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The effects of particulate air pollution on daily deaths: a
multi-city case crossover analysis
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Background: Numerous studies have reported that day-to-day changes in particulate air pollution are
associated with day-to-day changes in deaths. Recently, several reports have indicated that the software
used to control for season and weather in some of these studies had deficiencies.
Aims: To investigate the use of the case-crossover design as an alternative.
Methods: This approach compares the exposure of each case to their exposure on a nearby day, when
they did not die. Hence it controls for seasonal patterns and for all slowly varying covariates (age,
smoking, etc) by matching rather than complex modelling. A key feature is that temperature can also be
controlled by matching. This approach was applied to a study of 14 US cities. Weather and day of the
week were controlled for in the regression.
Results: A 10 mg/m3 increase in PM10 was associated with a 0.36% increase in daily deaths from internal
causes (95% CI 0.22% to 0.50%). Results were little changed if, instead of symmetrical sampling of control
days the time stratified method was applied, when control days were matched on temperature, or when
more lags of winter time temperatures were used. Similar results were found using a Poisson regression,
but the case-crossover method has the advantage of simplicity in modelling, and of combining matched
strata across multiple locations in a single stage analysis.
Conclusions: Despite the considerable differences in analytical design, the previously reported
associations of particles with mortality persisted in this study. The association appeared quite linear.
Case-crossover designs represent an attractive method to control for season and weather by matching.

T
he case-crossover design, introduced by Maclure1 in
1991, represents an attractive method to investigate the
acute effects of an exposure. It has been used, for

example, to investigate triggers of myocardial infarction.2 In
recent years, it has been applied to the analysis of the acute
effects of environmental exposures, especially air pollution.3–6

In the case-crossover approach, a case-control study is
conducted whereby each person who had an event is
matched with their self on a nearby time period where he
or she did not have the event. The subject’s characteristics
and exposures at the time of the case event are compared
with those of a control period in which the event did not
occur. Each risk set consists of one individual as that
individual crosses over between different exposure levels in
the interval between the two time periods. These matched
pairs may be analysed using conditional logistic regression.
Multiple control periods may be used.
Applied to the association of air pollution with risk of

death, the approach has several advantages. First, it clarifies a
key feature of the study of acute response to air pollution.
Because in this analysis each subject serves as their own
control, the use of a nearby day as the control period means
that all covariates that change slowly over time, such as
smoking history, age, body mass index, usual diet, diabetes,
etc, are controlled for by matching.
The second advantage involves the method of control for

seasonal variations in mortality risk. The other possible
technique to analyse the association of short term changes in
air quality with short term changes in the risk of death or
hospital admission has been to collapse the data to daily
counts, and use Poisson regression of the daily data.7 Because
these regressions make comparisons across the full range of
data, including multiple years, it is necessary to control for
season and long term time trends. While several approaches
have been taken to control for the seasonal patterns in the

data,8 9 in 1993 generalised additive models10 were applied to
these analyses,11 and that technique quickly became the
standard in subsequent studies.12 13 These models are
attractive because they use smooth curves to control for
season (and weather).
Non-parametric smoothing is attractive when one believes

a non-linear association exists with a covariate, since it is
more flexible than parametric approaches.10 However, recent
studies have reported problems with the algorithms that
implement these models.14 The standard errors of the
parametric terms, including the hypothesis variables, are
not estimated correctly.15 Because too small estimates of
within location standard errors leads to larger estimates of
heterogeneity (the between location variance), recent reana-
lyses of multi-location studies did not show bias in the
estimated standard errors of the combined effect esti-
mates.16 17

These problems have encouraged reanalysing previous
studies to confirm whether the reported associations still
hold. Natural splines are a possible alternative, and have been
used previously,11 but they have some sensitivity to the
locations of the knots for the splines. Details of spline models
have been published elsewhere,10 11 but in essence, they
divide a continuous variable into a set of discrete ranges, and
fit separate polynomials in each range. The boundary points
of the ranges are called knots. Natural splines have recently
been applied to a reanalysis of the National Mortality and
Morbidity Air Pollution Study (NMMAPS), a large multi-city
study of particulate air pollution and daily deaths.14 There has
been a continuing debate over how many degrees of freedom
are appropriate to use to control for season, and switching
from non-parametric smoothing to natural splines does not
resolve this issue. More recently, similar debates have
emerged about how many degrees of freedom to use for
weather.
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The large number of studies of daily changes in air
pollution and deaths has been a basis for tighter air pollution
standards in both the United States and Europe. The recent
questions over the reliability of these estimates have, there-
fore, considerable public health importance.
The case-crossover design controls for seasonal variation,

