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ABSTRACT Specific functional and pharmacological properties have recently been ascribed to G-protein-coupled receptor
(GPCR) dimers/oligomers. Because the association of two identical or two distinct GPCR monomers seems to be required to elicit
receptor function, it is necessary to understand the exact nature of this interaction. We present here a novel method for de novo
protein design and its application to the prediction of mutations that can stabilize or destabilize a GPCR dimer while maintaining
the monomer’s native fold. To test the efficacy of this new method, the dimer of the single-spanned transmembrane domain of
glycophorin A was used as a model system. Experimental data from mutagenesis of the helix-helix interface are compared with
computational predictions at that interface, and the model’s results are found to be consistent with the experimental findings. A
flexible template was developed for the rhodopsin homodimer at atomic resolution and used to predict sets of three and five
mutations. The results are found to be consistent across eight case studies, with favored mutations at each position. Mutation sets
predicted to be the most disruptive at the dimerization interface are found to be less specific to the flexible template than sets
predicted to be less disruptive.

INTRODUCTION

Compelling evidence indicates that G-protein-coupled re-

ceptors (GPCRs) form multimeric complexes with distinct

pharmacological and functional properties (for recent review

articles, see (1–10)). Although most of this evidence comes

from in vitro experiments, recent studies using animal models

support a specific role for GPCR oligomerization in vivo and

in human pathologies. Accordingly, understanding the basis

of protein-protein interaction in GPCR oligomerization will

significantly enhance our understanding of the molecular

mechanisms underlying GPCR cellular function, with the

promise of new and improved therapeutics targeting the

complex structures and their mechanisms.

Both computational and experimental efforts have been

made to identify the interface of GPCR oligomers, but the

specific molecular determinants required for stable protein-

protein interaction are still unknown. Rhodopsin is the only

GPCR whose native organization in rows of dimers has been

demonstrated directly using data from atomic force micros-

copy (11). Based on these data and the crystallographic

monomeric structure of rhodopsin (12), a three-dimensional

model of rhodopsin oligomers was proposed (13). Specifi-

cally, this model consisted of intradimeric interfaces in-

volving transmembrane (TM) helices TM4 and TM5, and the

second intracellular loop, whereas helices TM1 and TM2 and

the third intracellular loop were involved in the formation of

rhodopsin dimer rows. Although it is possible that some

GPCRs use different oligomerization interfaces to achieve

functional selectivity, a systematic application of an en-

hanced correlated mutation-analysis-based approach (14,15)

to several rhodopsinlike GPCRs that are known to form

homo-oligomers identified TM1 and TM4 most often as

putative interfaces of dimerization/oligomerization. Cross-

linking studies of substituted cysteine residues in TM4 and

TM5 of rhodopsin (16), and in TM4 of dopamine D2 re-

ceptor, (17), further supported the involvement of these two

helices in the dimerization/oligomerization of GPCRs. The

recent demonstration that the putative dopamine D2 receptor

homodimerization interface involving TM4 is related to

function, and that activation of this receptor requires changes

at this interface (18), further justifies the need for an im-

proved understanding of the exact nature of the interaction

between GPCR monomers. The final goal is to suggest spe-

cific mutations that may affect the interaction between GPCR

monomers, and thereby either disrupt cross talk between

receptor subunits, or promote specific signaling cascades.

To this end, and to reduce the overwhelmingly large

number of mutagenesis and cross-linking experiments that

would otherwise be required to obtain the desired structural

insight, we developed a novel two-stage framework for com-

putational de novo protein design. The goal of this method is

to discover mutations that would stabilize or destabilize the

interfaces of a GPCR dimer while maintaining the mono-

mer’s native fold to the maximum extent possible. To test the

efficacy of this new method, we used the dimer of the single-

spanned transmembrane domain of Glycophorin A as a

model system, and compared the predictions to experimental
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data from mutagenesis studies (19–21). The protein design

framework was then applied to the TM4,5-TM4,5 dimer of

the prototypic GPCR rhodopsin, and used to predict sets of

three and five simultaneous lipid-exposed mutations that are

likely to disrupt the dimerization interface of rhodopsin with

minimal changes in the structural integrity of the monomers.

THEORY

Novel two-stage framework for de novo
protein design

The framework for de novo protein design applied to the investigation of the

dimerization/oligomerization interface of rhodopsin involves two main

stages. The methodology is outlined in Fig. 1. The first stage of the method,

termed the ‘‘sequence selection’’ stage, begins with a high-resolution flex-

ible template and uses a distance-dependent force field to select a rank-

ordered list of amino acid sequences that are predicted to be of low energy in

that template. As indicated in Fig. 1, these sequences are the input to the

second stage, the ‘‘fold validation’’ stage, in which sequences are selected

from a list of sequence positions that were rank-ordered by a criterion of

relative level of specificity for the flexible template. This fold validation stage

is outlined in Fig. 2.

Defining the flexible template

The starting point for any de novo protein design method is the definition of

the template or backbone structure. The template is the de novo design

method’s representation of the desired three-dimensional structure, and

therefore appropriate definition is critical. Early methods of de novo protein

design assumed a rigid template, with the coordinates of all atoms fixed in

space. This assumption was highly convenient because it significantly re-

duces the complexity of the problem (22). However, it has been observed that

this unrealistic constraint renders some problems in de novo protein design

untreatable without the use of flexible templates (23–25).

Methods have been created to incorporate template flexibility; two of the

most popular are modeling atoms with smaller-than-natural atomic radii and

considering a discrete set of templates and sampling among the results (26).

Modeling atoms with smaller atomic radii, with typical reductions between 5

and 10%, allows steric overlapping of atoms due to backbone movements.

However, this approach has a number of disadvantages including an over-

estimation of attractive forces between atoms and the possibility of over-

packing atoms, particularly in the hydrophobic cores of target molecules

(27). Considering a discrete set of templates and sampling among the results

alleviates these disadvantages and allows for flexibility to be incorporated

through the variations within the sets. Additionally, flexibility can be con-

trolled across different regions of the protein. However, the various templates

must somehow be combined into a meaningful three-dimensional structure,

and the design problem must be solved for each template considered. This

greatly increases the complexity and computational difficulty of the problem.

There are several recent reviews of advances in de novo protein design (28–

30).

Here, we apply two strategies to incorporate flexibility into the template.

