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ABSTRACT In this article, we introduce and apply our de novo protein design framework, which observes true backbone flexi-
bility, to the redesign of human b-defensin-2, a 41-residue cationic antimicrobial peptide of the innate immune system. The flexible
design templates are generated using molecular dynamics simulations with both Generalized Born implicit solvation and explicit
water molecules. These backbone templates were employed in addition to the x-ray crystal structure for designing human
b-defensin-2. The computational efficiency of our framework was demonstrated with the full-sequence design of the peptide with
flexible backbone templates, corresponding to the mutation of all positions except the native cysteines.

INTRODUCTION

Recently there has been growing attention to the importance

of antimicrobial peptides (AmPs), which are small proteins

of fewer than 100 amino acids that are found in the innate

immune system as defense against bacterial infection. This

is evidenced by the publication of several important re-

views and articles about AmPs (1–6). One of the main

reasons is believed to be the better capability of AmPs to

combat bacterial resistance compared to conventional anti-

biotics (3,7).

The various families of AmPs that have been identified in

humans so far include histatins, granulysin, lactoferricin, de-

fensins, and cathelicidins, with a- and b-defensins being the

most common AmPs (8). The a- and b-defensin classes differ

by the positions and connectivity of their six native cysteine

residues (9). Human a-defensins, HNP-1 to -4, are found in

the storage granules of neutrophils for the killing of ingested

microorganisms (10). On the other hand, human b-defensins

are expressed in the salivary glands (11,12), the skin (13), and

the epithelial tissues (14,15). Six human b-defensins (hbD-1

to -6) have been identified thus far (8,16), and in this research

article we focus on human b-defensin-2 (hbD-2) and its de novo

computational design using our novel framework (17–20).

The cationic 41-residue peptide hbD-2 was first discov-

ered in 1997 in the human skin (13). It has one a-helix, a

b-sheet made of three b-strands, and three disulfide bonds

between Cys8 and Cys37; Cys15 and Cys30; and Cys20, and

Cys38, respectively. Since its discovery, it has been shown to

be a potent AmP effective against a large variety of

microbes, including both Gram-negative bacteria and fungi

(21,22). Its antimicrobial property is partly attributed to its

high positive charge (16) which provides a strong electro-

static force between the peptide and the negatively charged

outermost leaflet of the microbial membrane bilayer. Based

on the Shai-Matsuzaki-Huang mechanism (23–25) by which

most other AmPs function, the electrostatic force drives the

interaction of the molecule with the membrane, alters the

membrane structure, and sometimes even leads to the entry

of the peptide into the interior of the microorganism. In

addition, hbD-2 serves as a chemotactic agent for T-cells,

immature dentritic cells, mast cells, and tumor necrosis

factor-a-treated neutrophils (8,26,27). Most importantly, it

suppresses the oral transmission of HIV-1, the mechanism of

which is still poorly understood, at doses that are compatible

with those in the oral cavity (28,29). These characteristics

make hbD-2 an ideal candidate as an antimicrobial gene

therapy study model (30) and a new generation antibiotic.

Computational de novo design approaches use either rigid

templates or flexible templates (31,32). In the former case,

the sequence search method is driven either by deterministic

methods like the dead-end elimination (33–38) and the self-

consistent mean field method (39–41), or by stochastic

methods like Monte Carlo methods (42–44) and genetic

algorithms (45) based on a single fixed backbone. In the case

of flexible templates, de novo design was performed using

the same search methods by considering discrete rotamers on

discrete templates with fixed backbone assumption for each

template (41,46–54), or considering discrete rotamers on a

continuum template via backbone parameterization (55–57).

Our recently proposed de novo design strategy also em-

ployed flexible templates, but via a continuum template and

NMR structure refinement instead of discrete rotamers, so

that all continuous Ca-Ca distance and dihedral angle values

between preset upper and lower bounds are considered

(19,20,58). With the study of human b-defensin-2, we aim at

illustrating how our framework can be applied to the full-

sequence de novo design of proteins.
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The objective of the de novo design of hbD-2 is to enhance

the peptide’s antimicrobial property. Krishnakumari et al. (59)

investigated the antibacterial activity of a synthetic 19-residue

peptide corresponding with position 19 to position 39 of hbD-2

without Cys30 and Cys37. Loose et al. (6) designed new AmPs

against Escherichia coli, Bacillus anthracis, and Staphylo-
coccus aureus using a purely linguistic approach and ob-

tained favorable experimental results. In our de novo design,

instead of fixing the carboxy-terminal region as Krishnaku-

mari et al. (59) did, we considered two separate cases:

1. Up to 10 mutations along hbD-2.

2. Full-sequence design of hbD-2 by mutating all positions

except Cys8, Cys15, Cys20, Cys30, Cys37, and Cys38, so as

to keep the original S-S bridge architecture and thus the

overall structure of the peptide.

Unlike Loose et al. (6)’s approach, we employed the

structures of hbD-2 as design templates and identified se-

quences of new peptides that have the lowest potential ener-

gies and thus highest specificities to the templates. Ideally,

we should have used the structures of the microbial membrane-

peptide complex as design templates. However, they are not

readily available in the open literature and are hard to predict

with high accuracy. Therefore, we resorted to minimizing the

potential energy of the peptide only. Such a strategy has

proven to be highly successful in the design of compstatin, a

synthetic 13-residue cyclic peptide that binds to complement

protein 3 (C3) and inhibits the activation of the complement

system, in which the design template was confined to

compstatin only (17,18). In this de novo design of hbD-2,

in addition to the crystal structure of hbD-2 elucidated by

Hoover et al. (60), we generated flexible templates using

molecular dynamics simulations with implicit solvation and

explicit water molecules and used them as design templates

so as to allow for true backbone flexibility.

In this article, our new de novo protein design methodol-

ogy will be presented first. It will be followed by the study of

its application to the design of hbD-2. Finally, we will

present the predictions corresponding to the different set of

backbone templates employed.

A new de novo protein design framework

In this article, a novel two-stage framework is introduced and

applied to the de novo design of human b-defensin-2. The

first stage selects amino-acid sequences into either a single

template or multiple templates defined by either the Ca

positions or the side-chain centroids in the template(s). As

proven by Pierce and Winfree (61) and by Fung et al. (19),

this is an NP-hard problem. The second stage calculates and

ranks the fold specificities of the sequences selected in the

first stage based on the full-atomistic force field AMBER

(62), and torsional angle dynamics with restraints through

CYANA (63,64).