time trends, and slowly time varying confounders by design
because the case and control periods in each risk set are
separated by a relatively small interval of time. Bateson and
Schwartz18 19 showed that by choosing control days close to
event days, even very strong confounding of exposure by
seasonal patterns could be controlled by matching in the
case-control approach. Also, because the analysis is of
matched strata of days for each individual, it is straightfor-
ward to combine events from multiple locations in a single
analysis. The difference in seasonal patterns from city to city
has prevented this approach in multi-city studies using
Poisson regression. This makes the approach an attractive
alternative to the Poisson models. While Bateson and
Schwartz19 have shown that the power is lower in the case-
crossover approach, this is less of a concern in a large multi-
city study. Because the case-crossover approach focuses on
individual events, rather than daily counts, it also makes
examination of effect modification more straightforward.
While it is straightforward to sample control days in a

manner that removes seasonal confounding, there can be a
subtle selection bias in these analyses.19–21 For example, days
before the first event serve as control days, but cannot serve
as event days, and occasional days with missing data for
exposure during the event series can further increase
selection bias. Further, Lumley and Levy20 have pointed out
that the selection of controls is not independent sampling,
since the case day always falls in the middle. This introduces
a small selection bias as well. Lumley and Levy20 suggest a
time stratified approach, where the control days for a given
subject are randomly selected from all days in the same
month of the same year. Bateson and Schwartz19 suggested
that maintaining symmetrical control sampling would
provide better seasonal control, and demonstrated an
adjustment method that gives unbiased estimates. A recent
simulation study showed that both approaches give unbiased
estimates and unbiased coverage probabilities.22 I have
applied both approaches to a multi-city study of particulate
air pollution and daily deaths in a study of 14 US cities.
For comparison, I have also analysed those cities using

Poisson regression of daily counts, with penalised splines23

used to control for season and weather. Penalised splines do
not suffer the standard error problem of the earlier general-
ised additive model approaches.

DATA AND METHODS
Most cities in the USA only monitored PM10 once every six
days. This can create difficulties in finding control days close

to event days. To avoid this, I studied 14 US cities with daily
monitoring schedules: Birmingham, AL; Boulder, CO;
Canton, OH; Cincinnati, OH; Columbus, OH; Chicago, IL;
Colorado Springs, CO; Detroit, MI; Minneapolis/St Paul, MN;
New Haven, CT; Pittsburgh, PA; Provo-Orem, UT; Seattle,
WA; and Spokane, WA. I chose the metropolitan county
containing each city except for Minneapolis and St Paul,
where both metropolitan counties were combined and
analysed as one city.

Daily mortality
Deaths in the metropolitan county containing each city were
extracted from tapes prepared by the National Center for
Health Statistics (NCHS) for the calendar years 1986 (when
PM10 monitoring began to be phased in by the US EPA) to
1993. Deaths from accidental causes (International
Classification of Diseases 9th Revision, ICD9 >800) were
excluded, as were all deaths that occurred outside of the city.
While deaths were available from 1986, in some cases PM10

monitoring did not begin until later. This results in some
variation in the study period by city.

Exposure and weather data
Daily measurements of mean temperature and relative
humidity were obtained from the nearest National Weather
Service Surface Station for each county (EarthInfo CD NCDC
Surface Airways, EarthInfo Inc., Boulder, CO).
Air pollution data for PM10 were obtained from the US

