identified parameter sets partition the fluxes for these conversions unequally such that
MATI, GNMT, and MS have relatively minor flux contributions (with the major fluxes coming
from MATIII, METH, and BHMT, respectively). Because the MATI, GNMT, and MS fluxes
are small, changes in the values of the parameters associated with these reactions generally
have little effect on the overall network behavior. Only parameter values which result in large
fluxes through these enzymes are prohibited. Acceptably low fluxes are ensured either by
keeping Vmax low or by offsetting increasing Vmax values with corresponding increases in
Km. Figure 4A, 4B, and 4C show that the Vmax and Km combinations identified for MATI,
MS, and GNMT indeed result in low fluxes through these enzymes: the black lines in each of
these plots represents the parameter combinations which result in these enzymes producing
10% of the estimated total flux of the pathway step (and the alternative enzymes of MATIII,
METH, or BHMT 90% of the flux). The vast majority of the parameter combinations for MATI,
MS, and GNMT fall below this line and thus contribute <10% to the total flux. Thus, one reason
for the diversity of acceptable parameter values is that, for pathway steps catalyzed by two
different enzymes, if one enzyme contributes very little to the total flux, changes in the
parameter values for that enzyme (as long as they do not increase its flux greatly) will have
very little impact on the overall network behavior.

The parameter ranges for the flux-dominant enzymes, such as MATIII and BHMT, while better
defined than for the minor flux enzymes, are nevertheless broad (most identified values fall
within a 1000 to 10,000-fold range). One possible reason for such breadth could be correlated
changes in two or more parameter values which offset each other to conserve the flux. For
unsaturated enzymes described by Michaelis-Menten kinetics, paired increases in Vmax and
Km offset, and the flux is unchanged. Both MATIII and BHMT are far from saturation in both
the original model and most of the new parameter sets. As shown in Figure 4D and E, for each
of these enzymes, Vmax and Km are strongly correlated (Pearson's R2 0.95 and 0.97 for MATIII
and BHMT respectively). Thus, another reason for the diversity of acceptable parameter values
is that, for unsaturated enzymes, correlated increases in Vmax and Km do not alter the enzymatic
flux.

Identified parameter vectors generate similar concentration data predictions
We examined the reliability of the new models (using as their parameters the values identified
by the inversion of the simulated concentration data) in making concentration and flux
predictions for perturbations (of both methionine and homocysteine influxes, Figure 5A)
different from those used for the parameter identification. The new models (grey lines), despite
their high degree of parameter diversity, generally resulted in concentration predictions which
closely mimicked the reference system (Figure 5B). However, certain fluxes, most notably the
rate of homocysteine methylation (VMS + VBHMT), were not accurately predicted (Figure 5C).
Equation (1) provides a quantitative metric of the predictive power of the new models with
respect to concentration data (wc = 1,wflx = 0) and flux data (wc = 0,wflx = 1). Predictions that
are accurate with ±15% error receive the optimal score of 1; worse predictions yield higher
scores. The average score of the new models for concentration predictions was almost perfect
(mean, 1.0043; SD, 0.0002). Conversely, the average score for flux predictions was far from
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perfect (23 ± 0.15). For comparison, random parameter vectors (not generated by inversion of
the data shown in Figure 2) yielded scores of 280 ± 150 and 97 ± 3.3 for concentration and
flux predictions, respectively. Hence, while the identified parameter sets had some predictive
power for both concentrations and fluxes, they were much more accurate for concentrations.

Inversion of flux data yields parameter vectors producing reliable flux predictions
Flux data from the perturbation simulation in Figure 2 (in addition to concentration data) was
incorporated into the inversion procedure to further constrain the parameter search. The
inversion algorithm identified >30,000 parameter vectors consistent with the simulated
concentration and flux data to within 15% error (Figure 3, green). The predictive capability of
the associated new models was examined using the methionine-homocysteine perturbations of
Figure 5A. The concentration predictions were comparable to those of models trained on
concentration data alone (see Figure 5B); however, the flux predictions were greatly improved
(compare Figure 5C with Figure 5D). Quantitatively, the new models received scores for
concentrations and fluxes of 1.0041 ± 0.0003 and 1.2 ±0.01, respectively.

The parameters identified using both flux and concentration data show a discernable reduction
in the ranges of acceptable parameter values compared to parameters obtained from inversion
of only concentration data (Figure 3). For VMATIII

max and VMETH
max, the breadth of identified

distributions dropped ∼ 104 fold. This reduction in diversity results in parameter ranges that
span a region of the parameter space richer in parameter sets that match the simulation data:
∼ 1 in 104 parameter vectors randomly sampled within these ranges regenerated the simulated
concentration data from Figure 2 within the 15% error (compared to 1 in 2×106 parameter
vectors from the broader ranges found by inversion of only concentration data).