Stage one: in silico sequence selection

Sequence selection based on a single template structure

The basic sequence selection model for single template struc-

ture, recently proposed by Fung et al. (20), has the mathe-

matical formulation of

min
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and it is an integer linear programming model. Set i¼ 1, . . . , n
defines the number of residue positions along the template.

At each position i there can be a set of mutations represented

by jfig ¼ 1, . . . , mi, where, for the general case, mi ¼ 20"i.
The equivalent sets k [ i and l [ j are defined, and k . i is

required to represent all unique pairwise interactions. Binary

variables yj
i and yl

k are introduced to indicate the possible

mutations at a given position. That is, the yj
i variable will

indicate which type of amino acid is active at a position in the

sequence by taking the value of 1 for that specification. The

composition constraints in the formulation require that there

is exactly one type of amino acid at each position. Noting

that binary variable wjl
ik is simply the product of yj

i and yl
k; the

RLT constraints, namely +mi

j¼1
wjl

ik ¼ yl
k " i; k . i; l and

+mk

l¼1
wjl

ik ¼ yj
i " i; k . i; j; can be derived by multiplying the

composition constraints +mi

j¼1
yj

i ¼ 1 " i by yl
k and

+mk

l¼1
yl

k ¼ 1 " k . i by yj
i; respectively.

The objective function to be minimized represents the sum

of pairwise amino-acid energy interactions in the template.

Parameter Ejl
ikðxi; xkÞ; which is the energy interaction be-

tween position i occupied by amino acid j and position k
occupied by amino acid l, depends on the distance between

the a-carbons or side-chain centroids at the two positions (xi,

xk) as well as the type of amino acids j and l. These energy

parameters were derived based on solving a linear program-

ming parameter estimation problem subject to constraints

which were in turn constructed by requiring the energies of a

large number of low-energy decoys to be larger than the

corresponding native protein conformation for each member

of a set of proteins (65). The resulting potential, which

contains 1680 energy parameters for different amino-acid

pairs and distance bins, was shown to rank the native fold

as the lowest in energy in a large set of proteins tested and

also yield very good Z-scores (65–67).

Equation 1 was proved to be significantly more com-

putationally efficient than 12 other equivalent quadratic
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assignments like models for sequence selection (19,20). In

particular, it outperformed the original model proposed by

Klepeis et al. (17) on two sequence selection problems for

human b-defensin-2: one at a complexity level of 3.4 3

1045, and the other at 6.4 3 1037 with 49 additional linear

biological constraints. The original model proposed by

Klepeis et al. (17) was found to take 53,263 CPU seconds

and 4578 CPU seconds, respectively, to solve the two

problems to global optimality using CPLEX 9.0 (68) on a

Pentium IV 3.2 GHz processor. Equation 1 only took 649

CPU seconds and 14 CPU seconds to perform the same

tasks, corresponding to an 82-fold and 327-fold improve-

ment in computational efficiency.

Sequence selection based on multiple
template structures

In an effort to handle the typical case of de novo protein design

in which the design template possesses multiple crystal or

NMR solution structures, Fung et al. (20) proposed two new

sequence selection formulations. One uses a weighted aver-

age force field in place of the energy parameters in the single

structure model (Eq. 1), with the weights given by the oc-

currence frequencies of each Ca-Ca or centroid-centroid

distance belonging to a certain distance bin as observed from

the template structures. With the aid of binary variables, the

other formulation allows the inclusion of all distance bins that

each Ca-Ca or centroid-centroid distance covers according to

the template structures. It also imposes constraints that

disallow the selection of distance bin combinations which

suggest physically meaningless results.

Weighted average force field formulation

In the case when there is only one structure, the energy

parameter Ejl
ikðxi; xkÞ in the objective function can be imme-

diately determined by the coordinates of the two Ca or side-

chain centroid positions, that is, xi and xk, as well as the

amino acid at each of those two positions. There is no am-

biguity as to which distance bin d it belongs to. In the case of

multiple structures, the term Ejl
ikðxi; xkÞ can be replaced by

a weighted average energy term, +bm

d¼1
Ejl

ikðxi; xkÞwtðxi; xk; dÞ;
where the weights wt(xi, xk, d) are given by

The idea can also be examined this way: the distance between

xi and xk is now replaced by a weighted average distance over

all the structures, with the weights given by the above formula.

The energy parameters Ejl
ikðxi; xkÞ can be found using this

weighted average distance and simple table lookup in the

corresponding force field. With all components other than the

energy term kept, the new formulation becomes
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Equation 3 is an integer linear programming model.

Binary distance bin variable formulation

This new formulation was derived by first replacing the

energy parameter Ejl
ikðxi; xkÞ in the objective function of Eq. 1

by +
d:disbinðxi;xk;dÞ¼1

Ejl
ikðxi; xkÞbikd; where bikd is a binary

variable which assumes the value of one if the distance

between xi and xk falls into distance bin d and the value of

zero otherwise, and disbin(xi, xk, d) is a parameter defined as

disbin(xi, xk, d)

¼ 1 if the distance between xi and xk in any of the

template structures falls into bin d;

¼ 0 otherwise " i, k . i, d.

The constraints of +
d:disbinðxi;xk;dÞ¼1

bikd ¼ 1 "i; k.i were

imposed to let the energy minimization model pick only one

of the distance bins that all the structures cover. After re-

placing the energy term, the model takes the form
min
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Equation 4 is nonconvex because of the bilinear term bikdwjl
ik

in the objective function. Fung et al. (20) linearized the

formulation by declaring zjl
ikd ¼ bikdwjl

ik as binary variables

and using the RLT equations:

wtðxi; xk; dÞ ¼
number of structures in which distance between xi and xk is in bin d

total number of structures of the template
" i; k; d: (2)
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Moreover, Fung et al. (20) also derived novel constraints on

the binary distance bin variables to eliminate results in which

there is no overlap between regions where the same Ca or

side-chain centroid position can possibly be located:

bikd 1bkpd9 #1

if

ðlmidðd9Þ,disði;pÞ� lmidðdÞ
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lmidðd9Þ.disði;pÞ1 lmidðdÞÞ
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and

disbinðxk;xp;d9Þ ¼ 1" i;k . i;p;d;d9; i 6¼ k 6¼ p: (6)

Without these constraints, the design template defined only

by Ca or side-chain centroid positions would be given too

much flexibility.