Perhaps the most elegant way to incorporate backbone flexibility is to allow

variability within the template itself. Following the method of Klepeis and

Floudas (26,31–33), we allow for backbone flexibility by incorporating a

distance-dependent force field in the sequence selection stage. First, we

represent the protein as a matrix of distances between a-carbons. Then, the

force field considers pairwise interactions between residues as strictly dis-

tance-dependent, allowing rotational and torsional flexibility. Distances be-

tween residues are discretized into a set of bins rather than scoring their

energy-continuous function. The bin sizes vary between 0.5 and 1 Å, im-

plicitly allowing backbone movements of similar magnitude. It is important

to note that, because of the precision required by this method, a high-reso-

lution structure must be used as a starting point.

In addition, when multiple structural models are available, such as the

multiple NMR models of the glycophorin A dimer (34), a probability-

weighted-average method is used to increase template flexibility by incor-

porating information from all models (26,27,33).

Developing a flexible template for the
rhodopsin dimer

No high-resolution structure of the rhodopsin dimer is yet available. An

atomic-level resolution model of a rhodopsin dimer with TM4 and TM5 at

the dimerization interface was recently proposed (Protein Data Bank (PDB)

identification code 1N3M) that uses atomic force microscopy data (13) and

the crystallographic structure of rhodopsin (12). We have recently described

the first 45-ns molecular dynamics simulations of this model in an equili-

brated unit cell of hydrated palmitoyloleoyl phosphatidylcholine (35). The

resulting energy-optimized average structure of the converged interval of

these simulations (the last 17.5 ns of the 45-ns simulation) was used to de-

velop a flexible template for the rhodopsin dimer using the strategy outlined

in the section above.

FIGURE 1 Overview of the de novo protein design method. The first

stage of the method, the ‘‘sequence selection’’ stage, begins with a high-

resolution flexible template and uses a distance-dependent force field to

select a rank-ordered list of amino acid sequences that are predicted to be of

low energy in that template. Fig. 1 shows that these sequences are the input

to the second stage, the ‘‘fold validation’’ stage, in which sequences are

selected from the rank-ordered list of sequence positions that were found to

have the highest level of specificity for the flexible template. This fold

validation stage is outlined in detail in Fig. 2.
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Developing mutation sets

Once a flexible template is defined, an appropriate mutation set is developed.

The mutation set dictates which positions are considered for mutation and

which residues are allowed in each position. As illustrated in Fig. 1, this

selection is influenced by experimental results and the solvent-accessible

surface area (SASA). In the general case, all 20 amino acids can be con-

sidered at all n positions, and the total combinatorial complexity of the

problem is 20n. However, reducing the search space can be advantageous

both to reduce computer time and to increase biological relevance. For ex-

ample, when redesigning a protein with a particular binding region or cata-

lytically active domain, successful designs often focus on the surrounding

regions. Indeed, this was the case for compstatin, a synthetic peptide inhibitor

of complement 3, whose activity was increased 45-fold by redesigning res-

idues surrounding the binding loop (31,32,36–39).

Another simple and highly useful method for reducing the search space is

to consider only subsets of residues at each position. A popular classification

of this kind is to separate the residues based on their environment. This

makes sense from a biochemical perspective for a number of reasons. Protein

cores are typically composed of tight packings of hydrophobic, nonpolar

amino acids. The surface of globular proteins is typically exposed to water,

and, accordingly, residues at the surface are generally hydrophilic, polar

amino acids. This idea has been used successfully by Harbury and co-

workers in their design of a-helical bundle proteins with a right-handed

superhelical twist (40), and, recently, by Hecht and co-workers to design a

four-helix bundle with a novel fold (41). We introduce this idea in residue

selection for our protocol, using the calculated SASA to classify residues

into three categories: surface (SASA . 50%), intermediate (20% , SASA ,

50%), and core (SASA , 20%). SASA is readily calculated with the

program NACCESS (42). In the general case, only hydrophilic residues

(GNQHKRDESTP) are considered at surface positions, only hydrophobic

residues (AVILMFYW) are considered at core positions, and all 20 amino

acids except cysteine are considered at intermediate positions. Cysteine is

excluded from the mutation sets because of its ability to cross-link. However,

these guidelines can be modified; for example, it may be advantageous to

alter the mutation set at a given position if the native residue does not fall into

the category predicted by its SASA.

Implementing these approaches, we developed an appropriate mutation

set at the dimerization interface of rhodopsin by selecting the following five

positions as candidates for mutation: 4.41, 4.48, 4.55, 5.37, and 5.41. We

chose these specific positions in TM4 and TM5 because they correspond to

the closest symmetric interactions (distance between Cb atoms ,11 Å) at the

intradimeric interface of rhodopsin, as derived from atomic force microscopy

data (13). These positions are identified by the ‘‘generic numbering system’’

adopted for GPCRs to refer, comparatively, to structurally cognate receptors

(43). Briefly, in this generic numbering scheme, two numbers (N1 and N2)

are assigned to amino acid residues in TMs. N1 refers to the TM number,

whereas the N2 numbering is relative to the most conserved residue in each

TM, which is assigned a value of 50. The other residues in the TM are

numbered in relation to this conserved residue, with numbers decreasing

toward the N-terminus and increasing toward the C-terminus.

Based on the SASA of native residues in the model (data not shown), two

sets of residues were used for the chosen positions of mutations: 1), all

residues except cysteine at the helix boundary positions 4.41 and 5.37; and

2), hydrophobic residues plus serine and threonine (AVILMFYWST) at

positions 4.48, 4.55, and 5.41. Cysteine was excluded from the mutation sets

because previous data show that mutations of lipid-exposed residues to

cysteine may cause GPCR cross-linking (16,17), and serine and threonine

were added to the standard hydrophobic set because of their prevalence on

the lipid-facing surface of membrane proteins.

Energy function

The energy function used in this work is a modified version of the high-

resolution (HR) force field developed recently by Rajgaria et al. (44). The HR

force field is a knowledge-based Ca-Ca distance-dependent potential that has

been shown to be highly effective in discriminating native protein folds from

highly similar sets of decoy structures at high resolution (root mean-square

deviation (RMSDs) , 3 Å), and medium resolution (3 Å . RMSD . 10Å)

(44). The HR force field contains eight distance bins and considers a contact

to be any interaction where the Ca-Ca distance is ,9 Å. It is the next gen-

eration version of the LKF force field used previously in this method (45). To

better model the interactions across the dimerization interface of rhodopsin, a

longer-range version of the HR force field was generated and designated the

HR-12 force field. The HR-12 force field contains 12 bins, and includes inter-

actions between residues with Ca-Ca distances up to 13 Å. The HR-12 force

field performs similarly to the HR force field on all test cases (data not shown).