Environmental Protection Agency’s Aerometric Retrieval
System (AIRS). Many of the cities have more than one
monitoring location, requiring a method to average over
multiple locations. This study uses an algorithm previously
reported.24 To ensure that the exposure measure represented
general population exposure and not local conditions affect-
ing only the immediate vicinity of a given monitor, the
correlations among all monitors in each county were
computed. Monitors within the lowest 10th centile of the
correlation across all counties were excluded. While all
locations had daily monitoring for PM10 by at least one
monitor, some monitors only measure PM10 one day in three
or one day in six, and different monitors have different
means and standard deviations. I did not want the daily
pollution value to change from day to day because of changes
in which monitors reported, as opposed to differences in
actual ambient levels. In each city the daily mean among
monitors for each pollutant was calculated using an
algorithm that accounted for differences in the annual mean
and the standardised deviations of each monitor as follows.
The daily standardised deviations for each monitor on each
day were averaged; these were then multiplied by the
standard deviation of all of the monitor readings for the
entire year, and added back in the annual average of all of the
monitors.13 I used the air pollution concentration the day
before each death as the exposure variable, because the
NMMAPS13 14 study has found that to be the most predictive
single day exposure, and presents that exposure metric in
most of its publications. The NMMAPS study could not

Main messages

N Case-crossover designs allow assessment of the short
term effects of air pollution without the use of complex
models to control for season and weather.

N They also facilitate the combination of data across
study locations and examination of effect modification.

N Using this approach in a study of 14 cities, a similar
association of particles with daily deaths was found as
in more traditional studies.

N The particle associations are robust to method.

Policy implications

N The associations between particles and mortality risk
are unlikely to be confounded by weather and season,
and are robust to analytical method.

N Substantial public health benefits are likely to result
from controlling the sources of this pollution.

Case crossover analysis of air pollution 957

www.occenvmed.com

http://oem.bmj.com


analyse multi-day exposures because most of their cities only
measured PM10 one day in six. The use of the same exposure
metric facilitates comparisons between the studies.

Analytical strategy
Several analyses were conducted. The basic analysis used
conditional logistic regression to analyse the data in each city,
in a case-crossover design, using the Bateson and Schwartz
method to choose control days.19 I chose this because our
simulations showed it did slightly better in the face of strong
seasonal patterns and time trends.
Matched strata were constructed for each subject (that is,

death), consisting of the event day (day of death) and 18
matched control days. These days were chosen to be the days
7–15 days before the event day, and the days 7–15 days after
the event day. Control days were not chosen closer to the
event day to avoid serial correlation in the pollution and
mortality data. Control days were chosen symmetrically
about the event day because Bateson and Schwartz18 showed
that symmetric control days were needed to control for long
term time trends (if present). Navidi25 pointed out that bi-
directional sampling is needed to avoid some biases in the
case-control study, and does not present any conceptual
difficulties as long as the inactivity of the subject after death
does not affect the air pollution concentrations. The adjust-
ment method of Bateson and Schwartz19 was used to address

the small selection bias pointed out by Lumley and Levy.20

Briefly, this consists of creating a pseudo-data set with the
same exposure variables as in the real data, but with one
death on every day. By construction, there can be no
association between pollution and the risk of death in this
dataset. The estimated coefficient obtained from this pseudo-
data set was used as an estimate of the bias, and subtracted
from the naı̈ve estimate obtained analysing the real data.
In all analyses, I controlled for day of the week,

temperature, and relative humidity. Temperature may be
non-linearly related to the risk of death, and so I used
regression splines to control for temperature on the day of
death and the day before death. These splines used 3 degrees
of freedom each. Relative humidity was controlled for in a
similar manner.
The first analysis used a two stage approach. A city specific

regression was fit using the matched strata from each city.
The log odds ratios from those 14 analyses were then
combined using the iterative maximum likelihood algorithm
of Berkey and coworkers,26 allowing for heterogeneity in
effect across city. In this analysis, the splines for temperature
could have different coefficients in different studies. The
random effects estimate was used in this case, whether or not
the random variance component was significant, because the
significance test for that component is weak, and I wanted to
be sure to incorporate heterogeneity.