With the linearization components and these new con-

straints on distance bin variables, the whole model for se-

quence selection into multiple templates takes the form of
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The high resolution force fields for
sequence selection

In this work, the high resolution Ca-Ca force field and the high

resolution centroid-centroid force field were employed for

addressing the sequence selection models (69,70). These

force fields are derived from a large training set of 1250

proteins based on high resolution decoys. The force fields are

obtained by solving a linear programming parameter estima-

tion problem, requiring that the native conformation of each

protein in the training set to be ranked energetically more

favorable than their decoys. By using a novel decoy gener-

ation method, Rajgaria et al. (69) constructed high resolution

decoys which possessed close structural resemblance to the

native conformations, and these decoys were subsequently

used for training the force fields.

Backbone flexibility at stage one

True backbone flexibility, defined by bounded continuous

values of dihedral angles and Ca-Ca distances (71), is

explicitly incorporated into Eqs. 1, 3, and 7 for sequence

selection. In all models it is achieved by discretizing the

Ca-Ca or centroid-centroid distance-dependent energy po-

tential Ejl
ikðxi; xkÞ into a number of bins based on the distance

between the two positions (xi, xk). For example, in the high

resolution Ca-Ca force field developed by Rajgaria et al. (69),

if the pair of amino acids selected at positions i and k are Arg

and Glu, respectively, and the corresponding a-carbons are

3.5 Å apart in a single template structure or a weighted

average template, their energy contribution to the objective

function will be�7.77 kcal/mol. This energy value is constant

for all Arg and Glu residues with a Ca-Ca distance between 3

and 4 Å (bin 1), thus making the objective function insensitive

to limited continuous distance variation due to protein

backbone motion. A higher degree of backbone flexibility is

included in the binary distance bin variable formulation than

in other models, because the whole distance range for each

position pair (xi, xk) spanned by all structures is considered.

For instance, if the distance between the same selected amino

acid pair Arg-Glu at positions i and k covers bin 1 (3–4 Å with

energy �7.77 kcal/mol), bin 2 (4–5 Å with energy �3.77

kcal/mol), and bin 3 (5–5.5 Å with energy �5.61 kcal/mol)

according to the flexible template structures, any of the three

distance bins can be chosen by the model, and the two Ca pos-

itions (xi, xk) are thus allowed to move within a range of 2.5 Å.

Stage two: fold specificity

The second stage of the new framework provides a more

rigorous assessment of the specificity of the low energy
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sequences within the context of the flexible template. One

approach for fold specificity uses the ASTRO-FOLD method

and performs first-principles-based protein folding calcula-

tions to generate two sets of conformational ensembles: one

in which the protein is constrained to a region around the

backbone and a second in which the protein is allowed to

fold freely (72–78). This requires the use of the deterministic

global optimization approach, aBB (79–86). The relative

probability of specificity for the protein to assume the target

fold is then calculated from the RMSD and free energy of

these two ensembles based on the Boltzmann distribution.

For rigorous ensemble generation, this method requires that

a large number of freefolding calculations be performed,

which can be computationally demanding.

A new second-stage method has been developed to handle

larger proteins. This method for fold validation is outlined in

Fig. 1. First, a flexible template is defined based on the upper

and lower bounds on both the distances between a-carbons

and the f- and c-angles between residues. An ensemble of

hundreds of random structures is then generated (con-

formers) within the confines of the flexible template using

the CYANA 2.1 software package for NMR structure

refinement (63,64). CYANA 2.1 is then used to perform

annealing calculations that simulate a rapid heating of the

protein followed by a slow cooling in which high temper-

ature torsion dynamics and annealing torsion dynamics are

performed. Violations of van der Waals radii and of the

flexible template are minimized, minimizing the energy of

the target structures. Hundreds of these structures are

generated within the confines of the flexible template.

For each structure in the ensemble, local minimizations

are then performed by the TINKER (87) package as directed

by gradients in the fully atomistic force field AMBER (62).

AMBER is then used to evaluate the potential energy of the

structure. These ensembles are generated for the native

sequence of the fold and for each candidate mutant sequence.

The specificity of each mutant sequence to the target fold is

then calculated relative to the native sequence using the

Boltzmann distribution from statistical mechanics. Both the

predicted energy of each conformer and its RMSD from

the template structure are used in this calculation.

ANALYSIS AND SELECTION OF RESULTS

A method similar to that used by Klepeis et al. (17) for

ensemble comparison in fold validation was employed to give

a relative ranking for specificity. First, the mean and standard

deviation of both RMSD and AMBER energies were found

for the native sequence. Upper bounds on both RMSD and

energy were then established; for RMSD, the upper bound

was selected as one and a half standard deviations above the

mean, and in the energy, the upper bound was selected as two

standard deviations from the mean. A structure is considered

to make a contribution to the ensemble only if its energy and

RMSD both fall under these upper bounds. This is illustrated

in Fig. 2.

To calculate the relative factor for specificity, we define the

set native as the set of all data points from the native sequence

that are below both upper bounds, and select the set of all data

points from the novel sequence that meet the same criterion.

The factor for specificity, fspecificity, is then calculated using

Boltzmann probabilities as shown in the equation

fspecificity¼
+

i2novel

exp½�bEi�

+
i2native

exp½�bEi�
; (8)

where b ¼ 1=kBT:

Backbone flexibility at stage two

True protein backbone flexibility is incorporated in stage two

by CYANA’s ability to select any continuous values for the

dihedral angles and Ca-Ca distances between preset boundsFIGURE 1 Workflow for the new method for fold specificity.
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when it does the simulated annealing calculations. The

bounds are input by the user to the program, and they can be

based on the observation about the flexible design template(s).

The outgoing protein conformations can thus have any pos-

sible combination of continuous angle and distance values

between the bounds.

