U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 109

1.

Prader-Willi syndrome

Prader-Willi syndrome (PWS) is characterized by severe hypotonia, poor appetite, and feeding difficulties in early infancy, followed in early childhood by excessive eating and gradual development of morbid obesity (unless food intake is strictly controlled). Motor milestones and language development are delayed. All individuals have some degree of cognitive impairment. Hypogonadism is present in both males and females and manifests as genital hypoplasia, incomplete pubertal development, and, in most, infertility. Short stature is common (if not treated with growth hormone). A distinctive behavioral phenotype (temper tantrums, stubbornness, manipulative behavior, and obsessive-compulsive characteristics) is common. Characteristic facial features, strabismus, and scoliosis are often present. [from GeneReviews]

MedGen UID:
46057
Concept ID:
C0032897
Disease or Syndrome
2.

Meckel syndrome, type 1

Meckel syndrome, also known as Meckel-Gruber syndrome, is a severe pleiotropic autosomal recessive developmental disorder caused by dysfunction of primary cilia during early embryogenesis. There is extensive clinical variability and controversy as to the minimum diagnostic criteria. Early reports, including that of Opitz and Howe (1969) and Wright et al. (1994), stated that the classic triad of Meckel syndrome comprises (1) cystic renal disease; (2) a central nervous system malformation, most commonly occipital encephalocele; and (3) polydactyly, most often postaxial. However, based on a study of 67 patients, Salonen (1984) concluded that the minimum diagnostic criteria are (1) cystic renal disease; (2) CNS malformation, and (3) hepatic abnormalities, including portal fibrosis or ductal proliferation. In a review of Meckel syndrome, Logan et al. (2011) stated that the classic triad first described by Meckel (1822) included occipital encephalocele, cystic kidneys, and fibrotic changes to the liver. Genetic Heterogeneity of Meckel Syndrome See also MKS2 (603194), caused by mutation in the TMEM216 gene (613277) on chromosome 11q12; MKS3 (607361), caused by mutation in the TMEM67 gene (609884) on chromosome 8q; MKS4 (611134), caused by mutation in the CEP290 gene (610142) on chromosome 12q; MKS5 (611561), caused by mutation in the RPGRIP1L gene (610937) on chromosome 16q12; MKS6 (612284), caused by mutation in the CC2D2A gene (612013) on chromosome 4p15; MKS7 (267010), caused by mutation in the NPHP3 (608002) gene on chromosome 3q22; MKS8 (613885), caused by mutation in the TCTN2 gene (613846) on chromosome 12q24; MKS9 (614209), caused by mutation in the B9D1 gene (614144) on chromosome 17p11; MKS10 (614175), caused by mutation in the B9D2 gene (611951) on chromosome 19q13; MKS11 (615397), caused by mutation in the TMEM231 gene (614949) on chromosome 16q23; MKS12 (616258), caused by mutation in the KIF14 gene (611279) on chromosome 1q32; MKS13 (617562), caused by mutation in the TMEM107 gene (616183) on chromosome 17p13; and MKS14 (619879), caused by mutation in the TXNDC15 gene (617778) on chromosome 5q31. [from OMIM]

MedGen UID:
811346
Concept ID:
C3714506
Disease or Syndrome
3.

Carnitine palmitoyl transferase II deficiency, neonatal form

Carnitine palmitoyltransferase II (CPT II) deficiency is a disorder of long-chain fatty-acid oxidation. The three clinical presentations are lethal neonatal form, severe infantile hepatocardiomuscular form, and myopathic form (which is usually mild and can manifest from infancy to adulthood). While the former two are severe multisystemic diseases characterized by liver failure with hypoketotic hypoglycemia, cardiomyopathy, seizures, and early death, the latter is characterized by exercise-induced muscle pain and weakness, sometimes associated with myoglobinuria. The myopathic form of CPT II deficiency is the most common disorder of lipid metabolism affecting skeletal muscle and the most frequent cause of hereditary myoglobinuria. Males are more likely to be affected than females. [from GeneReviews]

MedGen UID:
318896
Concept ID:
C1833518
Disease or Syndrome
4.

Cutis laxa, autosomal recessive, type 1A

FBLN5-related cutis laxa is characterized by cutis laxa, early childhood-onset pulmonary emphysema, peripheral pulmonary artery stenosis, and other evidence of a generalized connective disorder such as inguinal hernias and hollow viscus diverticula (e.g., intestine, bladder). Occasionally, supravalvar aortic stenosis is observed. Intrafamilial variability in age of onset is observed. Cardiorespiratory failure from complications of pulmonary emphysema (respiratory or cardiac insufficiency) is the most common cause of death. [from GeneReviews]

MedGen UID:
1846304
Concept ID:
C5848058
Disease or Syndrome
5.

