Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Genetics. 1999 Nov; 153(3): 1357–1369.
PMCID: PMC1460820
PMID: 10545464

Molecular evolution of two linked genes, Est-6 and Sod, in Drosophila melanogaster.

Abstract

We have obtained 15 sequences of Est-6 from a natural population of Drosophila melanogaster to test whether linkage disequilibrium exists between Est-6 and the closely linked Sod, and whether natural selection may be involved. An early experiment with allozymes had shown linkage disequilibrium between these two loci, while none was detected between other gene pairs. The Sod sequences for the same 15 haplotypes were obtained previously. The two genes exhibit similar levels of nucleotide polymorphism, but the patterns are different. In Est-6, there are nine amino acid replacement polymorphisms, one of which accounts for the S-F allozyme polymorphism. In Sod, there is only one replacement polymorphism, which corresponds to the S-F allozyme polymorphism. The transversion/transition ratio is more than five times larger in Sod than in Est-6. At the nucleotide level, the S and F alleles of Est-6 make up two allele families that are quite different from each other, while there is relatively little variation within each of them. There are also two families of alleles in Sod, one consisting of a subset of F alleles, and the other consisting of another subset of F alleles, designed F(A), plus all the S alleles. The Sod F(A) and S alleles are completely or nearly identical in nucleotide sequence, except for the replacement mutation that accounts for the allozyme difference. The two allele families have independent evolutionary histories in the two genes. There are traces of statistically significant linkage disequilibrium between the two genes that, we suggest, may have arisen as a consequence of selection favoring one particular sequence at each locus.

Full Text

The Full Text of this article is available as a PDF (184K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Aguadé M. Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics. 1998 Nov;150(3):1079–1089. [PMC free article] [PubMed] [Google Scholar]
  • Aronow B, Lattier D, Silbiger R, Dusing M, Hutton J, Jones G, Stock J, McNeish J, Potter S, Witte D, et al. Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene. Genes Dev. 1989 Sep;3(9):1384–1400. [PubMed] [Google Scholar]
  • Ayala FJ, Powell JR, Dobzhansky T. Polymorphisms in continental and island populations of Drosophila willistoni. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2480–2483. [PMC free article] [PubMed] [Google Scholar]
  • Ayala FJ, Powell JR, Tracey ML, Mourão CA, Pérez-Salas S. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics. 1972 Jan;70(1):113–139. [PMC free article] [PubMed] [Google Scholar]
  • Ayala FJ, Powell JR, Tracey ML. Enzyme variability in the Drosophila Willistoni group. V. Genic variation in natural populations of Drosophila equinoxialis. Genet Res. 1972 Aug;20(1):19–42. [PubMed] [Google Scholar]
  • Balakirev ES, Ayala FJ. Is esterase-P encoded by a cryptic pseudogene in Drosophila melanogaster? Genetics. 1996 Dec;144(4):1511–1518. [PMC free article] [PubMed] [Google Scholar]
  • Barker JS. Inter-locus interactions: a review of experimental evidence. Theor Popul Biol. 1979 Dec;16(3):323–346. [PubMed] [Google Scholar]
  • Begun DJ, Aquadro CF. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. Genetics. 1994 Jan;136(1):155–171. [PMC free article] [PubMed] [Google Scholar]
  • Begun DJ, Aquadro CF. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. [PMC free article] [PubMed] [Google Scholar]
  • Berry A, Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. [PMC free article] [PubMed] [Google Scholar]