DE NOVO DESIGN OF HUMAN b-DEFENSIN-2

This section outlines the details of the de novo design of

human b-defensin-2 using the two-stage de novo protein

design framework aforementioned.

Design templates

Three different sets of design templates were used for the de

novo design of human b-defensin-2.

Single template structure from x-ray crystallography

This design template corresponds to chain A of the x-ray

crystal structure elucidated by Hoover et al. (60) (PDB code:

1FD3) at a resolution of 1.35 Å (Fig. 3). Human b-defensin-

2 possesses an octameric quaternary structure constituted by

eight identical chains: chain A, B, C, D, E, F, G, and H, each

of which has the natural sequence of GIGDPVTCLKS-

GAICHPVFCPRRYKQIGTCGLPGTKCCKKP (88). The

identical monomer units of hbD-2 are grouped into units

of four that are oriented in such a way that their N-termini are

in the core of the octamer. The core is sealed off from solvent

by hydrogen bonds between Gly1, Gly3, Asp4, and Thr7. The

overall tertiary structure is maintained by a mix of hydro-

phobic and hydrogen-bonding interactions between the

residues Gly1, Asp4, Thr7, Lys10, Gly31, Leu32, Pro33, and

Lys39. Among the eight identical chains, only chain A was

used for the de novo design.

The surface of hbD-2 is mostly amphiphilic. Like other

human b-defensins, hbD-2 has an N-terminus a-helix

located at Pro5-Lys10 that is held against the b-sheet by an

S-S bond between Cys8 and Cys37. Two other S-S bonds that

stabilize the b-sheet are located at Cys15-Cys30 and Cys20-

Cys38. The b-sheet is made up of three anti-parallel b-strands

held together by hydrophobic interactions. The structural

properties of hbD-2 are summarized in Table 1.

Flexible templates from molecular dynamics simulations with
Generalized Born implicit solvation model

In an effort to generate a flexible design template for human

b-defensin-2, molecular dynamics (MD) simulations were

employed to capture different structures of the peptide along

the MD trajectory. MD simulations were performed using

FIGURE 2 Illustration of upper bounds on RMSD and

AMBER energy. Lines indicate upper bounds. Data points

in the shaded regions are not considered in further

calculations.

FIGURE 3 Structure of human b-defensin-2 (chain A) as elucidated by

Hoover et al. (60). Its secondary structure consists of a b-sheet made up of

three b-strands and an a-helix.
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the program CHARMM (89) version 31b1, with implemen-

tation of the Generalized Born (GB) implicit solvent model

(90). The CHARMM19 force field was employed with the

GBORn model. The dielectric constant was set to 1.0 for the

interior of the protein and 80.0 for the solvent. All non-

bonded interactions were computed without cutoffs. The

SHAKE algorithm (91) was used to fix the length of covalent

bonds of hydrogen atoms. The time step was set to 2 fs.

Monomer A of the crystal structure 1FD3 was used. The

structure was first energy-minimized for 300 steps, using the

adopted-basis Newton-Raphson (ABNR) method. Then,

the system was subjected to 5 ps of constant volume molec-

ular dynamics, during which the temperature was raised from

0 K to 300 K with velocity rescaled every 0.1 ps. At 300 K,

30-ps equilibrium phase was performed, with velocity re-

scaled every 0.1 ps, during the first 10 picoseconds. In the

middle 10 picoseconds, velocity was rescaled only if the

temperature of the system deviated more than 5 K from

300 K. During the last 10 picoseconds, energy and tempera-

ture were stable, and no velocity rescaling was necessary.

After the equilibration, a 10-ns trajectory of NVT MD at 300

K was generated. Coordinate sets were sampled every 10 ps

to generate 1000 snapshots of structures. A total of 10 struc-

tures with 1-ns increment were extracted from the MD tra-

jectory to constitute the set of flexible templates, which is

shown in Fig. 4.

Flexible templates from molecular dynamics simulations with
explicit water molecules

Here MD simulations were done in a more computationally

demanding manner by the explicit treatment of water

molecules. The program CHARMM (89) version 31b1,

with the CHARMM27 force field, was used for the MD

simulation with explicit solvation. Monomer A of the crystal

structure 1FD3 was used. The protein was immersed in a

50 3 50 3 50 Å3 cubic box of TIP3P water models. Water

molecules were deleted when their oxygen atoms were

within 2.8 Å of any heavy atom of the protein. One sodium

ion and seven chloride ions were added to represent ;100

mM salt concentration and to neutralize the overall system.

The dielectric constant was set to 1.0. Nonbonded interaction

cutoff of 12.0 Å was used, with a force-switching function

for electrostatic interactions and shifting function for van der

Waals interactions between 9 and 12 Å. First, the protein was

minimized using 500 steps of the ABNR method with water

molecules being held fixed. Subsequently, the entire system

was relaxed without any constraints with 500 steps of ABNR

minimization. The final system comprises 11,328 atoms in-

cluding water molecules, protein (610 atoms), and ions. Dur-

ing the equilibration and production molecular dynamics, the

protein was restrained to the center of the water box. The

system was first heated from 0 K to 300 K with 30 ps of

molecular dynamics, during which velocities were scaled

every 1 ps and was allowed to fluctuate within 5 K of the

target temperature. After heating, the system was equilibrated

at 300 K for an additional 100 ps. After the equilibration, a 2-

ns MD trajectory was generated at 300 K. Coordinate sets

were sampled every 10 ps to generate 200 snapshots of struc-

tures. A total of 10 structures with 0.2 ns increment were

extracted from the MD trajectory to constitute the set of

flexible templates, which is shown in Fig. 5. Alignment of

the three different sets of design templates (Fig. 6) indicates

flexibility and high structural similarity among them.

The de novo design

Stage one: in silico sequence selection

Models. Different models were employed for sequence se-

lection, depending on the nature of the design template(s).

The basic model for single structure (Eq. 1) suffices for the

single crystal structure by Hoover et al. (60). For the other

FIGURE 4 Overlay of the 10 structures of human b-defensin-2 used for

the flexible design template from MD simulations with the GB implicit

solvation model. The structures are snapshots with 1-ns increment.