The energy measured by this type of HR force field is a distance-de-

pendent approximation of the Gibbs free energy, since it is derived from

energy-minimized native conformations in the PDB. Additionally, this type

of force field is advantageous for de novo protein design because evaluation

of contact energies requires only a table lookup. Hence it is very efficient,

allowing for rapid evaluation of many candidate sequences.

The flexible template and mutation set are used to design sets of residues

to fit the template structure. Sequence selection is guided by the distance-

dependent force field in a mixed integer linear programming model. In the

general case, residues are selected to minimize the energy of the structure

within the template; the novel sequences generated are designed to be spe-

cific to that template. However, to disrupt the dimerization process, we focus

on interactions across the dimerization interface and instead maximize the

energy, disrupting interactions between the monomer units.

Sequence selection

The sequence selection formulation used in this work is based on the original

formulation by Klepeis et al. (31,32). This model was recently improved by

FIGURE 2 Overview of the method for fold validation.
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Fung et al. and proven to be totally equivalent to, but computationally more

efficient than, the original model (26,27,33). The integer linear programming

model then takes the form

min
y

j

i
;yl

k

+
n

i¼1

+
mi

j¼1

+
n

k¼i11

+
mk

l¼1

E
jl

ik 3 w
jl

ik

subject to +
mi

j¼1

y
j

i ¼ 1 "i

+
mi

j¼1

w
jl

ik ¼ y
l

k "i; k . i; l

+
mi

l¼1

w
jl

ik ¼ y
j

i "i; k . i; j

yj

i; y
l

k;w
jl

ik ¼ 0� 1 "i; j; k . i; l

Consider set i¼ 1, . . . ,n to define the residue positions along the template

where n represents the total number of residues. At each position i, the set of

mutations is represented by j if g¼ 1, . . . ,mi, where, for the general case where

all mutations are allowed, mi ¼ 20"i. The equivalent sets k [ i and l [ j are

defined so that pairwise interactions can be represented, and k . i is required

to ensure that all pairwise interactions are unique. Binary variables yj
i and yl

k

are introduced to indicate the possible mutations at a given position. That is,

when a particular amino acid (j or l) is active at a given position (i or k),

variable yj
i or yl

k indicate this by taking the value of 1. To ensure that there is

exactly one type of amino acid at each position, composition constraints

require the sum ofyj
i be equal to 1 for all positions i. Additionally, there are

two sets of RLT constraints that are introduced to reduce the integrality gap.

The model minimizes the energy function Ejl
ik over the entire structure. It is

important to note that the energy value then depends on the distance between

the a-carbons at the two backbone positions, i and j, as well as the type of

amino acids, k and l, at those positions. It should be noted that the binary

variables wjl
ik can be relaxed into continuous variables as shown by Zhu (46).

To predict sets of mutations that disrupt the dimerization interface of rho-

dopsin, the objective function is maximized rather than minimized. Accord-

ingly, residues of the highest energy are selected at the dimerization interface.

Increased flexibility and fidelity with multiple
structural models

When multiple structural models are available, such as the multiple NMR

models of the glycophorin A dimer, a probability-weighted-average method

is used to incorporate information from all models (26,27,33). Because of

protein flexibility, the Ca-Ca distances across multiple structural models can

differ; for a particular pair of residues, they often span a number of bins. This

distribution of distances between residues is reflective of the residues’ con-

formational freedom. We therefore represent the pairwise energy contribu-

tion of each pair of residues as a sum of the contributions from all distances

spanned, weighted by the probability of finding the residues at each distance.

This energy contribution of the objective function is then written

min
y

j

i
;y

l
k

+
n

i¼1

+
mi

j¼1

+
n

k¼i11

+
mk

l¼1

+
b

d¼1
E

jl

ik 3 Vðxi; xk; dÞ3 w
jl

ik;

where d is the current distance bin, b represents the total number of distance

bins in the force field, and V is the weight given to that bin for the current pair

of residues, defined as the fraction of structures in which the distance

between residues xi and xk falls into bin d. This method increases the

flexibility of the template by spanning multiple distances for each interaction.

At the same time, the fidelity of the model is increased because the

probability-weighted distribution is more representative of the interaction

between two residues than any single distance can be.

To illustrate this method, imagine a protein for which 20 structural models

are available. In these models, the distance between residues a and b falls

into bin 2 eight times, bin 3 ten times, and bin 4 two times. The values of V

for these bins are then 0.4, 0.5, and 0.1, respectively. If the distance-

dependent force field Ejl
ik has the values �6.0, �4.0, and �2.0 units, respec-

tively, for the interaction between a and b over these bins, then the total

contribution of the interaction between these residues would be �4.6 units.

Development of structure-based constraints

The mixed-integer linear programming model allows for straightforward

incorporation of constraints to increase the biological relevance of the results.

As seen in Fig. 1, experimental results and homology information are in-

corporated in this step, resulting in specifically targeted constraints. For

example, charge can be maintained over the entire protein, within specific

domains of the protein, or both. The number of simultaneous mutations can

be limited, allowing a small number of mutations with maximal effect to be

introduced across a large search space. Also, the composition of the protein

or a region of the protein can be controlled by imposing minimum and

maximum quantities of specific amino acids or groups of amino acids within

the design. For example, the number of hydrophobic amino acids in existing

b-strands can be bounded to enhance the formation of b-sheets.

Incorporation of knowledge-based weights

We incorporated three distinct sets of knowledge-based weights in the rho-

dopsin runs to illustrate how such knowledge-based information can be in-

cluded in the new type of de novo protein design method we present here.

Such information can be very useful in improving the specificity of the re-

sults. As outlined in Fig. 1, these weights allow knowledge from homology

studies to be incorporated into the energy function, supplementing the energy

function with structural data focused on the region, or even position, of in-

terest. Incorporation into the energy function is straightforward; the objective

function is multiplied by two additional terms l
j
i3ll

k. The term l
j
i represents

the weight of amino acid j at position i in the protein backbone, and ll
k rep-

resents the same information for the second residue being considered in the

pairwise energy function. Note that for positions not selected for mutation,

the weight factors l are given the value of 1. This prevents bias of some

interactions over others based on weight assigned to native residues in non-

mutated positions.

One set of knowledge-based input comes from two scales previously

described for membrane proteins: the structure surface fraction (SF) scale,

and the rhodopsin surface propensity (RhoSP) scale (47). These scales de-

scribe what types of residues one might expect to find on the surface of

general membrane proteins (SF) and of rhodopsinlike proteins (RhoSP).

They are based on the inside/outside-facing distribution of the residues on the

template obtained from a bioinformatics procedure described in detail (47).

The procedure yields an amino acid property scale (APS) that corresponds to

the propensity of residues to be located on the lipid-oriented TM surface in

membrane protein. The knowledge-based scale was shown to refine pre-

dictions based on conservation criteria alone (47). The APS-based prediction

method is available on the web-accessible server ProperTM http://icb.med.

cornell.edu/crt/ProperTM/ProperTM.xml.

To increase further the specificity of the structure-based information

content, we also developed a position-dependent set of knowledge-based

weights for class A GPCRs. These weights represent the probability of

finding a residue at a given position across all class A GPCRs. An archive of

GPCR sequence information was obtained from the GPCRDB (48) and a

database of human class A GPCRs was built from these sequences. In total,

there were 545 receptors used. Human receptors were selected to minimize

bias for receptors heavily studied across species. Multiple pairwise align-

ments were then performed using CLUSTAL W 1.83 (49). Taking bovine

rhodopsin as a ‘‘gold standard’’ for class A GPCRs, each helix of each re-

ceptor was aligned with the corresponding helix in bovine rhodopsin. The

probability of each residue occurring at each position was then calculated.

Note that a residue was tallied only if it was found aligned with one of the

residues in bovine rhodopsin; residues aligning with gaps were not tallied.
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The resulting weights for the positions mutated in this study are presented in

Table 1. Full data for all positions are available in Supplementary Materials,

Tables S1–S7).

Method for fold validation

As outlined by the sequence of procedural steps shown in Fig. 1, once a rank-

ordered list of sequences has been selected into the template by the sequence

selection stage, the sequences are further validated by a second stage, de-

signed to predict the sequence’s specificity for the flexible template. In the

general case, the same template is used for both stages, and the second stage

provides refinement of the results from sequence selection. However, to

disrupt the dimerization of rhodopsin, the sequence selection stage maxi-

mizes the energy rather than minimizing it. Here, we use the crystal structure

of the rhodopsin monomer in the second stage, and the resulting predictions

are for sets of mutations that will destabilize the dimerization process of

rhodopsin while remaining specific to the native fold of the monomer.

In the two-stage framework developed by Klepeis et al. (31,32), the

second stage uses ab initio structure prediction techniques based on the aBB

deterministic global optimization solver with an objective function of a full-

atomistic force field over the set of independent dihedral angles that describe

the configuration of the system (50–64). However, these computations are

not currently feasible for proteins the size of rhodopsin. Here, we present an

alternative method for fold specificity; this method is outlined in Fig. 2.

Briefly, a conformation ensemble is generated by simulated annealing using

the CYANA 2.1 package (65,66). The resulting hundreds of structures are

subjected to local energy minimizations using TINKER (67) with the AM-

BER force field (68). The ensembles of structures from candidate sequences

are then statistically compared to yield a template specificity factor, STemp.

Details of this procedure are reported below.

First, upper and lower bounds on both the distances between a carbons

and the f and c angles between residues are extracted from the flexible

template. When only one structural model is available, these bounds are

defined parametrically, with distances of 610% and angles of 625�. We note

that true backbone flexibility is incorporated into this method. The para-

metrically defined template allows for any possible values of Ca-Ca dis-

tances and dihedral angles.

Then, for both the sequence of interest and the native sequence, an en-

semble of random structures (conformers) is generated within the confines of

the flexible template. This is done using the CYANA 2.1 software package

for NMR structure refinement (65,66). CYANA 2.1 performs annealing

calculations that simulate a rapid heating of the protein followed by a slow

cooling in which high-temperature torsion dynamics and annealing torsion

dynamics are performed. Violations of van der Waals radii and of the flexible

template are minimized, thereby minimizing the energy of the target struc-

tures. Hundreds of these structures are generated within the confines of the

flexible template; for this work we have generated 500 conformers for each

sequence. For each conformer in the ensemble, local minimizations are then

performed with the TINKER (67) package using the BFGS quasi-Newton

optimization algorithm, as guided by gradients in the fully atomistic force

field AMBER (68). AMBER is then used to evaluate the potential energy of

the final conformer structure. The use of TINKER, AMBER, and CYANA is

widespread and documented in the literature, even though there have been

reports (69) discussing the inaccuracies of the parameters used within

AMBER and suggesting improvements.

To analyze the results, a method similar to that used by Klepeis et al.

(31,32) for ensemble comparison in fold validation was employed. First, the

mean and standard deviation of both RMSD and AMBER energies were

found for the native sequence. Upper bounds on both RMSD and energy

were then established; for RMSD, the upper bound was selected as 1.5

standard deviations above the mean, in the energy the upper bound was

selected as 2 standard deviations from the mean. A structure is considered to

make a contribution to the ensemble only if its energy and RMSD both fall

under these upper bounds. This is illustrated in Fig. 3.

The specificity of each mutant sequence to the target template is then

calculated relative to the native sequence using a Boltzmann distribution.

Both the predicted energy of each conformer and its RMSD from the tem-

plate structure are used in this calculation.

We define the ‘‘set native’’ as the set of all data points from the native se-

quence that are below both upper bounds, and ‘‘set novel’’ as the set of all data

points from the novel sequence that meet the same criterion. The template

specificity factor, STemp, is then calculated using Boltzmann probabilities:

STemp ¼
+

i2novel
exp½�bEi�

+
i2native

exp½�bEi�
; where b ¼ 1

kBT
:

The approximate criterion described here does not claim to be a rigorous

calculation of stability or free energy. However, AMBER is designed to

quantify the potential energy of a protein in a given three-dimensional

conformation, and it provides a good approximation of the enthalpy of the

protein when folded into the template. Combined with the large sampling of

conformational space around the template, approximating an entropy cal-

culation, the template specificity factor approximates the specificity of the

fold within the confines of the flexible template.

In summary, the proposed approach consists of two stages. In the first

stage, the sequence selection model minimizes the free energy, which is

approximated as a distance-dependent force field derived from existing

structures in the PDB. In the second stage, we perform a fold-specificity

calculation via two protein-folding calculations, one around the flexible

template and the other without template restrictions. Then, based on the

ensembles of the generated conformers we rerank the predicted sequences

based on the fold specificity. As a result, in stage 1, we aim for better stability,

whereas in stage 2 we aim for better specificity, and the proposed approach

combines the two in a unique way. This is similar to the ‘‘design-in/design-

out’’ method described by Koehl and Levitt (70,71).