Table 1 Descriptive statistics showing dates of study in each city, and the 25th, 50th, and 75th centiles of the environmental
variables in each city

City
Study dates
(available PM10)

Temperature
( C̊)

Relative
humidity

PM10

(mg/m3)
Non-accidental
deaths

Birmingham 1/4/87–31/12/93 11 62 20 60996
18 71 31
24 80 46

Boulder 1/1/86–31/12/93 3 40 17 7655
11 52 25
19 65 35

Canton 1/1/89–24/12/93 2 66 19 13677
11 74 26
19 82 34

Chicago 1/3/88–24/12/93 2 62 23 267147
11 70 33
19 79 46

Cincinnati 2/8/88–31/12/93 4 64 23 41496
13 72 32
21 81 44

Colorado Springs 1/7/87–24/12/93 2 39 18 12663
11 51 23
18 66 31

Columbus 1/1/86–31/12/93 3 64 20 28907
12 70 28
21 80 39

Detroit 1/5/86–24/12/93 2 64 21 145195
11 71 32
19 79 49

Minneapolis/St Paul 1/4/87–24/12/93 21 60 17 75529
9 69 24

19 78 35
New Haven 1/5/87–31/12/91 3 57 17 32401

12 67 26
20 77 38

Pittsburgh 1/1/87–24/12/93 3 61 19 178649
12 70 30
20 79 47

Provo-Orem 1/4/87–31/12/93 3 39 21 7697
12 52 30
21 72 45

Seattle 1/1/86–24/12/93 7 67 18 83538
11 77 27
16 85 39

Spokane 1/1/86–24/12/93 2 49 23 12964
8 68 36

16 84 57
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Because the control days are chosen close to the event day
in the case-crossover analysis, the range of variation of
temperature, and the range of its effects, is lower than in
other study designs. This suggested that I could aggregate all
of the strata together, and analyse the association with air
pollution across all 14 cities in a single model. This is an
attractive feature of the study design, and constituted the
second analysis. It is equivalent to assuming no heterogeneity
in response across cities, however.
In the third analysis, I used the time stratified method of

Lumley and Levy20 to select control days for each person who
died. In addition to matching on season, I also matched on
temperature. That is, I chose control days to be days in the
same month and year as the death occurred, that also had the
same temperature (rounded to degree Celsius). In these
analyses, I continued to control for humidity on the same and
the previous day, and for temperature on the previous day,
using regression splines. Both two stage and single stage
analyses were done using the time stratified control selection
method as well.
To facilitate comparison with more traditional Poisson

regression analysis, I reduced the data to counts of daily
deaths, and performed Poisson regressions in each city. These
models used penalised splines with 4 degrees of freedom per
year for season and 3 degrees of freedom for each weather

variable (today’s and yesterday’s temperature and humidity),
as well as day of the week dummy variables. The use of a pre-
specified fixed number of degrees of freedom in a penalised
spline model reduces it to a ridge regression, with well
developed methods for estimating standard errors, unlike the
problems with generalised additive models.
To test the shape of the dose-response relation, I replaced

the linear term for PM10 with the indicator variables for days
when concentrations were between 15 and 25 mg/m3,
between 25 and 34 mg/m3, between 35 and 44 mg/m3, and
45 mg/m3 and above. The days with concentrations below
15 mg/m3 served as the reference level. This model was fit
using the single stage method, combining strata across all
cities

RESULTS
Table 1 shows the 25th, 50th, and 75th centiles of the
distribution of air pollution and weather in each of the 14
locations, as well as the total number of deaths studied in
each location. Weather was only modestly correlated with
PM10 in these locations, as shown in table 2.
In the two stage analysis, I found a significant association

between PM10 and the odds of dying. The magnitude of the
association was a 0.36% increase in the risk of death per
10 mg/m3 increment of PM10 (95% CI 0.22% to 0.50%).
Combining all the strata and analysing in one stage had little
impact on the estimate (0.33% increase, 95% CI 0.19% to
0.46%). Table 3 shows the individual city results. There was
no evidence for heterogeneity in the association (x2=12.17
on 13 df, p=0.51), but a random variance component was
kept to be conservative.
Table 4 shows the results of further sensitivity analyses.

Matching on same day temperature (and continuing to
control for humidity and previous day’s temperature) had
little impact on the effect estimates, which were in fact
slightly larger than those found without matching. Further,
the results were not noticeably different from those found
using a more traditional Poisson regression analysis.
Figure 1 shows the results of the analysis using categories

of PM10 exposure to look at the dose-response curve. There
was little evidence of deviation from linearity.