As in the case of the parameters identified from concentration data alone, the diversity of flux
and concentration-constrained parameters for MATI, GNMT, and MS, can be explained by
the lax requirements on these enzymes to maintain < 10% flux contributions. Similarly, the
identified parameters for MATIII and BHMT remain correlated in a manner that holds their
associated enzyme fluxes constant, with the strength of the correlation enhanced by inclusion
of the flux data (Pearson's R2 increase from 0.95 to 0.99 and from 0.97 to 0.998 for MATIII
and BHMT respectively)

Inclusion of biochemical constraints
Even after including flux constraints, considerable diversity of identified parameters remained
(Figure 3). A major source of the observed diversity arises from strong correlations between
the individual parameters. This suggests that narrowing the ranges of selected parameter values
(using data from literature on their in vitro biochemical properties) should also reduce the
ranges of other parameters. We accordingly restricted the search ranges for certain parameters
describing MATI, GNMT, and BHMT (see Table 2). As before, the inversion algorithm was
supplied with concentration and flux data as in Figure 2. More than 3×104 parameter vectors
that fit the simulated data well were obtained. The distributions of the resulting parameter
values are shown in the red lines in Figure 3. The black arrows surrounding the plots for
kMATI

m, kMATI
i, kGNMT

m, kGNMT
i, and kBHMT

m indicate the biochemically-restricted
boundaries of the search ranges. The biochemical restrictions on the six parameters somewhat
limited the feasible ranges for the other parameters. Most notably, the distributions of both
VMATI

max and VGNMT
max obtained clear upper boundaries absent in the previous inversions

(compare the red to the blue and green lines on Figure 3). Thus, incorporation of suitable
biochemical data to restrict the parameter search may significantly reduce the diversity of the
consistent parameter vectors. Interestingly, random parameter vectors selected within the
parameter ranges obtained with the biochemical constraints were substantially more likely to
yield models consistent with the simulation data with ∼ 1 in 103 random parameter vectors
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yielding results consistent with the simulated concentration data. Thus, the biochemically
constrained parameter vectors lie within a region of parameter space that is especially rich in
vectors yielding the desired model behavior.

Discussion
A series of recent modeling studies have made major strides towards identifying topological
features of bionetworks that give rise to emergent properties such as the ability to sense and
respond to environmental signals, maintain metabolic homeostasis, and form complex
developmental patterns, all in a manner that is robust to environmental and genetic noise
(Barkai and Leibler, 1997; Bhartiya et al., 2006; Brandman et al., 2005; Kollmann et al.,
2005; Meir et al., 2002; Stelling et al., 2002; von Dassow et al., 2000; Wagner, 2005). A
complement to understanding the topological features of bionetworks that lead to their
qualitative properties is finding the precise parameter values which lead to specific quantitative
phenotypes. This type of detailed quantitative understanding is of practical importance in that
parameter values ultimately determine quantitative biochemical phenotypes such as bioreactor
yields, insulin sensitivity, etc.

With a focus on the parameter identification problem and its importance in metabolic modeling,
here we examined the ranges of specific model parameter values capable of producing
particular quantitative behavior of a previously published methionine cycle model (Reed et al.,
2004). Using a nonlinear global parameter identification algorithm, we found that remarkably
broad ranges of parameter values were consistent with simulated metabolite concentration and
flux data within modest error estimates. Such wide and irregular distributions are unlikely to
be obtained from linear error propagation as occurs in traditional identification methods.
Within these broad parameter value ranges, parameter sets consistent with published
biochemical kinetics data were identified. This contrasts to previous methionine cycle models,
which resorted to using kinetic constants inconsistent with biochemical literature for certain
enzymes (notably for kMATI

i and kGNMT
m, see Table 1). The ability to rectify this deficiency

points to the value of employing a global search algorithm for selecting more realistic metabolic
model parameters.

The primary findings of the present work are that broad ranges of parameter values produce
similar model behavior, and that models with highly divergent parameter values nevertheless
can make similar quantitative predictions. Similar inferences were made recently for a diversity
of systems biology models based on local sensitivity analysis of system response to parameter
variations (Gutenkunst et al., 2007). Rather than using sensitivity analysis, our conclusions
result directly from the wide and correlated parameter distributions identified by global
inversion. Thus, they are a useful complement to those of Gutenkunst et al.

The results of both the present work and Gutenkunst et al. (2007) have clear implications for
robustness: at some level, the methionine cycle model used here (Reed et al., 2004), as well as
the models studied by Gutenkunst et al., are robust to parameter value variation. However,
robustness generally implies similar behavior with parameter value variation in any direction,
whereas Gutenkunst et al. showed that parameter value variation in only certain directions is
tolerated without markedly altering the quantitative output of the model. Similarly, we find
that highly divergent parameter values can produce similar quantitative model behavior, but
only if certainly parameter value correlations are maintained. Thus, the breadth of the observed
parameter distributions found here does not necessarily imply robustness in the traditional
sense.

A basic question regarding our identification of such broad parameter value ranges via data
inversion is whether similar results would be obtained with real, rather than simulated, data.
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The parameter identification here was aided by the fact that the model subjected to inversion
had exactly the same form of the one generating the simulated data. This may not be the case
in laboratory settings where there will generally be (1) unknown and/or un-modeled variables
in the real network that impact the observed dynamics or (2) failure of the precise mathematical
form of the flux equations to completely describe the actual chemical events occurring in the
real biological system (due to complex enzymatic mechanisms, diffusion, etc.). In addition, a
constraint in the present work was the need to limit the extent of perturbations to avoid non-
physiological behavior of the model (e.g., thermodynamically infeasible fluxes). In
experimental work, responses to more extreme perturbations might prove useful for better
defining feasible parameter ranges. In addition, more extreme perturbations might highlight
limitations to model predictive power.

The ability to generalize from the findings here also depends on the degree to which the
methionine cycle is representative of a typical metabolic sub-network. Particular features of
the methionine cycle found in some but not all other metabolic pathways include (1) the
network's cyclic topology, (2) the presence of a large number of regulatory interactions, and
(3) the existence of multiple enzymes catalyzing almost all of the pathway steps.

With the above caveats in mind, it is worthwhile to point out some key lessons for future
modeling efforts that are suggested by the present results. One is that inclusion of additional
types of data (in this case, the flux data), even when leading to only modestly better definition
of the feasible parameter ranges, can nevertheless yield important gains in predictive power.
Such gains may be hard to realize by simply increasing the amount of data of a given type, and
support the application of multiple analytical methods in parallel experimentally.

Other lessons are suggested by the causes of the diversity of the parameter values found here.
One cause was the ability of low-flux producing enzymes to adopt a broad range of parameter
values while making minimal flux contributions. This suggests an approach to investigating
metabolic networks in which one first experimentally identifies the flux-dominant enzymes
(e.g., via gene knockout or siRNA experiments) and then focuses initial modeling efforts on
them. Subsequent experiments in cells in which the flux-dominant enzymes have been knocked
out could then be used to determine biochemically accurate parameters for the minor-flux
enzymes.

Another cause of the parameter diversity was correlations between the flux parameters
(typically Vmax and Km) for enzymes with dominant fluxes. Such correlations suggest that
several of the mathematical flux formulations were over-parameterized, given the relatively
narrow ranges of metabolite concentrations observed in the perturbation simulations, which
precluded the enzymes from taking on the full range of Michaelis-Menten behaviors. When
substrate ranges are limited (e.g., to a < 4-fold range), simple linear flux formulations (e.g.,
flux = k [substrate]) may be preferable to representations based on Michaelis-Menten kinetics
or biochemical systems theory (Holmberg, 1982; Savageau, 1969; Savageau, 1991).
Alternatively, as shown in the Results section, when in vitro kinetic data are available, they
can be used to tightly constrain Km values in Michaelis-Menten formulations, eliminating the
problem of dramatic swings in Vmax to accommodate widely changing values of Km.