RESULTS AND DISCUSSION

Glycophorin A: a model system

To test the efficacy of the new method, we compare our re-

sults with the experimental data from the Fleming group on

the dimerization of glycophorin A (19–21). Their recent studies

have probed the relationship between structure, sequence,

and stability of the dimerization of glycophorin A, a human

erythrocyte protein with a single transmembrane domain

TABLE 1 Class A GPCR position-specific weights

No. Res A V I L F M Y W C G P T S Q N H K R E D

4.41 H 8.2 7.8 0.9 6.7 2.6 2.2 1.7 1.5 3.2 3.3 3.9 5.8 5.6 5.0 4.6 6.7 8.0 20.2 0.9 1.3

4.48 F 14.5 20.6 11.9 24.0 8.1 5.2 0.8 0.2 4.0 4.4 — 3.6 2.6 — — — — 0.2 — —

4.55 A 13.3 14.5 8.0 30.1 5.1 3.5 1.2 — 1.2 8.6 1.0 5.3 6.6 0.4 1.2 — — 0.2 — —

5.37 S 11.1 8.5 10.9 7.2 1.2 1.9 1.9 1.7 0.6 6.0 3.1 5.8 6.4 4.7 3.5 1.7 3.1 2.1 16.7 2.1

5.41 Y 8.1 6.6 7.5 11.1 27.5 2.8 12.6 1.9 3.2 3.2 0.4 6.4 4.9 0.8 0.6 0.6 0.2 0.8 1.1 0.2

Each value represents the weight of the residue (column) at a specific position (row). Values in bold represent the native residue for bovine rhodopsin at each

position. Res, residue.
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containing a GxxxG motif that is known to form symmetric

homodimers. The structure was solved with NMR and the

coordinates for 20 models are deposited in the PDB file

1AFO. This information was used to construct the flexible

template as described in Methods, and both stages of calcu-

lations (see Fig. 1, Stage I, to yield rankings and energies, and

Stage II to yield Stemp values) were performed as described in

Methods on all reported mutations.

Three case studies had been performed experimentally

(19–21), examining three types of mutations. We repeat the

studies in silico and compare our results to those found ex-

perimentally. We note that the calculations in the two-stage

approach presented here relate to the experimentally deter-

mined DDG of mutation, but they are not the same. The se-

quence selection stage minimizes the distance-dependent force

field (44) in selection of mutations and the second stage pro-

vides a metric for structural specificity. As a result, our ap-

proach does not explicitly calculate DDG for the dimer, but our

results are consistent with those determined experimentally.

Single alanine mutations

In a first study, single alanine mutations were made along the

75–87 helix fragment of glycophorin A, including both

‘‘lipid-facing’’ residues (77, 78, 81, 85, and 86) with side

chains pointing away from the dimerization interface, and

‘‘helix-facing’’ residues (75, 76, 79, 80, 83, 84, and 87) with

side chains pointing into the interface (20). In these experi-

ments, the lipid-facing alanine mutations were found to cause

no statistically significant change in the energy of dimeriza-

tion, with the exception of a moderate stabilizing effect in

mutation I85A. In stark contrast with the lipid-facing resi-

dues, the helix-facing alanine mutations were found to have

moderate to strong destabilizing effects, especially mutation

G83A in the GxxxG motif (residues 79–83).

The results from computational studies of these mutants

are presented in Tables 2 and 3. In the sequence selection, we

find a strong stabilizing effect from mutation I85A. We also

note a moderate stabilizing effect of mutation G86A, which

does not contradict the experimental results. Whereas the

sequence-selection phase fails to identify the stabilizing ef-

fect of the GxxxG motif, we find all other mutations desta-

bilizing, in strong accord with the experimental results.

Additionally, in the specificity calculations, we also find that

all alanine mutations, including those that disrupt the GxxxG

motif, produce monomers that are less specific to the template

structure than the wild-type sequence.

A number of factors may explain the failure of the se-

quence-selection phase to identify the GxxxG motif as sta-

bilizing. It has been shown that this complex motif is not

required for the dimerization of the glycophorin A trans-

membrane domain, and that its presence is not sufficient for

dimerization (21). Although the function of the glycines in

this motif is still not fully understood, proposed mechanisms

suggest that they may permit long-range interactions by al-

lowing tighter helical packing. (19,72). Furthermore, where

GxxxG motifs occur in the context of the membrane, they

may facilitate packing of helical conformations distinct from

those seen in soluble proteins (73). Therefore, we propose

that the role of these glycines may be different from that

played by any glycine used to derive the HR-12 force field. It

is also possible that the Ca-Ca distance-dependent approxi-

mation used in the sequence selection phase is not sufficient

to model this distinct type of packing.

Single aliphatic mutations along the helix-facing residues

A second study carried out in Fleming’s lab (21) explored

the requirement of the GxxxG motif (residues 79–83) for

FIGURE 3 Illustration of upper bounds on RMSD and AMBER energy.

Thick lines indicate the upper bounds. Data points in shaded regions are not

considered in further calculations.

TABLE 2 Single alanine mutations along the dimerization interface of glycophorin A: lipid-facing residues

Stage 1 rank Stage 1 energy Stage 2 STemp 77 ILE 78 PHE 81 MET 85 ILE 86 GLY

3 �733 1.0 ILE PHE MET ILE GLY

6 �663 0.9 ALA PHE MET ILE GLY

1 �809 0.9 ILE PHE MET ALA GLY

5 �685 0.9 ILE PHE ALA ILE GLY

2 �775 0.8 ILE PHE MET ILE ALA
4 �693 0.8 ILE ALA MET ILE GLY

Each sequence is listed in one row, and the wild-type sequence is identified in the header. Stage 1 energy is in arbitrary units, determined by the distance

dependent force field. Higher specificity factor STemp is better; by definition the native sequence has STemp¼1. Mutated residues are in bold. Wild-type

residues at each location are shown in the table header along with the position number.
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glycophorin A dimerization using a series of single mutations

of the ‘‘helix-facing’’ residues to large aliphatic residues and

to glycines. This study also repeats mutations to alanine;

however, these are discussed in the previous section and are

therefore not repeated. The experiments again find that the

GxxxG motif stabilizes the dimer but is not required for di-

merization (Fig. 4). As noted previously, our method does not

identify the GxxxG motif to be stabilizing in the sequence-

selection phase, and therefore mutations that alter these

glycines are almost all found to stabilize the dimerization

interface. Accordingly, the results segregate those that dis-

rupt the glycines in the GxxxG motif (Table 4) from those

that do not (Table 5).

Experimentally, all but two point mutations along the he-

lix-facing residues were found to be destabilizing. Mutation

V80L was found to be moderately stabilizing, and mutation

I76V was found to have no effect on the energy of dimer-

ization. We find mutation V80L as the best stabilizing mu-

tation in the sequence-selection phase (Rank 1, Energy�763

in Table 5) and in the specificity calculations we find it more

specific to the template (STemp ¼ 1.1) than the wild-type se-

quence (STemp ¼ 1.0). Also, we find mutation I76V to be

highly specific to the template. Mutations I76G and I76L are

also found to be specific to the template.

Scanning double alanine mutations

In a third experimental study on glycophorin A (19), alanine

scan double mutations were performed along the dimeriza-

tion interface to further probe residue interactions. All double

mutants that did not disrupt the glycines in the GxxxG motif

were found to be destabilizing in these experiments, and the

results were found to be more complex than could be pre-

dicted from coupling single mutations. In agreement with

these results, we found that all but one mutant were moder-

ately to significantly less specific to the template than wild-

type receptor (see Tables 6 and 7, Stage 2 STemp). The sole

exception to this trend was the double leucine mutant

G79LG83L, in which both glycines in the GxxxG motif had

been replaced by leucines. Despite the agreement of our

second-stage results with experimental data, our method

failed to recognize the GxxxG motif as stabilizing. In fact,

mutations disrupting both glycines were found to be stabi-

lizing relative to wild-type, as seen by their lower Stage

1 energies.

In the experiments, it was noted that mutations tend not to

be additive in their ability to disrupt the dimerization, with a

few notable exceptions. In particular, mutation 75A87A was

found not to dimerize. Along with a destabilizing result from

the sequence selection stage, we find the sequence extremely

nonspecific to the template, the least specific among all

mutations tested. This is evidenced by the increase in energy

relative to the wild-type sequence (Table 6, Stage1 Energy)

and the extremely low STemp value of 0.4 (Table 6, Stage2
STemp). This is in full agreement with the lack of dimerization

found in the experiments.

TABLE 3 Single alanine mutations along the dimerization interface of glycophorin A: helix-facing residues

Stage 1 rank Stage 1 energy Stage 2 STemp 75 LEU 76 ILE 79 GLY 80 VAL 83 GLY 84 VAL 87 THR

3 �733 1.0 LEU ILE GLY VAL GLY VAL THR

6 �679 0.9 LEU ALA GLY VAL GLY VAL THR

1 �822 0.8 LEU ILE ALA VAL GLY VAL THR

2 �814 0.8 LEU ILE GLY VAL ALA VAL THR

8 �667 0.8 LEU ILE GLY ALA GLY VAL THR

7 �677 0.7 LEU ILE GLY VAL GLY ALA THR

4 �723 0.7 ALA ILE GLY VAL GLY VAL THR

5 �695 0.7 LEU ILE GLY VAL GLY VAL ALA

Each sequence is listed in one row, and the wild-type sequence is identified in the header. Stage 1 energy is in arbitrary units, determined by the distance-

dependent force field. Higher-specificity factor STemp is better; by definition, the native sequence has STemp¼1. Mutated residues are in bold. Wild-type

residues at each location are shown in the table header along with the position number.

FIGURE 4 Experimentally determined energies of dimerization for single

aliphatic mutations. Reprinted from Doura et al. (21).

TABLE 4 Single aliphatic mutations that disrupt the glycines in

the GxxxG motif of glycophorin A

Stage 1 rank Stage 1 energy Stage 2 STemp 79 GLY 83 GLY

5 �857 1.3 THR GLY

7 �843 1.3 GLY THR

3 �896 1.2 GLY LEU

1 �933 1.1 LEU GLY

4 �879 1.1 VAL GLY

8 �843 1.1 GLY VAL

11 �733 1.0 GLY GLY

9 �781 0.9 SER GLY

10 �778 0.9 GLY SER

6 �855 0.8 GLY ILE

2 �898 0.8 ILE GLY
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Dimerization-disrupting mutations of rhodopsin

Generation of the dimer template

Analysis of our results from nanosecond-timescale molecular

dynamics simulations (35) of a 1N3M-like intradimeric ar-

rangement of rhodopsin (11,13) revealed a more compact

complex structure than had previously been suggested for

the rhodopsin dimer (6,13,74). The average structure of the

equilibrated portion of these simulations (last 17.5 ns of the

45 ns) was used as a starting point for our novel de novo

protein design method.

Selection of positions and mutation sets

As described in the Methods section, the positions investi-

gated for the mutation sets are 4.41, 4.48, 4.55, 5.37, and

5.41. All residues except cysteine are considered for the helix

boundary positions 4.41 and 5.37, whereas hydrophobic

residues plus serine and threonine (AVILMFYWST) are

considered for positions 4.48, 4.55, and 5.41. Additionally,

these positions carry a net positive charge due to the histidine

at position 4.41. Therefore, we impose a charge constraint,

requiring that the mutations maintain the net charge of 11.

Because hydrophilic residues are only allowed at two posi-

tions, this constraint enforces that exactly one of them carries

a positive charge in each solution.

Incorporation of knowledge-based weights

The key criterion of the knowledge-based information in-

corporated in the application is the probability of finding a

particular residue on the outward (lipid)-facing side of the

TM helix, rather than on its inward (into the protein bundle)-

facing side. This probability has been assessed and quantified

from structural data available for membrane proteins (47).

The information implicit in the weights from the structure SF

method (see (47)) includes the residue distribution between

the surface and the interior of membrane proteins, calibrated

for the specified regions in the TMs (i.e., the intra- and ex-

tracellular parts and the central regions). The RhoSP weights

come from an alternative method described in parallel (47),

where the crystal structure of bovine rhodopsin and an

alignment of 328 rhodopsinlike GPCRs considered to share

its structure were used to determine the inside/outside dis-

tribution of residues. For each of these criteria, the informa-

tion obtained from the analysis served to develop an APS that

corresponds to the propensity of residues to be located on the

TM surface. The weights represent these scales of propen-

sities, as detailed in Table 8.