  • Bingham PM, Chou TB, Mims I, Zachar Z. On/off regulation of gene expression at the level of splicing. Trends Genet. 1988 May;4(5):134–138. [PubMed] [Google Scholar]
  • Brown AH. Sample sizes required to detect linkage disequilibrium between two or three loci. Theor Popul Biol. 1975 Oct;8(2):184–201. [PubMed] [Google Scholar]
  • Cirera S, Aguadé M. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics. 1997 Sep;147(1):189–197. [PMC free article] [PubMed] [Google Scholar]
  • Collet C, Nielsen KM, Russell RJ, Karl M, Oakeshott JG, Richmond RC. Molecular analysis of duplicated esterase genes in Drosophila melanogaster. Mol Biol Evol. 1990 Jan;7(1):9–28. [PubMed] [Google Scholar]
  • Cooke PH, Oakeshott JG. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1426–1430. [PMC free article] [PubMed] [Google Scholar]
  • Eanes WF, Kirchner M, Yoon J, Biermann CH, Wang IN, McCartney MA, Verrelli BC. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. [PMC free article] [PubMed] [Google Scholar]
  • Feldman MW, Christiansen FB. The effect of population subdivision on two loci without selection. Genet Res. 1974 Oct;24(2):151–162. [PubMed] [Google Scholar]
  • Franklin I, Lewontin RC. Is the gene the unit of selection? Genetics. 1970 Aug;65(4):707–734. [PMC free article] [PubMed] [Google Scholar]
  • Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. [PMC free article] [PubMed] [Google Scholar]
  • Gasch A, Hinz U, Renkawitz-Pohl R. Intron and upstream sequences regulate expression of the Drosophila beta 3-tubulin gene in the visceral and somatic musculature, respectively. Proc Natl Acad Sci U S A. 1989 May;86(9):3215–3218. [PMC free article] [PubMed] [Google Scholar]
  • Hanfstingl U, Berry A, Kellogg EA, Costa JT, 3rd, Rüdiger W, Ausubel FM. Haplotypic divergence coupled with lack of diversity at the Arabidopsis thaliana alcohol dehydrogenase locus: roles for both balancing and directional selection? Genetics. 1994 Nov;138(3):811–828. [PMC free article] [PubMed] [Google Scholar]
  • Learn GH, Jr, Shore JS, Furnier GR, Zurawski G, Clegg MT. Constraints on the evolution of plastid introns: the group II intron in the gene encoding tRNA-Val(UAC). Mol Biol Evol. 1992 Sep;9(5):856–871. [PubMed] [Google Scholar]
  • Lee YM, Misra HP, Ayala FJ. Superoxide dismutase in Drosophila melanogaster: biochemical and structural characterization of allozyme variants. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7052–7055. [PMC free article] [PubMed] [Google Scholar]
  • Hasson E, Eanes WF. Contrasting histories of three gene regions associated with In(3L)Payne of Drosophila melanogaster. Genetics. 1996 Dec;144(4):1565–1575. [PMC free article] [PubMed] [Google Scholar]
  • Leicht BG, Lyckegaard EM, Benedict CM, Clark AG. Conservation of alternative splicing and genomic organization of the myosin alkali light-chain (Mlc1) gene among Drosophila species. Mol Biol Evol. 1993 Jul;10(4):769–790. [PubMed] [Google Scholar]
  • Leicht BG, Muse SV, Hanczyc M, Clark AG. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. [PMC free article] [PubMed] [Google Scholar]
  • Hill WG. Linkage disequilibrium among multiple neutral alleles produced by mutation in finite population. Theor Popul Biol. 1975 Oct;8(2):117–126. [PubMed] [Google Scholar]
  • Huang JD, Schwyter DH, Shirokawa JM, Courey AJ. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 1993 Apr;7(4):694–704. [PubMed] [Google Scholar]
  • Li WH, Nei M. Stable linkage disequilibrium without epistasis in subdivided populations. Theor Popul Biol. 1974 Oct;6(2):173–183. [PubMed] [Google Scholar]
  • Hudson RR, Kaplan NL. The coalescent process in models with selection and recombination. Genetics. 1988 Nov;120(3):831–840. [PMC free article] [PubMed] [Google Scholar]
  • Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. [PMC free article] [PubMed] [Google Scholar]
  • Markert CL, Faulhaber I. Lactate dehydrogenase isozyme patterns of fish. J Exp Zool. 1965 Aug;159(3):319–332. [PubMed] [Google Scholar]
  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. [PMC free article] [PubMed] [Google Scholar]
  • McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. [PubMed] [Google Scholar]
  • Hudson RR, Sáez AG, Ayala FJ. DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7725–7729. [PMC free article] [PubMed] [Google Scholar]
  • Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. [PubMed] [Google Scholar]
  • Mukai T, Voelker RA. The genetic structure of natural populations of Drosophila melanogaster XIII. Further studies on linkage disequilibrium. Genetics. 1977 May;86(1):175–185. [PMC free article] [PubMed] [Google Scholar]
  • Karotam J, Delves AC, Oakeshott JG. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. [PubMed] [Google Scholar]
  • Muki T, Watanabe TK, Yamaguchi O. The genetic structure of natural populations of Drosophila melanogaster. XII. Linkage disequilibrium in a large local population. Genetics. 1974 Aug;77(4):771–793. [PMC free article] [PubMed] [Google Scholar]
  • Karotam J, Boyce TM, Oakeshott JG. Nucleotide variation at the hypervariable esterase 6 isozyme locus of Drosophila simulans. Mol Biol Evol. 1995 Jan;12(1):113–122. [PubMed] [Google Scholar]
  • Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. [PubMed] [Google Scholar]
  • Nei M, Li WH. Linkage disequilibrium in subdivided populations. Genetics. 1973 Sep;75(1):213–219. [PMC free article] [PubMed] [Google Scholar]
  • Nei M, Li WH. Non-random association between electromorphs and inversion chromosomes in finite populations. Genet Res. 1980 Feb;35(1):65–83. [PubMed] [Google Scholar]
  • Kimura M, Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971 Feb 12;229(5285):467–469. [PubMed] [Google Scholar]
  • Kirby DA, Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1483–1490. [PMC free article] [PubMed] [Google Scholar]
  • Oakeshott JG, Cooke PH, Richmond RC, Bortoli A, Game AY, Labate J. Molecular population genetics of structural variants of esterase 6 in Drosophila melanogaster. Genome. 1989;31(2):788–796. [PubMed] [Google Scholar]
  • Kirby DA, Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics. 1996 Oct;144(2):635–645. [PMC free article] [PubMed] [Google Scholar]
  • Oakeshott JG, van Papenrecht EA, Boyce TM, Healy MJ, Russell RJ. Evolutionary genetics of Drosophila esterases. Genetica. 1993;90(2-3):239–268. [PubMed] [Google Scholar]
  • Kirby DA, Muse SV, Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. [PMC free article] [PubMed] [Google Scholar]
  • Kreitman M, Hudson RR. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. [PMC free article] [PubMed] [Google Scholar]
  • Odgers WA, Healy MJ, Oakeshott JG. Nucleotide polymorphism in the 5' promoter region of esterase 6 in Drosophila melanogaster and its relationship to enzyme activity variation. Genetics. 1995 Sep;141(1):215–222. [PMC free article] [PubMed] [Google Scholar]
  • Ohta T. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1940–1944. [PMC free article] [PubMed] [Google Scholar]
  • Kwiatowski J, Skarecky D, Hernandez S, Pham D, Quijas F, Ayala FJ. High fidelity of the polymerase chain reaction. Mol Biol Evol. 1991 Nov;8(6):884–887. [PubMed] [Google Scholar]
  • Ohta T. Linkage disequilibrium with the island model. Genetics. 1982 May;101(1):139–155. [PMC free article] [PubMed] [Google Scholar]
  • Ohta T, Kimura M. Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics. 1969 Sep;63(1):229–238. [PMC free article] [PubMed] [Google Scholar]
  • Seager RD, Ayala FJ. Chromosome interactions in Drosophila melanogaster. I. Viability studies. Genetics. 1982 Nov;102(3):467–483. [PMC free article] [PubMed] [Google Scholar]
  • Simonsen KL, Churchill GA, Aquadro CF. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. [PMC free article] [PubMed] [Google Scholar]
  • Peng TX, Moya A, Ayala FJ. Two modes of balancing selection in Drosophila melanogaster: overcompensation and overdominance. Genetics. 1991 Jun;128(2):381–391. [PMC free article] [PubMed] [Google Scholar]
  • Smit-McBride Z, Moya A, Ayala FJ. Linkage disequilibrium in natural and experimental populations of Drosophila melanogaster. Genetics. 1988 Dec;120(4):1043–1051. [PMC free article] [PubMed] [Google Scholar]
  • Pogulis RJ, Freytag SO. Contribution of specific cis-acting elements to activity of the mouse pro-alpha 2(I) collagen enhancer. J Biol Chem. 1993 Feb 5;268(4):2493–2499. [PubMed] [Google Scholar]
  • Stephan W, Kirby DA. RNA folding in Drosophila shows a distance effect for compensatory fitness interactions. Genetics. 1993 Sep;135(1):97–103. [PMC free article] [PubMed] [Google Scholar]
  • Strobeck C. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics. 1983 Mar;103(3):545–555. [PMC free article] [PubMed] [Google Scholar]
  • Prakash S, Lewontin RC. A molecular approach to the study of genic heterozygosity in natural populations. 3. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc Natl Acad Sci U S A. 1968 Feb;59(2):398–405. [PMC free article] [PubMed] [Google Scholar]
  • Procunier WS, Smith JJ, Richmond RC. Physical mapping of the Esterase-6 locus of Drosophila melanogaster. Genetica. 1991;84(3):203–208. [PubMed] [Google Scholar]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed] [Google Scholar]
  • Richmond RC, Gilbert DG, Sheehan KB, Gromko MH, Butterworth FM. Esterase 6 and reproduction in Drosophila melanogaster. Science. 1980 Mar 28;207(4438):1483–1485. [PubMed] [Google Scholar]
  • Tyler RH, Brar H, Singh M, Latorre A, Graves JL, Mueller LD, Rose MR, Ayala FJ. The effect of superoxide dismutase alleles on aging in Drosophila. Genetica. 1993;91(1-3):143–149. [PubMed] [Google Scholar]
  • Veuille M, King LM. Molecular basis of polymorphism at the esterase-5B locus in Drosophila pseudoobscura. Genetics. 1995 Sep;141(1):255–262. [PMC free article] [PubMed] [Google Scholar]
  • Voelker RA, Cockerham CC, Johnson FM, Schaffer HE, Mukai T, Mettler LE. Inversions fail to account for allozyme clines. Genetics. 1978 Mar;88(3):515–527. [PMC free article] [PubMed] [Google Scholar]
  • Richter B, Long M, Lewontin RC, Nitasaka E. Nucleotide variation and conservation at the dpp locus, a gene controlling early development in Drosophila. Genetics. 1997 Feb;145(2):311–323. [PMC free article] [PubMed] [Google Scholar]
  • Rosato E, Peixoto AA, Costa R, Kyriacou CP. Linkage disequilibrium, mutational analysis and natural selection in the repetitive region of the clock gene, period, in Drosophila melanogaster. Genet Res. 1997 Apr;69(2):89–99. [PubMed] [Google Scholar]
  • Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. [PubMed] [Google Scholar]
  • Rozas J, Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  • Russo CA, Takezaki N, Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. [PubMed] [Google Scholar]
  • Zapata C, Alvarez G. On the detection of nonrandom associations between DNA polymorphisms in natural populations of Drosophila. Mol Biol Evol. 1993 Jul;10(4):823–841. [PubMed] [Google Scholar]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed] [Google Scholar]
  • Zouros E. The distribution of enzyme and inversion polymorphism over the genome of Drosophila: evidence against balancing selection. Genetics. 1976 May;83(1):169–179. [PMC free article] [PubMed] [Google Scholar]
  • Schaeffer SW, Miller EL. Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1993 Oct;135(2):541–552. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press