TABLE 1 Structural features of human b-defensin-2

Structural features Positions

b-strands 14–16

25–28

36–39

a-helix 5–10

8–37

S-S bonds 15–30

20–38

16–19

b-turns 21–24

32–35

Hairpins 25–29

Bulges 27, 28, 37

590 Fung et al.

Biophysical Journal 94(2) 584–599



two flexible design templates generated from MD simula-

tions which have multiple structures, both the weighted aver-

age force field formulation (Eq. 3) and the binary distance

bin variable formulation (Eq. 7) were utilized for sequence

selection.

Force fields. The high resolution Ca-Ca force field (69) was

employed for sequence selection based on the design

template from x-ray crystallography, while the high resolu-

tion centroid-centroid force field (70) was used for the two

sets of templates from MD simulations.

Number of sequence solutions. One-hundred sequences

were generated for the crystal structure template in the first

stage, and they were ranked by their fold specificities based

on the full-atomistic force field AMBER in the second stage.

For the flexible templates from MD simulations, ;1000

sequences and ;500 sequences were solved using the

weighted average model (Eq. 3) and distance bin model

(Eq. 7), correspondingly.

Mutation set. SASA patterning was applied to restrict the

sequence search space for the de novo design of hbD-2. The

41 positions in hbD-2 are classified into the core, surface,

and intermediate categories which determine the mutation

set for each position. The native residue for each position is

also included in its mutation set. Proline is excluded from the

list for surface and intermediate positions to avoid unnec-

essary rigidity imposed on the backbone, except when it is

the native residue for the position. The mutation set for

human b-defensin-2 is tabulated in Table 2. This SASA

patterning strategy aims at conserving the natural amphiphi-

FIGURE 6 Structural alignment of the crystal structure of human

b-defensin-2 (chain A) by Hoover et al. (60) (rainbow color), the 5-ns

MD-GB structure (light gray), and the 1-ns explicit MD structure (dark gray).

FIGURE 5 Overlay of the 10 structures of human b-defensin-2 for the

flexible design template from MD simulations with explicit water molecules.

The structures are snapshots with 0.2-ns increment.

TABLE 2 Mutation set of human b-defensin-2 given by

SASA patterning

Position

Native

residue

Side-chain

accessibility

Position

type

Varied

position?

Allowed

mutations

1 G 139.6% surface O R,N,D,Q,E,G,H,K,S,T

2 I 20.7% intermediate O all except C and P

3 G 69.0% surface O R,N,D,Q,E,G,H,K,S,T

4 D 52.5% surface O R,N,D,Q,E,G,H,K,S,T

5 P 52.1% surface O R,N,D,Q,E,G,H,K,P,S,T

6 V 99.9% surface O R,N,D,Q,E,G,H,K,S,T,V

7 T 54.9% surface O R,N,D,Q,E,G,H,K,S,T

8 C 0.0% buried 3 none

9 L 64.5% surface O R,N,D,Q,E,G,H,K,S,T,L

10 K 94.2% surface O R,N,D,Q,E,G,H,K,S,T

11 S 52.2% surface O R,N,D,Q,E,G,H,K,S,T

12 G 97.3% surface O R,N,D,Q,E,G,H,K,S,T

13 A 1.8% buried O A,I,L,M,F,Y,W,V

14 I 49.6% intermediate O all except C and P

15 C 18.9% buried 3 none

16 H 24.9% intermediate O all except C and P

17 P 66.4% surface O R,N,D,Q,E,G,H,K,S,T,P

18 V 79.0% surface O R,N,D,Q,E,G,H,K,S,T,V

19 F 69.1% surface O R,N,D,Q,E,G,H,K,S,T,F

20 C 10.7% buried 3 none

21 P 32.0% intermediate O all except C

22 R 92.2% surface O R,N,D,Q,E,G,H,K,S,T

23 R 84.6% surface O R,N,D,Q,E,G,H,K,S,T

24 Y 24.7% intermediate O all except C and P

25 K 82.3% surface O R,N,D,Q,E,G,H,K,S,T

26 Q 46.7% intermediate O all except C and P

27 I 42.1% intermediate O all except C and P

28 G 45.8% intermediate O all except C and P

29 T 54.1% surface O R,N,D,Q,E,G,H,K,S,T

30 C 2.6% buried 3 none

31 G 60.3% surface O R,N,D,Q,E,G,H,K,S,T

32 L 87.1% surface O R,N,D,Q,E,G,H,K,S,T,L

33 P 86.1% surface O R,N,D,Q,E,G,H,K,S,T,P

34 G 96.5% surface O R,N,D,Q,E,G,H,K,S,T

35 T 13.9% buried O A,I,L,M,F,Y,W,V,T

36 K 33.2% intermediate O all except C and P

37 C 0.0% buried 3 none

38 C 0.0% buried 3 none

39 K 45.8% intermediate O all except C and P

40 K 61.2% surface O R,N,D,Q,E,G,H,K,S,T

41 P 58.5% surface O R,N,D,Q,E,G,H,K,S,T,P
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licity of hbD-2, which is considered important for the

antimicrobial activity of the peptide (9). Complexity of the

problem amounts to 6.40 3 1037.

Biological constraints. Homology search was executed to

determine what fundamental properties of hbD-2 have been

highly conserved in evolution. These conserved fundamental

properties are maintained in the de novo designed protein as

they can contribute significantly to the protein structure and

function (92,93).

Such a homology search on hbD-2 was performed using a

position-specific iterative basic local alignment search tool

(PSI-BLAST 2.0) (l). A total of 96 human b-defensin

homologs were identified. The conserved properties about

their charges and amino acid content are tabulated in Tables

3 and 4, respectively, and they correspond to the upper and

lower bounds on the charges and amino-acid composition.

The upper bound and lower bound on the amino-acid con-

tent were set equal to the maximum and minimum occur-

rences found in the hbD-2 homologs, respectively, except

for cysteine, glycine, and tryptophan. The number of cyste-

ines was fixed to six in view of the three disulfide bonds in

hbD-2. The number of glycines was limited to be #6, which

is its occurrence in the native sequence, while tryptophan

content was allowed to have an upper bound of two instead

of one as suggested by homology search, so that the overall

hydrophobicity can be enhanced for higher molecular stability.