Use of the class A GPCR position-specific weights provide

interesting information regarding the five positions studied

here. As expected by their prevalence on the surface of

membrane proteins, we see a moderate amount of serine and

threonine at all positions. Positively charged residues domi-

nate at position 4.41, providing further support for our en-

forcement of a positive charge at the interface. Large aliphatic

TABLE 5 Single aliphatic mutations that do not disrupt the

glycines in the GxxxG motif of glycophorin A

Stage 1

rank

Stage 1

energy

Stage 2

STemp 75 LEU 76 ILE 80 VAL 84 VAL 87 THR

4 �747 1.4 LEU LEU VAL VAL THR

12 �719 1.3 LEU VAL VAL VAL THR

1�6 �570 1.1 LEU GLY VAL VAL THR

2 �754 1.1 LEU ILE VAL LEU THR

1 �763 1.1 LEU ILE LEU VAL THR

11 �725 1.0 VAL ILE VAL VAL THR

8 �733 1.0 LEU ILE VAL VAL THR

7 �736 0.9 LEU ILE VAL VAL VAL
15 �594 0.9 LEU ILE GLY VAL THR

3 �750 0.9 LEU ILE VAL VAL LEU
14 �629 0.8 GLY ILE VAL VAL THR

6 �738 0.8 ILE ILE VAL VAL THR

9 �733 0.8 LEU ILE ILE VAL THR

10 �728 0.8 LEU ILE VAL ILE THR

13 �681 0.7 LEU ILE VAL VAL SER
5 �742 0.7 LEU ILE VAL VAL ILE

Each sequence is listed in one row, and the wild-type sequence is identified

in the column heading. Stage 1 energy is in arbitrary units, determined by

the distance-dependent force field. Higher-specificity factor STemp is better;

by definition, the native sequence has STemp¼1. Mutated residues are in

bold. Wild-type residues at each location are shown in the table header

along with the position number.

TABLE 6 Double alanine mutations that do not disrupt the glycines in the GxxxG motif of glycophorin A

Stage 1 rank Stage 1 energy Stage 2 STemp 75 LEU 76 ILE 79 GLY 80 VAL 83 GLY 84 VAL 87 THR

WT 1 �733 1.0 LEU ILE GLY VAL GLY VAL THR

76A80A 9 �637 0.8 LEU ALA GLY ALA GLY VAL THR

75A76A 3 �672 0.7 ALA ALA GLY VAL GLY VAL THR

76A84A 11 �623 0.7 LEU ALA GLY VAL GLY ALA THR

75A84A 4 �667 0.6 ALA ILE GLY VAL GLY ALA THR

75A80A 5 �663 0.6 ALA ILE GLY ALA GLY VAL THR

76A87A 7 �641 0.6 LEU ALA GLY VAL GLY VAL ALA
80A84A 8 �639 0.6 LEU ILE GLY ALA GLY ALA THR

80A87A 10 �629 0.5 LEU ILE GLY ALA GLY VAL ALA
84A87A 6 �660 0.5 LEU ILE GLY VAL GLY ALA ALA
75A87A 2 �685 0.4 ALA ILE GLY VAL GLY VAL ALA

Each sequence is listed in one row, and the wild-type sequence is given in the column heading and highlighted in the table. Stage 1 energy is in arbitrary

units, determined by the distance-dependent force field. Higher-specificity factor STemp is better; by definition, the native sequence has STemp ¼ 1. Mutated

residues are in bold. Wild-type residues at each location are shown in the column headings, along with the position number.
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residues dominate at positions 4.48, 4.55, and 5.37. We also

note the occurrence of some large hydrophilic residues at

5.37, but we believe that this is due to this position’s prox-

imity to the surface of the membrane, which may be slightly

different across individual receptors. Aromatic residues are

most common at position 5.41, but in keeping the interme-

diate SASA at this position there is some prevalence of all

types of residues.

Analysis of the results

We present eight case studies in total. First, setting an upper

limit of three simultaneous mutations, sequences are selected

as 1), ‘‘unweighted’’ (without the use of any knowledge-

based weights); 2), using the class A GPCR position-specific

weights; 3), using the SF scale; and 4), using the RhoSP

scale. We then repeat these four case studies, allowing up to

five simultaneous mutations in each sequence.

To disrupt the dimerization interface of rhodopsin, the

objective function during the sequence selection phase corre-

sponds to the maximization of the energy of the distance-

dependent force field. At the same time, we also seek to

maintain the structure of the monomer as close as possible to

the native fold. Based on initial results from the specificity

calculations, we were concerned that total energy maximiza-

tion would produce sequences that do not fold specifically into

the target structure. Therefore, we generate a rank-ordered list

of 2,000 sequences for each case and perform the second stage

of calculations on solutions 1–40 (the ‘‘most disrupted set’’)

and 1961–2000 (the ‘‘least disrupted set’’). As predicted, the

template specificity factor STemp was much higher in general

for the least disrupted set, and only a few solutions from the

most disrupted set met the arbitrary minimum value for the

template specificity factor STemp defined in Methods.

The sequence selection calculations were solved using the

GAMS modeling language coupled to the CPLEX linear

programming solver on an Intel Pentium-4 3.2 GHz work-

station. Generation of 2,000 solutions required an average of

6 h. A Beowulf cluster containing 80 nodes of dual 3.0 GHz

Intel Xeon processors was used to serially perform the second

stage of calculations, and ;36 h of processor time was re-

quired for each sequence.

Table 9 presents an illustrative set of results, taken from the

case study using the class A GPCR position-specific weights

and allowing up to three mutations. We show all results

meeting the arbitrary cutoff. We note that in this case study,

none of the solutions from the predicted least disrupted set is

found to be highly specific to the template structure, with no

solution meeting the minimum STemp value of 5 (maximum

value is 1.2: compare to other results below with double- and

triple-digit values). This suggests that the GPCR position-

specific weights provide key structural information, enhancing

the method’s ability to find solutions that are structurally

destabilizing.

Table 10 presents a summary of the results across all case

studies for three mutations. The solutions are all found to be

highly specific to the template as measured by the large STemp

TABLE 7 Double alanine mutations disrupting the glycines in the GxxxG motif of glycophorin A

Stage 1 rank Stage 1 energy Stage 2 STemp 75 LEU 76 ILE 79 GLY 80 VAL 83 GLY 84 VAL 87 THR

79L83L 1 �918 1.5 LEU ILE LEU VAL LEU VAL THR

WT 13 �733 1.0 LEU ILE GLY VAL GLY VAL THR

76A79A 8 �764 0.9 LEU ALA ALA VAL GLY VAL THR

79A83A 2 �914 0.8 LEU ILE ALA VAL ALA VAL THR

76A83A 10 �760 0.8 LEU ALA GLY VAL ALA VAL THR

79A84A 7 �764 0.7 LEU ILE ALA VAL GLY ALA THR

80A83A 12 �748 0.7 LEU ILE GLY ALA ALA VAL THR

75A79A 3 �816 0.6 ALA ILE ALA VAL GLY VAL THR

75A83A 4 �805 0.6 ALA ILE GLY VAL ALA VAL THR

79A87A 5 �784 0.6 LEU ILE ALA VAL GLY VAL ALA
83A87A 6 �777 0.6 LEU ILE GLY VAL ALA VAL ALA
83A84A 9 �761 0.6 LEU ILE GLY VAL ALA ALA THR

79A80A 11 �756 0.6 LEU ILE ALA ALA GLY VAL THR

Mutated residues are in bold.