A complementary approach to incorporation of diverse types of data is specifically tailoring
of experimental perturbations and data sampling for senstitive parameter identification. This
can be done through computational simulation of the extent of refinement of the feasible
parameter ranges likely to be obtained with new data (Feng and Rabitz, 2006). One can imagine
especially favorable results by coupling such computationally-guided experimental design to
laboratory research in a closed-loop fashion.
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Figure 1. Methionine cycle as modeled by Reed et al (2004)
Modeled metabolites are in bold within rectangles; enzymes are in ovals; metabolite influxes
are in italics. Unmodeled metabolites are not shown. The conversion of methionine (Met) to
S-adenosylmethione (AdoMet) is catalyzed by either methionine adenosyl transferase I
(MATI) or methionine adenosyl transferase III (MATIII), which are isozymes derived from
the same polypeptide chain. The former is feedback inhibited by AdoMet, while the latter is
upregulated by it in the concentration ranges used in this study. AdoMet is demethylated by
either glycine N-methyltransferase (GNMT) or a general AdoMet dependent
methyltransferases (METH) to give S-adenosylhomocysteine (AdoHcy). Both enzymes are
feedback inhibited by AdoHcy. AdoHcy is converted to homocysteine (Hcy) by AdoHcy
hydrolase. Hcy can be methylated by Met synthase (MS) or by betaine:homocysteine
methyltransferase (BHMT, inhibited by AdoHcy and AdoMet) to re-form Met. Alternatively,
it can combine with serine via cystathionine β-synthase (CBS, up-regulated by AdoHcy and
AdoMet) to exit the cycle.
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Figure 2. Simulated methionine flux perturbation and dynamic metabolic responses
Data points used for parameter identification are surrounded by error bars of ±15% to simulate
experimental noise. (A) Methionine influx (Metin). (B) Methionine concentration (Met). (C)
S-Adenosylmethionine concentration (AdoMet). (D) S-Adenosylhomocysteine concentration
(AdoHcy). (E) Homocysteine concentration (Hcy). (F) Flux from Met to AdoMet (VMATI +
VMATIII). (G) Flux from AdoMet into AdoHcy (VMETH + VGNMT). (H) Flux between AdoHcy
and Hcy (VAH). (I) Flux from Hcy to Met (VMS+VBHMT). (J) Flux from Hcy to cystathionine
(VCBS).
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Figure 3. Histograms of parameter values that reproduce the dynamic data shown in Figure 2
within the error bars
The results are from inversion of the simulated concentration data only (blue histograms), of
both concentration and flux data (green histograms), and of both concentration and flux data
with additional biochemical constraints on the search ranges for selected parameters (red
histograms; constraints are shown by black arrows surrounding the red peaks for KMATI

m,
KMATI

i, KGNMT
m, KGNMT

i, and KBHMT
m; see Table 2 for exact ranges). For all parameters,

the X-axis spans from 10-2 to 105. Global search was conducted over this 107-fold range, except
for the indicated constraints mentioned above for the red histograms. The X-axis has been
binned into 50 equally spaced segments of the parameter search range (on the log10 scale). The
Y-axis values represent the frequency with which the identified parameter values fell within
each bin.
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Figure 4. Correlations between parameter values
Symbols indicate parameter combinations that reproduce the concentration data shown in
Figure 2. MATI (A) and MATIII (D) catalyze the same reaction, as do MS (B) and BHMT
(E). The conversion catalyzed by GNMT (C) is also catalyzed by METH, but no correlation
plot shown for METH, as it is characterized by only a single parameter value. (A, B, C)
Enzymes with minor fluxes. The solid dark lines correspond to parameter combinations
producing 10% of the overall reaction flux of the reference model. For these enzymes, the
observed parameter values are restricted to combinations of Vmax and Km that ensure low flux
(< 10% of total). (D, E) Flux-dominant enzymes, for which Vmax and Km are roughly linearly
correlated (R2 ≥ 0.95).
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Figure 5. Predictions of models that contain parameter vectors identified by inversion of the
simulated data shown in Figure 2
(A) Simulated methionine (Metin, black line) and homocysteine (Hcyin, blue line) influx
perturbations used to generate the output shown in the other panels. (B) Metabolite
concentration responses. (C, D) Homocysteine methylation reaction flux (VMS + VBHMT)
response. In panels (B) – (D), blue lines show the output of the reference model; grey lines (N
= 200) show the output of the models containing the newly identified parameter vectors. The
parameter vectors used in (B) and (C) were identified by inversion of concentration data only,
and in (D) by inversion of both concentration and flux data.
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Table 1
Functional forms of rate expressions and associated parameters

Reaction rate Rate expression Relevant Parameters

VMATI

VMATIII

VGNMT

VMET

VAH α1, α2
VBHMT

VMS

VCBS β1, β2
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Table 2
Model parameter values and search ranges

Parameter Published Model Value Literature Values Biochemical parameter
range constraints

VMATI
max 561 μM/h - -

KMATI
m 41 μM 41 μM (Sullivan and Hoffman, 1983) 33 μM – 49 μM

KMATI
i 50 μM 230 μM (Sullivan and Hoffman, 1983) 172 μM – 287 μM

VMATIII
max 22870 μM/h - -

KMATIII
m 21.1 μM - -

VGNMT
max 10600 μM/h - -

KGNMT
m 4500 μM 100 μM (Heady and Kerr, 1973; Kerr,

1972)
75 μM – 125 μM

KGNMT
i 20 μM 35 μM (Kerr, 1972) 26.2 μM – 43.7 μM

VMETH
max 421 μM/h - -

α1 100 h-1 - -
α2 10 - -
β1 1.7 μM-1h-1 - -
β2 30 h-1 - -
VMS

max 86.1 μM/h - -
KMS

m,Hcy 0.0205 μM - -
VBHMT

max 2500 μM/h - -
KBHMT

m 12 μM 32 μM (Garrow, 1996), 12 μM
(Finkelstein et al., 1972)

9 μM – 40 μM
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