DISCUSSION
Substantively, this analysis confirms that using parametric
regression techniques which avoid the software problems in
generalised additive model software, one still finds a
significant association between daily levels of PM10 and
daily deaths. It extends that finding by: (a) doing so using a
very different approach, indicating a robustness of the results
to type of modelling; and (b) in particular using an approach

Table 2 Correlation between PM10 and other
environmental variables in the study locations

City
Temperature
( C̊) Relative humidity

Birmingham 0.26 20.3
Boulder 20.07 20.23
Canton 0.42 20.16
Chicago 0.36 20.3
Cincinnati 0.44 20.00
Colorado Springs 20.34 20.11
Columbus 0.41 20.07
Detroit 0.37 20.14
Minneapolis/St Paul 0.29 20.35
New Haven 0.05 20.15
Pittsburgh 0.45 20.23
Provo-Orem 20.41 0.33
Seattle 20.22 20.11
Spokane 20.01 20.19

Table 3 Percent change in risk of death for a 10 mg/m3

increase in PM10 by city, and overall, using either a two
stage or single stage analysis

City % change 95% CI

Birmingham 20.01 20.58 to 0.56
Boulder 2.59 0.66 to 4.56
Canton 20.02 21.67 to 1.65
Chicago 0.39 0.14 to 0.64
Cincinnati 0.32 20.52 to 1.15
Colorado Springs 0.35 21.01 to 1.74
Columbus 0.61 20. 59 to 1.81
Detroit 0.47 0.15 to 0.78
Minneapolis/St Paul 0.63 0.06 to 1.21
New Haven 0.27 20.63 to 1.19
Pittsburgh 0.30 20.05 to 0.65
Provo-Orem 0.26 20.77 to 2.59
Seattle 0.14 20.32 to 0.61
Spokane 0.32 20.20 to 1.21

Overall two stage 0.36 0.22 to 0.50
Overall single stage 0.33 0.19 to 0.46

Analyses are matched on subject and season, and control for weather
(using splines) and day of the week.

Table 4 Percent change in the risk of death for a
10 mg/m3 increase in PM10 in 14 US cities

Method % increase 95% CI

More winter temperature lags*
Two stage 0.39 0.23 to 0.56
One stage 0.32 0.19 to 0.46

Time stratified with temperature
matching�

Two stage 0.39 0.19 to 0.58
One stage 0.53 0.34 to 0.72

Poisson regression` 0.40 0.18, 0.62

*More lags of winter temperature (lags 2–4).
�Time stratified approach to matching on season and temperature
(rounded to the nearest degree Celsius.
`Poisson regression analysis with penalised splines to control for season
and weather.
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that avoids having to model seasonal patterns at all,
obviating arguments about the complexity of those models.
Methodologically, it shows an approach that has certain

advantages over the previous methods applied to multi-city
studies. While case-crossover analyses have been reported in
single city studies,3–6 19 this is the first application to multi-
city studies in air pollution. The results of the primary
analysis are indistinguishable from the results of a Poisson
regression applied to the same data. Wherein lie the potential
advantages?
First, case-crossover methods allow the possibility of

avoiding arguments about how many degrees of freedom
and what functions are necessary to control for season, since
seasonal control is done by matching. It also makes the
method of seasonal control more accessible to readers less
familiar with the literature on splines and smoothing.
Matching within two weeks is more intuitive than choosing
a number of degrees of freedom per year for seasonal control.
Splines and other flexible functions can fit the data in ways
not expected. For example, consider a study interested in the
immediate effects of ambient temperature on mortality risk.
Figure 2 shows the results of fitting a 7 degree of freedom per

year spline model to explain seasonality for daily deaths in
Chicago during the years 1993–97. In the summer of 1995
there was a serious heat wave in Chicago, which was
responsible for an estimated 400 early deaths over a six day
period. One can see that the 7 df/year seasonal model is
fitting a peak of mortality in the middle of the usual summer
trough in 1995. That is, 7 degrees of freedom per year is
sufficient to start picking up not merely season, but also the
effects of a six day weather episode. This is in contrast to
many people’s intuition that it only removes patterns on the
order of two months or longer from the data. A standard
method of attributing deaths to heat waves is to count the
excess over the seasonally expected during the heat wave
period. Clearly, this peak in the summer months attributable
to ‘‘season’’ will reduce the number of excess deaths that can
be attributed to the coincident heat wave by that method. A
case-crossover analysis of the effects of temperature that
makes sure to choose control days outside of the heat wave
period would easily avoid this problem in identifying the
temperature effects.
Second, as shown here, for air pollution studies, it is