TABLE 8 Surface fractions and the rhodopsin SP scale (47)

Residue Structure SF Rhodopsin SP scale

A 36 58

C 39 38

D 29 0

E 31 8

F 50 99

G 25 61

H 20 32

I 54 100

K 55 57

L 57 98

M 44 50

N 35 1

P 36 70

Q 33 47

R 39 47

S 27 40

T 37 58

V 53 92

W 60 77

Y 47 84

Note that the scales have been normalized to 100 for easier comparison.
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values. The complete results from all the studies are available

in Supplementary Material.

We find a number of general trends across all case studies

for three mutations, as summarized in Tables 10 and 11. The

histidine at position 4.41 is always mutated. Additionally,

there is a trend to shift the positive charge away from this

position to position 5.37, natively occupied by a serine. In the

sequences with the highest specificity, this position tends to

be mutated to arginine, although in some solutions with good

specificity it is mutated to lysine as well. Also, position 4.55

is the least mutated; when the wild-type alanine is mutated, it

is usually to a serine.
Not surprisingly, when up to five mutations are allowed,

we find much more diversity and complexity of solutions, in

particular at positions 4.41 and 5.41. However, clear trends

are evident. First, there is a near-complete shift of the positive

charge from histidine 4.41 to an arginine at position 5.37.

This is consistent with the prevalence of this shift in the case

studies (above) allowing up to three mutations. Second, we

note that serine now dominates at position 4.55, replacing the

wild-type alanine residue that was most common in the three-

mutation cases. Finally, phenylalanine 4.48 is mutated in

each case to tryptophan, tyrosine, or serine.

It is interesting to note that alanine is selected in a number

of cases as an amino acid to disrupt the dimerization. Yet in

almost all cases, it occurs in a solution from the solution

range 1961–2000, indicating that although an alanine muta-

tion may not promote the largest local disruption, it may

provide a compromise between disruptions of the dimer and

fold specificity. This trend occurs across case studies with

both three and five mutations.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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TABLE 10 A compilation of dimerization-disrupting solutions

across the three-mutation case studies of rhodopsin

Source STemp 4.41 HIS 4.48 PHE 4.55 ALA 5.37 SER 5.41 TYR

UNW 272 GLN PHE SER ARG TYR

UNW 57 ALA TRP ALA ARG TYR

UNW* 29 ARG SER SER SER TYR

UNW 381 THR PHE SER ARG TYR

UNW 35 SER PHE ALA LYS SER
GPCRA 120 TYR TRP ALA ARG TYR

GPCRA 109 PHE PHE ALA ARG ALA

GPCRA 127 ILE TYR ALA ARG TYR

GPCRA 70 ARG PHE ALA GLY THR
GPCRA 49 TYR PHE ALA ARG TRP
SF 118 ALA THR ALA ARG TYR

SF* 19 ARG TRP ALA SER ALA
SF* 18 ARG ALA ALA SER SER
SF 8 PHE PHE ALA LYS THR
SF 59 ARG TYR ALA GLN TYR

RHO_SP 206 ASN PHE SER ARG TYR

RHO_SP 190 GLY PHE ALA ARG THR
RHO_SP* 23 ARG SER ALA SER SER
RHO_SP 28 ARG PHE SER SER VAL
RHO_SP 22 ARG PHE SER SER TYR

A group of solutions were selected for their high specificity to the template

and for their heterogeneity. UNW, unweighted; GPCRA, class A GPCR

position-specific weights; SF, surface-fraction scale; RHO_SP, rhodopsin

SP scale. Mutated residues are in bold.

*Denotes a solution from the ‘‘most disrupted set’’.

TABLE 9 Illustrative set of results from a case study

STemp 4.41 HIS 4.48 PHE 4.55 ALA 5.37 SER 5.41 TYR

127 ILE TYR ALA ARG TYR

120 TYR TRP ALA ARG TYR

109 PHE PHE ALA ARG ALA
70 ARG PHE ALA GLY THR
49 TYR PHE ALA ARG TRP
25 ARG TYR ALA SER TYR

14 ARG PHE SER SER ILE
13 ALA PHE SER LYS TYR

8 GLY PHE ALA LYS TRP
5 TYR PHE ALA LYS MET

Column entries are the complete results meeting the arbitrary cutoff on

STemp from the case study using the class A GPCR position-specific

weights, where up to three mutations are allowed. Note that all sequences

are from solutions 1961–2000. Each row represents one sequence. Mutated

residues are in bold. The native residues are shown in the column headings.

TABLE 11 A compilation of dimerization-disrupting solutions

across the five-mutation case studies of rhodopsin

Source STemp 4.41 HIS 4.48 PHE 4.55 ALA 5.37 SER 5.41 TYR

UNW 403 GLN TRP SER ARG SER
UNW* 233 GLY SER SER ARG SER
UNW 151 ALA ALA SER ARG VAL
UNW* 133 GLY SER SER ARG ALA
UNW* 72 ARG SER SER GLY THR
UNW* 246 ARG SER SER ASN THR
UNW 132 TYR SER SER ARG VAL
UNW 121 ALA SER THR ARG ALA
GPCRA 224 GLN TYR TYR ARG TRP
GPCRA 192 PHE SER SER ARG THR
GPCRA* 155 GLY TRP SER ARG TRP
GPCRA* 145 GLY TYR SER ARG TRP
GPCRA* 107 GLY SER SER ARG TRP
SF* 151 GLN TRP TRP ARG TRP
SF* 122 ASN TRP TRP ARG TRP
SF 95 ALA SER ALA ARG MET
SF 92 PRO THR TRP ARG SER
SF 78 ALA ALA SER ARG TRP
RHOSP 617 ASN ALA ALA ARG ALA
RHOSP* 382 ASN SER SER ARG SER
RHOSP 343 ASN SER MET ARG THR
RHOSP 306 ASN MET THR ARG SER
RHOSP* 233 GLY SER SER ARG SER

A heterogeneous group of solutions were selected for their high specificity

to the template. UNW, unweighted; GPCRA, class A GPCR position-

specific weights; SF, surface-fraction scale; RHO_SP, rhodopsin SP scale.

Mutated residues are in bold.

*Denotes a solution from the ‘‘most disrupted set’’.
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