Cutis laxa, autosomal recessive, type 1B

EFEMP2-related cutis laxa, or autosomal recessive cutis laxa type 1B (ARCL1B), is characterized by cutis laxa and systemic involvement, most commonly arterial tortuosity, aneurysms, and stenosis; retrognathia; joint laxity; and arachnodactyly. Severity ranges from perinatal lethality as a result of cardiopulmonary failure to manifestations limited to the vascular and craniofacial systems. [from GeneReviews]

MedGen UID:
482428
Concept ID:
C3280798
Disease or Syndrome
6.

Infantile nephronophthisis

Nephronophthisis is a disorder that affects the kidneys. It is characterized by inflammation and scarring (fibrosis) that impairs kidney function. These abnormalities lead to increased urine production (polyuria), excessive thirst (polydipsia), general weakness, and extreme tiredness (fatigue). In addition, affected individuals develop fluid-filled cysts in the kidneys, usually in an area known as the corticomedullary region. Another feature of nephronophthisis is a shortage of red blood cells, a condition known as anemia.

Nephronophthisis eventually leads to end-stage renal disease (ESRD), a life-threatening failure of kidney function that occurs when the kidneys are no longer able to filter fluids and waste products from the body effectively. Nephronophthisis can be classified by the approximate age at which ESRD begins: around age 1 (infantile), around age 13 (juvenile), and around age 19 (adolescent).

Nephronophthisis can occur as part of separate syndromes that affect other areas of the body; these are often referred to as nephronophthisis-associated ciliopathies. For example, Senior-Løken syndrome is characterized by the combination of nephronophthisis and a breakdown of the light-sensitive tissue at the back of the eye (retinal degeneration); Joubert syndrome affects many parts of the body, causing neurological problems and other features, which can include nephronophthisis.

About 85 percent of all cases of nephronophthisis are isolated, which means they occur without other signs and symptoms. Some people with nephronophthisis have additional features, which can include liver fibrosis, heart abnormalities, or mirror image reversal of the position of one or more organs inside the body (situs inversus). [from MedlinePlus Genetics]

MedGen UID:
355574
Concept ID:
C1865872
Disease or Syndrome
7.

Osteopathia striata with cranial sclerosis

Most females with osteopathia striata with cranial sclerosis (OS-CS) present with macrocephaly and characteristic facial features (frontal bossing, hypertelorism, epicanthal folds, depressed nasal bridge, and prominent jaw). Approximately half have associated features including orofacial clefting and hearing loss, and a minority have some degree of developmental delay (usually mild). Radiographic findings of cranial sclerosis, sclerosis of long bones, and metaphyseal striations (in combination with macrocephaly) can be considered pathognomonic. Males can present with a mild or severe phenotype. Mildly affected males have clinical features similar to affected females, including macrocephaly, characteristic facial features, orofacial clefting, hearing loss, and mild-to-moderate learning delays. Mildly affected males are more likely than females to have congenital or musculoskeletal anomalies. Radiographic findings include cranial sclerosis and sclerosis of the long bones; Metaphyseal striations are more common in males who are mosaic for an AMER1 pathogenic variant. The severe phenotype manifests in males as a multiple-malformation syndrome, lethal in mid-to-late gestation, or in the neonatal period. Congenital malformations include skeletal defects (e.g., polysyndactyly, absent or hypoplastic fibulae), congenital heart disease, and brain, genitourinary, and gastrointestinal anomalies. Macrocephaly is not always present and longitudinal metaphyseal striations have not been observed in severely affected males, except for those who are mosaic for the AMER1 pathogenic variant. [from GeneReviews]

MedGen UID:
96590
Concept ID:
C0432268
Disease or Syndrome
8.

NPHP3-related Meckel-like syndrome

This autosomal recessive disorder is designated Meckel syndrome type 7 (MKS7) based on the classic phenotypic triad of (1) cystic renal disease; (2) a central nervous system abnormality, and (3) hepatic abnormalities, as defined by Meckel (1822), Salonen (1984), and Logan et al. (2011). According to these criteria, polydactyly is a variable feature. Herriot et al. (1991) and Al-Gazali et al. (1996) concluded that Dandy-Walker malformation can be the phenotypic manifestation of a central nervous system malformation in MKS. For a general phenotypic description and a discussion of genetic heterogeneity of Meckel syndrome, see MKS1 (249000). [from OMIM]

MedGen UID:
382217
Concept ID:
C2673885
Disease or Syndrome
9.