possible to match on temperature as well as season. This
offers great advantages. It obviates the arguments about how
to control for same day temperature. Also when matching on
season and temperature, one implicitly controls for all
interactions between those variables.
Temperature is not the only weather variable, and may

exert effects with some lags. However, Braga and colleagues27

and Cuireiro and colleagues28 have shown that the largest
weather effect is on the same day. Matching can control that
portion of the weather’s effects. Further, while there is no
explicit matching on lagged temperature, days matched to
within two weeks of time and with the same temperature do
not differ greatly in temperatures on the previous days. For
example, across these 14 cities, the mean standard deviation
of the previous day’s temperature within strata (case and
control days), after matching by current day’s temperature,
was 2.2 C̊. Hence lagged temperature is indirectly controlled
to a substantial extent by matching. The lack of change in the
risk estimate for particulate air pollution in these cities
comparing matching on temperature with regression model-
ling to control for temperature indicates that the models
adequately controlled for temperature before matching.
An additional advantage of the case-crossover design is the

ability to combine information across cities in a single stage
model. Because strata of event and control days within
subject are matched on season (and weather), it is possible to
combine these strata in a single analysis. One example of the
possibilities this engenders is the analysis of the shape of the
dose-response relation presented in fig 1. While this paper
presented a simple approach, more complex analyses, include
spline models and smoothing, are available, and in this
application need no longer be combined across cities in a two
stage model. Multilevel modelling of effect modification by
city characteristics is easily incorporated in the single stage
model. Effect modification by individual characteristics may
also be examined. In the past, this has been done by stratified
Poisson regression, such as the identification of diabetes as a
potential modifier of the effect of PM10 on hospital
admissions for heart disease,29 but identification of char-
acteristics can be more easily incorporated into the case-
crossover approach.
Nevertheless, the case-crossover approach does have

important limitations. One key limitation is the difficulty in
examining associations over longer time periods than a few
days. This limits the methods ability to examine either
harvesting or associations with longer term exposure. In
addition, while Lumley and Levy20 have shown a proper
conditional logistic likelihood with time stratified sampling,

Figure 1 shows the percent increase in the risk death on days with
PM10 concentrations in the ranges of 15–24 mg/m3, 25–34 mg/m3, 35–
44 mg/m3, and 45 mg/m3 and greater, compared to a reference of
days when concentrations were below 15 mg/m3. Risk is plotted against
the mean PM10 concentration within each category.

Figure 2 The seasonal pattern of daily deaths in Chicago in the years
1993–97 predicted by a 7 degree of freedom spline. With this many
degrees of freedom the seasonal term is starting to explain part of the
1995 Chicago heat wave, which lasted less than a week.

960 Schwartz

www.occenvmed.com

http://oem.bmj.com


and Schwartz and coworkers22 have shown both unbiased
estimates and unbiased coverage probabilities (and hence
confidence intervals), more remains to be learned about the
theoretical properties of this approach.
The examination of dose-response in this analysis shows

little evidence for a deviation from non-linearity. However, it
is important to understand that the range in exposure was
not enormous in this study. For example, annual average
PM10 concentrations in Athens exceed the highest category in
fig 1. Hence non-linearities at higher concentrations cannot
be excluded by this analysis. It is also interesting to note the
pattern of correlations between PM10 and weather variables
in table 2. The Midwestern cities all had moderate, positive
correlations between temperature and PM10. This is likely
due to the importance of sulphate particles in that region.
Sulphate levels, and levels of other long range transported
particles, tend to increase on hot days because of increased
photochemistry. In contrast, in the northwest part of the
country, the correlation was negative, and smaller. This
region is less impacted by sulphate. Hence differences in
these correlations may reflect different sources and atmo-
spheric processes contributing to exposure.
In conclusion, the reported association between short term

variations in air pollution and risk of death has been
confirmed in a study of 968 514 deaths using a substantially
different methodology than previous studies. This indicates a
robustness of the association, and avoids any of the standard
error problems of generalised additive models. The case-
crossover approach deserves attention in the future for
studies of acute health effects of pollution.
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