The conserved charge characteristics of hbD-2 homologs

were converted to the constraints below and added to the

sequence selection models:

0# +
i

yArg

i 1 +
i

yLys

i �+
i

yAsp

i �+
i

yGlu

i #3"5# i#10

5# +
i

y
Arg

i 1 +
i

y
Lys

i #10"i

0# +
i

y
Asp

i 1 +
i

y
Glu

i #2"i

4# +
i

y
Arg

i 1 +
i

y
Lys

i �+
i

y
Asp

i �+
i

y
Glu

i #9"i: (9)

These linear constraints would restrict the charges on any

sequence solution generated from stage one to be within the

bounds stated in Table 3.

Residue frequencies on the whole sequence were also con-

strained to be between the maximum and minimum occur-

rences found in the hbD-2 homologs, by means of the

following equations:

0# +
i

y
Ala

i # 3"i0# +
i

y
Gln

i #3"i

0# +
i

yLeu

i #4"i0# +
i

ySer

i #6"i

1# +
i

y
Arg

i #9"i0# +
i

y
Glu

i #3"i

0# +
i

y
Lys

i #7"i0# +
i

y
Thr

i #4"i

0# +
i

y
Asn

i #6"i +
i

y
Gly

i #6"i

0# +
i

y
Met

i #3"i0# +
i

y
Trp

i #2"i

0# +
i

y
Asp

i #2"i0# +
i

y
His

i #4"i

0# +
i

y
Phe

i #4"i0# +
i

y
Tyr

i #4"i

+
i

yCys

i ¼ 6"i0# +
i

y
Ile

i #6"i

+
i

y
Pro

i #5"i0# +
i

y
Val

i #6"i: (10)

Lastly, b-strands were restricted to have at least two hydro-

phobic residues to ensure enough hydrophobic interaction

between b-strands for stability purpose. The requisite con-

straints are

+
i

y
Cys

i 1 +
i

y
Ile

i 1 +
i

y
Leu

i 1 +
i

y
Met

i 1 +
i

y
Phe

i

1 +
i

y
Trp

i 1 +
i

y
Tyr

i 1 +
i

y
Val

i 1 +
i

y
Ala

i $2"14# i#16

+
i

y
Cys

i 1 +
i

y
Ile

i 1 +
i

y
Leu

i 1 +
i

y
Met

i 1 +
i

y
Phe

i

1 +
i

y
Trp

i 1 +
i

y
Tyr

i 1 +
i

y
Val

i 1 +
i

y
Ala

i $2"25# i#28: (11)

TABLE 3 Charge frequencies of homologs of

human b-defensin-2

Lower bound Upper bound

Net charge on a-helix 0 13

Total positive charges 5 10

Total negative charges 0 �2

Total net charges 14 19

TABLE 4 Occurrence of each amino acid in human

b-defensin-2 homologs; residues with asterisks do not follow

the maximum and minimum occurrences found in the

sequences from the homology search (refer to the text for

the actual constraints imposed)

Amino acid Lower bound Upper bound

Ala 0 3

Arg 1 9

Asn 0 6

Asp 0 2

Cys* 4 7

Gln 0 3

Glu 0 3

Gly* 3 7

His 0 4

Ile 0 6

Leu 0 4

Lys 0 7

Met 0 3

Phe 0 4

Pro 0 5

Ser 0 6

Thr 0 4

Trpy 0 1

Tyr 0 4

Val 0 6
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Note that no constraint was imposed on the third b-strand

that already has two nonvaried cysteines, which are hydro-

phobic.

Number of mutations. In the sequence selection for the

design template from x-ray crystallography, the number of

mutations was set to be not more than 10 by the constraint

below:

+
n

i¼1

+
mi

j¼1;j 6¼native residues

y
j

i #10: (12)

For the other two sets of flexible templates, the maximum

number of mutations was either set to 10, or unlimited. The

latter case corresponds to a full-sequence design of human

b-defensin-2, since all positions, except for the six native

cysteines, were varied.

Stage two: fold specificity

In calculating the fold specificities using the AMBER force

field, the angle and distance bounds input to the CYANA 2.1

package were 610� around the template and 610% of those

in the template, respectively, for the sequences from the

single crystal structure template. For the sequences from the

flexible templates from MD simulations, the bounds were set

to be the maximum and minimum as observed from all

template structures. Five-hundred low energy conformations

were generated for each sequence by the simulated annealing

algorithm in CYANA and their energies were minimized

further by the TINKER program. Finally, the fold specificity

for each sequence was computed using formula (8), and the

sequences were then ranked according to their specificities.

RESULTS AND DISCUSSION

The top sequences ranked by their fold specificities for the

design template from x-ray crystallography, MD simulations

with generalized Born implicit solvent, and MD simulations

with explicit water molecules are listed in the Supplementary

Material in Table S1, Tables S2–S5, and Tables S6–S9,

respectively.

Results based on the single template structure
from x-ray crystallography

As shown in Table S1 (see Supplementary Material), the

high resolution Ca-Ca force field suggests the mutations of

G3T, D4R, I14V, H16V, P17H, R22N, Q26F, G28F,

K36(V/F), K39(A/F/Y), and K40N, when the number of mu-

tations is limited to be not more than 10.

Results based on the flexible templates from
molecular dynamics simulations with Generalized
Born implicit solvation model

In this run, when an upper bound of 10 is imposed on the

number of mutations, the weighted average sequence selec-

tion model driven by the centroid-centroid force field sug-

gests the mutations of P5R, H16(F/I), P17(Q/N/R), P21I,

Q26(I/L/Y), G28L, G31(K/Q), G34R, T35W, K36W, and

K39(L/Y) (see Table S2 in Supplementary Material); the

binary distance bin sequence selection model with the same

force field prefers P5R, G12(H/D), A13F, H16(I/F/W),

P17(R/N), P21I, Q26(L/I), G28(L/Y), G31(K/Q), G34R,

T35W, K36(W/Y), and K39Y (see Table S3 in Supplemen-

tary Material).

For full-sequence design, the following predictions given

by the weighted average model yield the highest fold

specificity: G1D, I2(F/M), G3H, D4(E/G), P5(K/Q), T7(R/

H/K), K10(G/H), S11(K/H), G12(N/H), A13(I/F), H16I,

P17R, P21I, R22(T/H/Q/K), R23(G/Q), Y24I, K25(G/R/N),

Q26(I/L), I27(L/Y), G28(Y/L), T29K, G31(K/Q), P33E,

G34R, T35W, K36W, K39(L/Y), K40(N/Q/R), and P41(Q/

T) (see Table S4 in Supplementary Material); the corre-

sponding predictions made by the distance bin model are:

I2M, D4(N/K), P5N, T7(N/G), K10G, S11(R/E/D), G12(D/

H/K), A13F, I14F, H16W, P17(R/K), P21F, R22H, R23H,

Y24I, K25H, Q26I, I27Y, G28Y, T29(N/Q/E/K), G31Q,

TABLE 5 For either up to 10 mutations or full-sequence design, common mutations suggested by both the weighted average model

(Eq. 3) and the binary distance bin model (Eq. 7) that are found in both sets of templates are underlined; those underlined mutations

that are found in both cases of #10 mutations and full-sequence design are added an asterisk each

Templates from MD simulations with GB implicit solvent Templates from MD simulations with explicit water molecules

Up to 10 mutations P5R H16(F/I) P17(N/R) H16(F/I) P21(I/Y) Q26(I/F)

P21I Q26(I/L) G28L G28L G34R* T35W

G31(K/Q) G34R* T35W K36W K39Y*

K36W K39Y*

I2M K10G G12H G1D I2F D4K

A13F P17R R22H T7N K10G A13I

Full sequence design Y24I Q26I I27Y I14L P17R P21I

G28Y T29K G31Q R22Q R23G Y24L

G34R* T35W K39Y* K25R Q26F I27Y

G28Y G34R* K36W

K39Y* K40R P41(G/Q)
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P33Q, G34R, T35W, K36Y, K39Y, and P41(K/N) (see

Table S5 in Supplementary Material).

Results based on the flexible templates from
molecular dynamics simulations with explicit
water molecules

For this set of templates, when the number of mutations is

restricted to be #10, the weighted average model suggests

the mutations of G3D, P5(R/N), H16(I/F/Y), P21(I/Y/V),

Q26(I/F), G28L, G31(Q/N), G34R, T35W, K36W, and

K39(L/Y) (see Table S6 in Supplementary Material); the

distance bin model selects G12(D/E), A13F, H16(L/F/I),

P21(Y/I), Q26(I/F/L), G28(L/Y), G34R, T35W, K36W, and

K39Y (see Table S7 in Supplementary Material).

In the case of full-sequence design, the weighted average

model suggests the following mutations: G1(D/E), I2F,

G3D, D4K, P5N, T7N, K10G, S11H, G12H, A13(Y/I),

I14L, H16(Y/I/F), P17R, P21I, R22(G/Q), R23G, Y24L,

K25(R/G), Q26F, I27Y, G28Y, T29K, G31N, P33N, G34R,

T35W, K36W, K39(Y/I), K40R, and P41(G/T/Q) (see Table

S8 in Supplementary Material); the corresponding mutations

selected by the distance bin model are: G1D, I2F, G3H,

D4K, P5H, T7(K/N), K10G, S11(N/G), G12(K/E), A13(F/I),

I14L, H16W, P17R, P21I, R22(N/Q/T), R23G, Y24(I/L),

K25R, Q26F, I27Y, G28Y, T29H, G31H, P33R, G34R,

T35Y, K36W, K39Y, K40(N/R/Q), and P41(G/Q) (see

Table S9 in Supplementary Material).

Similarities and differences between results
based on the two sets of flexible templates from
molecular dynamics simulations

While the results from the single x-ray crystal structure are

based on the high resolution Ca-Ca force field and should

stand alone by themselves, results based on the two sets of

flexible templates from MD simulations are all produced

using the centroid-centroid force field. In the latter case, high

TABLE 6 Different mutations suggested by the weighted average model (Eq. 3) and the binary distance bin model (Eq. 7) in each of

the cases of #10 mutations and full-sequence design and in each of the two sets of flexible templates based on MD simulations

Templates from MD simulations with GB implicit solvent Templates from MD simulations with explicit water molecules

Up to 10 mutations Weighted average model Weighted average model

P17Q K39L G3D P5(R/N) H16Y

P21V G31(Q/N) K39L

Distance bin model Distance bin model

G12(H/D) A13F H16W G12(D/E) A13F H16L

Q26Y G28Y K36Y Q26L G28Y

Full sequence design Weighted average model Weighted average model:

G1D I2F G3H G1E G3D P5N

D4(E/G) P5(K/Q) T7(R/H/K) S11H G12H A13Y

K10H S11(K/H) G12N H16(Y/I/F) R22G K25G

A13I H16I P21I T29K G31N P33N

R22(T/Q/K) R23(G/Q) K25(G/R/N) T35W K39I P41T

Q26L I27L G28L

G31K P33E K36W

K39L P41(Q/T)

Distance bin model: Distance bin model:

D4(N/K) P5N T7(N/G) G3H P5H T7K

S11(R/E/D) G12(D/K) I14F S11(N/G) G12(K/E) A13F

H16W P17K P21F H16W R22(N/T) Y24I

R23H K25H T29(N/Q/E) T29H G31H P33R

P33Q K36Y P41(K/N) T35Y K40(N/Q)

TABLE 7 For either the weighted average model (Eq. 3) or the binary distance bin model (Eq. 7) for sequence selection, common

mutations in the cases of #10 mutations and full-sequence design that are found in both sets of templates are underlined; those

underlined mutations that are found in both the weighted average model and the binary distance bin model are added an asterisk each

Templates from MD simulations with GB implicit solvent Templates from MD simulations with explicit water molecules

Weighted average model H16I P17R P21I G3D P5N H16(I/F/Y)

Q26(I/L) G28L G31(K/Q) P21I Q26F G31N

G34R* T35W K36W G34R* T35W K36W

K39(Y*/L) K39Y*

Binary distance bin model G12(H/D) A13F H16W G12E A13F P21I

P17R Q26I G28Y Q26F G28Y G34R*

G31Q G34R* K36Y K36W K39Y*

K39Y*
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level of similarity is observed between the weighted average

model predictions and the distance bin model predictions, as

well as those for up to 10 mutations and those corresponding

to the full-sequence design.

Weighted average model versus binary distance
bin model

In each of the cases of up to 10 mutations and full-sequence

design and for each of the two flexible templates from MD

simulations, the common mutations predicted by both the

weighted average model and the binary distance bin model

are tabulated in Table 5. Those common mutations that are

found in both sets of flexible templates are underlined. It

should be noted that G34R and K39Y are seen in all cases.

The high level of similarity clearly suggests that the

weighted average model can be used as a good approxima-

tion for the distance bin model, which is more computation-

ally demanding, in de novo designs where the problem

complexities are high.

The different mutations from the two models in each of the

cases of up to 10 mutations and full-sequence design for each

of the two flexible templates from MD simulations are listed

in Table 6.

Up to 10 mutations versus full-sequence design

Here we identify the mutations in the case of up to 10 mu-

tations that are also found in the full-sequence design case,

and we perform this for the weighted average formulation

FIGURE 7 Clustering and optimal reordering of the 4266

sequences predicted from all sequence selection models with

the flexible templates. Dotted lines indicate cluster bound-

aries. Different amino acids at the 41 positions are illustrated

with different colors.
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and the distance bin formulation for each of the two template

sets. The results can be found in Table 7. The common mu-

tations that are the same for both sets of flexible templates are

underlined. In each of the four cases shown, the number of

common mutations is close to 10, indicating that predictions

for up to 10 mutations are usually also found in the full-

sequence design.

Clustering of predicted sequences

We performed sequence clustering to assess the similarity

among the sequences predicted from each of the models

using the flexible templates. The substitution matrix PAM70

was used to quantify the distance between sequences because

it is recommended for query lengths between 35 and 50 amino

acids (94,95). The diagonal of this matrix was modified so

that exact matches between amino-acid residues had equiv-

alent scores. Combining the sequences predicted from all the

models results in 4266 protein sequences with 41 amino

acids in each. We determined the best rearrangement of the

protein sequences by minimizing the sum of the overall

residue-pair distances for each position using an optimal

reordering method (unpublished data). The results for the

reordered proteins are presented in Fig. 7. Cluster boundaries

are subsequently identified from the reordered proteins using

the following method. In the final ordering, each sequence is

assigned to its own cluster. We examined the average dis-

tance between each cluster to its neighboring clusters in the

final ordering and then merged the two clusters that are of

minimum distance apart. This is done iteratively until the

maximum number of clusters (to be specified by the user) is

reached.

As shown in the figure, the largest clusters correspond to

the following sequences: G1-I2-G3-D4-(P/R/K/N)5-V6-T7-C8-

L9-K10-S11-G12-A13-I14-C15-(F/I/L)16-(P/R)17-V18-F19-C20-(I/

Y)21-R22-R23-Y24-K25-(I/L/V/F)26-I27-(I/L/Y)28-T29-C30-(K/

G)31-L32-P33-(G/R)34-W35-W36-C37-C38-(L/Y)39-K40-P41. This

is obviously contributed from the runs with not more than 10

mutations. Within these clusters, results from the four differ-

ent sets using the weighted average model and the distance

bin model with either the flexible templates from MD simu-

lations with GB implicit solvent or the templates from MD

simulations with explicit water molecules were observed

to be interspersed, suggesting a high level of conservation

among these sequences.

In addition, we compared our predictions to 90 human

b-defensin homologs obtained by running the sequence

alignment tool of PSI-BLAST, which was created by the

National Center for Biotechnology Information of the

National Institute of Health, with the default threshold of

0.005 for the position conservation score. Residues at each of

the 41 positions found among these homologs are listed in

Table 8. To note, except for positions 28, 35, 36, and 39,

residues in the major clusters shown above are found in these

homologs. This reveals that while our predictions are

natural-looking to a large extent, some positions are diverse

enough for favorable potential energy contributions.

CONCLUSIONS

A new de novo protein design methodology, which incor-

porates true backbone flexibility (71) as defined by bounded

continuous values of dihedral angles and Ca-Ca distances, is

presented. Its application on full-sequence design of small

proteins is demonstrated with the study of redesigning

hbD-2, which is a 41-residue cationic peptide central to the

defense of innate immune system against microbial attack.

This study about hbD-2 also shows that the framework can

serve as a useful predictive tool for screening peptide/protein

drugs and speeding up their development process.

TABLE 8 Residues at each of the 41 positions among the

human b-defensin homologs obtained by using PSI-BLAST;

those with an asterisk agree with the major clusters of all our

predicted sequences

Position Residues

1 G*

2 I*,A,V

3 G*,S,M,R,N,I,K,E,T

4 D*,N,G,S,T,E

5 P*,S,H,R*,F,Y,T

6 V*,I,L,R,Q,F,A,K

7 T*,S,K,Q,A

8 C*,Y

9 L*,I,A,S,V,R,Y,H,G,M,W,F,C

10 K*,R,T,L,G,I,Q,W,M,S,E,A,V

11 S*,N,K,H,Y,I,R,A

12 G*,R,K,S,M,N,I

13 A*,G,N,D,R

14 I*,V,F,R,T,Y,A,S

15 C*

16 H,Y,I*,V,M,W,L*,A,F*,Q,R

17 P*,R*,S,G,L,N,A,Y,T,F

18 V*,R,I,P,G,S,A,D,T,F,N,L,Y,K,M

19 F*,S,G,K,R,W,C,L,Y,Q,E,N,D,T

20 C*,I

21 P,L,A,T,I*,G,S,K,R,N

22 R*,G,P,V,T,H,L,Y,W

23 R*,S,G,N,K,P,H,A,T,F,L

24 Y*,M,S,F,L,T,R,H,Q,I,E

25 K*,R,E,I,D,L,Y,N,T

26 Q,E,R,S,V*,L*

27 I*,V,N,L,G

28 G

29 T*,V,N,R,S,I,H

30 C*

31 G*,S,V,L,F,H,R,I,Y

32 L*,V,G,M,T,H,A,F,S,R,E,P,D,K

33 P*,S,R,G,A,F,T,Y,K,L

34 G*,V,A,Q,P,R*,S,K,I,F,L

35 T,I,S,V,Q,L,F,G,A,R

36 K,R,P,N

37 C*

38 C*

39 K,R,Q,H

40 K*,R

41 P*
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