Renal hypodysplasia/aplasia 1

Renal hypodysplasia/aplasia belongs to a group of perinatally lethal renal diseases, including bilateral renal aplasia, unilateral renal agenesis with contralateral dysplasia (URA/RD), and severe obstructive uropathy. Renal aplasia falls at the most severe end of the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT; 610805), and usually results in death in utero or in the perinatal period. Families have been documented in which bilateral renal agenesis or aplasia coexists with unilateral renal aplasia, renal dysplasia, or renal aplasia with renal dysplasia, suggesting that these conditions may belong to a pathogenic continuum or phenotypic spectrum (summary by Joss et al., 2003; Humbert et al., 2014). Genetic Heterogeneity of Renal Hypodysplasia/Aplasia See also RHDA2 (615721), caused by mutation in the FGF20 gene (605558) on chromosome 8p22; RHDA3 (617805), caused by mutation in the GREB1L gene (617782) on chromosome 18q11; and RHDA4 (619887), caused by mutation in the GFRA1 gene (601496) on chromosome 10q25. [from OMIM]

MedGen UID:
301437
Concept ID:
C1619700
Congenital Abnormality
10.

Freeman-Sheldon syndrome

Freeman-Sheldon syndrome (FSS), or DA2A, is phenotypically similar to DA1. In addition to contractures of the hands and feet, FSS is characterized by oropharyngeal abnormalities, scoliosis, and a distinctive face that includes a very small oral orifice (often only a few millimeters in diameter at birth), puckered lips, and an H-shaped dimple of the chin; hence, FSS has been called 'whistling face syndrome.' The limb phenotypes of DA1 and FSS may be so similar that they can only be distinguished by the differences in facial morphology (summary by Bamshad et al., 2009). For a general phenotypic description and a discussion of genetic heterogeneity of distal arthrogryposis, see DA1 (108120). [from OMIM]

MedGen UID:
120516
Concept ID:
C0265224
Disease or Syndrome
11.

Mitochondrial complex V (ATP synthase) deficiency nuclear type 2

Mitochondrial encephalo-cardio-myopathy due to <i>TMEM70</i> mutation is characterized by early neonatal onset of hypotonia, hypetrophic cardiomyopathy and apneic spells within hours after birth accompanied by lactic acidosis, hyperammonemia and 3-methylglutaconic aciduria. [from ORDO]

MedGen UID:
481329
Concept ID:
C3279699
Disease or Syndrome
12.

ALG8 congenital disorder of glycosylation

CDGs, previously called carbohydrate-deficient glycoprotein syndromes, grew from hereditary multisystem disorders first recognized by Jaeken et al. (1980). The characteristic biochemical abnormality of CDGs is the hypoglycosylation of glycoproteins, which is routinely determined by isoelectric focusing of serum transferrin. Type I CDG comprises those disorders in which there is a defect in the assembly of lipid-linked oligosaccharides or their transfer onto nascent glycoproteins, whereas type II CDG comprises defects of trimming, elongation, and processing of protein-bound glycans. For a general discussion of CDGs, see CDG1A (212065). CDG1H is a severe form of CDG. The majority of patients have brain involvement, liver pathology, gastrointestinal symptoms, dysmorphism (including brachydactyly), eye involvement (especially cataract), and skin symptoms. Most patients die within the first year of life (summary by Marques-da-Silva et al., 2017). [from OMIM]

MedGen UID:
419692
Concept ID:
C2931002
Disease or Syndrome
13.

Progeroid and marfanoid aspect-lipodystrophy syndrome

The marfanoid-progeroid-lipodystrophy syndrome (MFLS) is characterized by congenital lipodystrophy, premature birth with an accelerated linear growth disproportionate to weight gain, and progeroid appearance with distinct facial features, including proptosis, downslanting palpebral fissures, and retrognathia. Other characteristic features include arachnodactyly, digital hyperextensibility, myopia, dural ectasia, and normal psychomotor development (Takenouchi et al., 2013). Takenouchi et al. (2013) noted phenotypic overlap with Marfan syndrome (154700) and Shprintzen-Goldberg craniosynostosis syndrome (182212). [from OMIM]

MedGen UID:
934763
Concept ID:
C4310796
Disease or Syndrome
14.

Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis

Cytochrome P450 oxidoreductase deficiency (PORD) is a disorder of steroidogenesis with a broad phenotypic spectrum including cortisol deficiency, altered sex steroid synthesis, disorders of sex development (DSD), and skeletal malformations of the Antley-Bixler syndrome (ABS) phenotype. Cortisol deficiency is usually partial, with some baseline cortisol production but failure to mount an adequate cortisol response in stress. Mild mineralocorticoid excess can be present and causes arterial hypertension, usually presenting in young adulthood. Manifestations of altered sex steroid synthesis include ambiguous genitalia/DSD in both males and females, large ovarian cysts in females, poor masculinization and delayed puberty in males, and maternal virilization during pregnancy with an affected fetus. Skeletal malformations can manifest as craniosynostosis, mid-face retrusion with proptosis and choanal stenosis or atresia, low-set dysplastic ears with stenotic external auditory canals, hydrocephalus, radiohumeral synostosis, neonatal fractures, congenital bowing of the long bones, joint contractures, arachnodactyly, and clubfeet; other anomalies observed include urinary tract anomalies (renal pelvic dilatation, vesicoureteral reflux). Cognitive impairment is of minor concern and likely associated with the severity of malformations; studies of developmental outcomes are lacking. [from GeneReviews]

MedGen UID:
461449
Concept ID:
C3150099
Disease or Syndrome
15.

Arthrogryposis, renal dysfunction, and cholestasis 1

Arthrogryposis, renal dysfunction, and cholestasis-1 (ARCS1) is characterized by congenital joint contractures, renal tubular dysfunction, cholestasis with low GGT (612346) activity, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life (Gissen et al., 2006; Smith et al., 2012). Another form of arthrogryposis, renal dysfunction, and cholestasis, ARCS2 (613404), is caused by mutation in the VIPAR gene on chromosome 14q24 (613401). [from OMIM]

MedGen UID:
347219
Concept ID:
C1859722
Disease or Syndrome
16.

Mitochondrial hypertrophic cardiomyopathy with lactic acidosis due to MTO1 deficiency

Combined oxidative phosphorylation deficiency-10 (COXPD10) is an autosomal recessive disorder resulting in variable defects of mitochondrial oxidative respiration. Affected individuals present in infancy with hypertrophic cardiomyopathy and lactic acidosis. The severity is variable, but can be fatal in the most severe cases (summary by Ghezzi et al., 2012). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]

MedGen UID:
1664257
Concept ID:
C4749921
Disease or Syndrome
17.

IFAP syndrome 1, with or without BRESHECK syndrome

The IFAP/BRESHECK syndrome is an X-linked multiple congenital anomaly disorder with variable severity. The classic triad, which defines IFAP, is ichthyosis follicularis, atrichia, and photophobia. Some patients have additional features, including impaired intellectual development, brain anomalies, Hirschsprung disease, corneal opacifications, kidney dysplasia, cryptorchidism, cleft palate, and skeletal malformations, particularly of the vertebrae, which constitutes BRESHECK syndrome (summary by Naiki et al., 2012). Genetic Heterogeneity of IFAP Syndrome IFAP syndrome-2 (IFAP2; 619016) is caused by heterozygous mutation in the SREBF1 gene (184756) on chromosome 17p11. [from OMIM]

MedGen UID:
1746744
Concept ID:
C5399971
Disease or Syndrome
18.

Osteodysplastic primordial dwarfism, type 1

RNU4atac-opathy encompasses the phenotypic spectrum of biallelic RNU4ATAC pathogenic variants, including the three historically designated clinical phenotypes microcephalic osteodysplastic primordial dwarfism type I/III (MOPDI), Roifman syndrome, and Lowry-Wood syndrome, as well as varying combinations of the disease features / system involvement that do not match specific defined phenotypes. Findings present in all affected individuals include growth restriction, microcephaly, skeletal dysplasia, and cognitive impairment. Less common but variable findings include brain anomalies, seizures, strokes, immunodeficiency, and cardiac anomalies, as well as ophthalmologic, skin, renal, gastrointestinal, hearing, and endocrine involvement. [from GeneReviews]

MedGen UID:
347149
Concept ID:
C1859452
Disease or Syndrome
19.

Adams-Oliver syndrome 2

Adams-Oliver syndrome-2 (AOS2) is an autosomal recessive multiple congenital anomaly syndrome characterized by aplasia cutis congenita (ACC) and terminal transverse limb defects, in association with variable involvement of the brain, eyes, and cardiovascular systems (summary by Shaheen et al., 2011). For a discussion of genetic heterogeneity of Adams-Oliver syndrome, see AOS1 (100300). [from OMIM]

MedGen UID:
481812
Concept ID:
C3280182
Disease or Syndrome
20.

Triosephosphate isomerase deficiency

Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterized by congenital hemolytic anemia, and progressive neuromuscular dysfunction beginning in early childhood. Many patients die from respiratory failure in childhood. The neurologic syndrome is variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Some patients may show additional signs such as dystonic posturing and/or spasticity. Laboratory studies show intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells (summary by Fermo et al., 2010). [from OMIM]

MedGen UID:
349893
Concept ID:
C1860808
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity