Format

Send to:

Choose Destination

Type 2 diabetes mellitus(T2D)

MedGen UID:
41523
Concept ID:
C0011860
Disease or Syndrome
Synonyms: Diabetes mellitus Type II; DIABETES MELLITUS, TYPE 2, PROTECTION AGAINST; DIABETES MELLITUS, TYPE II, SUSCEPTIBILITY TO; KCNJ11-Related Susceptibility to Noninsulin-Dependent Diabetes Mellitus; NIDDM diabetes mellitus; Non-insulin dependent diabetes; Noninsulin-dependent diabetes; Noninsulin-dependent diabetes mellitus; T2D; Type 2 diabetes; Type II diabetes
SNOMED CT: Type 2 diabetes mellitus (44054006); Diabetes mellitus type 2 (44054006); Type II diabetes mellitus (44054006); Diabetes mellitus type II (44054006)
Modes of inheritance:
Autosomal dominant inheritance
MedGen UID:
141047
Concept ID:
C0443147
Intellectual Product
Sources: HPO, OMIM
A mode of inheritance that is observed for traits related to a gene encoded on one of the autosomes (i.e., the human chromosomes 1-22) in which a trait manifests in heterozygotes. In the context of medical genetics, an autosomal dominant disorder is caused when a single copy of the mutant allele is present. Males and females are affected equally, and can both transmit the disorder with a risk of 50% for each child of inheriting the mutant allele.
 
Genes (locations): ABCC8 (11p15.1); AKT2 (19q13.2); ENPP1 (6q23.2); GCK (7p13); GPD2 (2q24.1); HMGA1 (6p21.31); HNF1A (12q24.31); HNF1B (17q12); HNF4A (20q13.12); IGF2BP2 (3q27.2); IL6 (7p15.3); IRS1 (2q36.3); IRS2 (13q34); KCNJ11 (11p15.1); LIPC (15q21.3); MAPK8IP1 (11p11.2); MTNR1B (11q14.3); NEUROD1 (2q31.3); PAX4 (7q32.1); PDX1 (13q12.2); PPARG (3p25.2); PPP1R3A (7q31.1); PTPN1 (20q13.13); RETN (19p13.2); SLC2A2 (3q26.2); SLC30A8 (8q24.11); TCF7L2 (10q25.2-25.3); WFS1 (4p16.1)
 
HPO: HP:0005978
OMIM®: 125853

Definition

Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chomosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chomosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type II diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type II diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type II diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type II diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type II diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type II diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type II diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type II diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type II diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type II diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type II diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type II diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type II diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type II diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type II diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D. [from OMIM]

Additional description

From MedlinePlus Genetics
Type 2 diabetes is a disorder characterized by abnormally high blood sugar levels. In this form of diabetes, the body stops using and making insulin properly. Insulin is a hormone produced in the pancreas that helps regulate blood sugar levels. Specifically, insulin controls how much glucose (a type of sugar) is passed from the blood into cells, where it is used as an energy source. When blood sugar levels are high (such as after a meal), the pancreas releases insulin to move the excess glucose into cells, which reduces the amount of glucose in the blood.\n\nMost people who develop type 2 diabetes first have insulin resistance, a condition in which the body's cells use insulin less efficiently than normal. As insulin resistance develops, more and more insulin is needed to keep blood sugar levels in the normal range. To keep up with the increasing need, insulin-producing cells in the pancreas (called beta cells) make larger amounts of insulin. Over time, the beta cells become less able to respond to blood sugar changes, leading to an insulin shortage that prevents the body from reducing blood sugar levels effectively. Most people have some insulin resistance as they age, but inadequate exercise and excessive weight gain make it worse, greatly increasing the likelihood of developing type 2 diabetes.\n\nType 2 diabetes can occur at any age, but it most commonly begins in middle age or later. Signs and symptoms develop slowly over years. They include frequent urination (polyuria), excessive thirst (polydipsia), fatigue, blurred vision, tingling or loss of feeling in the hands and feet (diabetic neuropathy), sores that do not heal well, and weight loss. If blood sugar levels are not controlled through medication or diet, type 2 diabetes can cause long-lasting (chronic) health problems including heart disease and stroke; nerve damage; and damage to the kidneys, eyes, and other parts of the body.  https://medlineplus.gov/genetics/condition/type-2-diabetes

Clinical features

From HPO
Increased waist to hip ratio
MedGen UID:
1636491
Concept ID:
C4703554
Finding
Increased waist-to-hip ratio (WHR) is a measurement above the average for the dimensionless ratio of the circumference of the waist to that of the hips. WHR is calculated as waist measurement divided by hip measurement.
Type 2 diabetes mellitus
MedGen UID:
41523
Concept ID:
C0011860
Disease or Syndrome
Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chomosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chomosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type II diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type II diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type II diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type II diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type II diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type II diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type II diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type II diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type II diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type II diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type II diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type II diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type II diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type II diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type II diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D.
Insulin resistance
MedGen UID:
43904
Concept ID:
C0021655
Pathologic Function
Decreased sensitivity to circulating insulin which may result in acanthosis nigicrans, elevated insulin level or hyperglycemia.
Type 2 diabetes mellitus
MedGen UID:
41523
Concept ID:
C0011860
Disease or Syndrome
Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chomosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chomosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type II diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type II diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type II diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type II diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type II diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type II diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type II diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type II diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type II diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type II diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type II diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type II diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type II diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type II diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type II diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D.

Conditions with this feature

Bloom syndrome
MedGen UID:
2685
Concept ID:
C0005859
Disease or Syndrome
Bloom syndrome (BSyn) is characterized by severe pre- and postnatal growth deficiency, immune abnormalities, sensitivity to sunlight, insulin resistance, and a high risk for many cancers that occur at an early age. Despite their very small head circumference, most affected individuals have normal intellectual ability. Women may be fertile but often have early menopause, and men tend to be infertile, with only one confirmed case of paternity. Serious medical complications that are more common than in the general population and that also appear at unusually early ages include chronic obstructive pulmonary disease, diabetes mellitus as a result of insulin resistance, and cancer of a wide variety of types and anatomic sites.
Type 2 diabetes mellitus
MedGen UID:
41523
Concept ID:
C0011860
Disease or Syndrome
Type 2 diabetes mellitus is distinct from maturity-onset diabetes of the young (see 606391) in that it is polygenic, characterized by gene-gene and gene-environment interactions with onset in adulthood, usually at age 40 to 60 but occasionally in adolescence if a person is obese. The pedigrees are rarely multigenerational. The penetrance is variable, possibly 10 to 40% (Fajans et al., 2001). Persons with type 2 diabetes usually have an obese body habitus and manifestations of the so-called metabolic syndrome (see 605552), which is characterized by diabetes, insulin resistance, hypertension, and hypertriglyceridemia. Genetic Heterogeneity of Susceptibility to Type 2 Diabetes Susceptibility to T2D1 (601283) is conferred by variation in the calpain-10 gene (CAPN10; 605286) on chomosome 2q37. The T2D2 locus (601407) on chromosome 12q was found in a Finnish population. The T2D3 locus (603694) maps to chomosome 20. The T2D4 locus (608036) maps to chromosome 5q34-q35. Susceptibility to T2D5 (616087) is conferred by variation in the TBC1D4 gene (612465) on chromosome 13q22. A mutation has been observed in hepatocyte nuclear factor-4-alpha (HNF4A; 600281.0004) in a French family with NIDDM of late onset. Mutations in the NEUROD1 gene (601724) on chromosome 2q32 were found to cause type II diabetes mellitus in 2 families. Mutation in the GLUT2 glucose transporter was associated with NIDDM in 1 patient (138160.0001). Mutation in the MAPK8IP1 gene, which encodes the islet-brain-1 protein, was found in a family with type II diabetes in individuals in 4 successive generations (604641.0001). Polymorphism in the KCNJ11 gene (600937.0014) confers susceptibility. In French white families, Vionnet et al. (2000) found evidence for a susceptibility locus for type II diabetes on 3q27-qter. They confirmed the diabetes susceptibility locus on 1q21-q24 reported by Elbein et al. (1999) in whites and by Hanson et al. (1998) in Pima Indians. A mutation in the GPD2 gene (138430.0001) on chromosome 2q24.1, encoding mitochondrial glycerophosphate dehydrogenase, was found in a patient with type II diabetes mellitus and in his glucose-intolerant half sister. Mutations in the PAX4 gene (167413) have been identified in patients with type II diabetes. Triggs-Raine et al. (2002) stated that in the Oji-Cree, a gly319-to-ser change in HNF1-alpha (142410.0008) behaves as a susceptibility allele for type II diabetes. Mutation in the HNF1B gene (189907.0007) was found in 2 Japanese patients with typical late-onset type II diabetes. Mutations in the IRS1 gene (147545) have been found in patients with type II diabetes. A missense mutation in the AKT2 gene (164731.0001) caused autosomal dominant type II diabetes in 1 family. A (single-nucleotide polymorphism) SNP in the 3-prime untranslated region of the resistin gene (605565.0001) was associated with susceptibility to diabetes and to insulin resistance-related hypertension in Chinese subjects. Susceptibility to insulin resistance has been associated with polymorphism in the TCF1 (142410.0011), PPP1R3A (600917.0001), PTPN1 (176885.0001), ENPP1 (173335.0006), IRS1 (147545.0002), and EPHX2 (132811.0001) genes. The K121Q polymorphism of ENPP1 (173335.0006) is associated with susceptibility to type II diabetes; a haplotype defined by 3 SNPs of this gene, including K121Q, is associated with obesity, glucose intolerance, and type II diabetes. A SNP in the promoter region of the hepatic lipase gene (151670.0004) predicts conversion from impaired glucose tolerance to type II diabetes. Variants of transcription factor 7-like-2 (TCF7L2; 602228.0001), located on 10q, have also been found to confer risk of type II diabetes. A common sequence variant, rs10811661, on chromosome 9p21 near the CDKN2A (600160) and CDKN2B (600431) genes has been associated with risk of type II diabetes. Variation in the PPARG gene (601487) has been associated with risk of type 2 diabetes. A promoter polymorphism in the IL6 gene (147620) is associated with susceptibility to NIDDM. Variation in the KCNJ15 gene (602106) has been associated with T2DM in lean Asians. Variation in the SLC30A8 gene (611145) has been associated with susceptibility to T2D. Variation in the HMGA1 gene (600701.0001) is associated with an increased risk of type II diabetes. Mutation in the MTNR1B gene (600804) is associated with susceptibility to type 2 diabetes. Protection Against Type 2 Diabetes Mellitus Protein-truncating variants in the SLC30A8 (611145) have been associated with a reduced risk for T2D.
Prader-Willi syndrome
MedGen UID:
46057
Concept ID:
C0032897
Disease or Syndrome
Prader-Willi syndrome (PWS) is characterized by severe hypotonia and feeding difficulties in early infancy, followed in later infancy or early childhood by excessive eating and gradual development of morbid obesity (unless eating is externally controlled). Motor milestones and language development are delayed. All individuals have some degree of cognitive impairment. A distinctive behavioral phenotype (with temper tantrums, stubbornness, manipulative behavior, and obsessive-compulsive characteristics) is common. Hypogonadism is present in both males and females and manifests as genital hypoplasia, incomplete pubertal development, and, in most, infertility. Short stature is common (if not treated with growth hormone); characteristic facial features, strabismus, and scoliosis are often present.
Polyglandular autoimmune syndrome, type 2
MedGen UID:
39126
Concept ID:
C0085860
Disease or Syndrome
Autoimmune polyendocrine syndrome type II (APS2), or Schmidt syndrome, is characterized by the presence of autoimmune Addison disease in association with either autoimmune thyroid disease or type I diabetes mellitus, or both. Chronic candidiasis is not present. APS2 may occur at any age and in both sexes, but is most common in middle-aged females and is very rare in childhood (summary by Betterle et al., 2004). See 240300 for a phenotypic description of autoimmune polyendocrine syndrome type I (APS1).
Diabetes-deafness syndrome maternally transmitted
MedGen UID:
90979
Concept ID:
C0342289
Disease or Syndrome
Maternally inherited diabetes-deafness syndrome (MIDD) is a mitochondrial disorder characterized by onset of sensorineural hearing loss and diabetes in adulthood. Some patients may have additional features observed in mitochondrial disorders, including pigmentary retinopathy, ptosis, cardiomyopathy, myopathy, renal problems, and neuropsychiatric symptoms (Ballinger et al., 1992; Reardon et al., 1992; Guillausseau et al., 2001). The association of diabetes and deafness is observed with Wolfram syndrome (see 222300), Rogers syndrome (249270), and Herrmann syndrome (172500), but all 3 of these disorders have other clinical manifestations.
Microcephalic osteodysplastic primordial dwarfism type II
MedGen UID:
96587
Concept ID:
C0432246
Congenital Abnormality
Microcephalic osteodysplastic primordial dwarfism type II is characterized by intrauterine growth retardation, severe proportionate short stature, and microcephaly. It is distinct from Seckel syndrome (see 210600) by more severe growth retardation, radiologic abnormalities, and absent or mild mental retardation (summary by Willems et al., 2010).
Maturity-onset diabetes of the young type 4
MedGen UID:
318863
Concept ID:
C1833382
Disease or Syndrome
Monogenic diabetes caused by inactivating mutation(s) in the PDX1 gene, encoding pancreas/duodenum homeobox protein 1. Homozygous PDX1 mutations result in permanent neonatal diabetes.
Transient neonatal diabetes mellitus 2
MedGen UID:
372150
Concept ID:
C1835887
Disease or Syndrome
Maturity-onset diabetes of the young, type 3
MedGen UID:
324942
Concept ID:
C1838100
Disease or Syndrome
GCK-MODY is a very mild type of the condition. People with this type have slightly elevated blood sugar levels, particularly in the morning before eating (fasting blood sugar). However, affected individuals often have no symptoms related to the disorder, and diabetes-related complications are extremely rare.\n\nHNF1A-MODY and HNF4A-MODY have similar signs and symptoms that develop slowly over time. Early signs and symptoms in these types are caused by high blood sugar and may include frequent urination (polyuria), excessive thirst (polydipsia), fatigue, blurred vision, weight loss, and recurrent skin infections. Over time uncontrolled high blood sugar can damage small blood vessels in the eyes and kidneys. Damage to the light-sensitive tissue at the back of the eye (the retina) causes a condition known as diabetic retinopathy that can lead to vision loss and eventual blindness. Kidney damage (diabetic nephropathy) can lead to kidney failure and end-stage renal disease (ESRD). While these two types of MODY are very similar, certain features are particular to each type. For example, babies with HNF4A-MODY tend to weigh more than average or have abnormally low blood sugar at birth, even though other signs of the condition do not occur until childhood or young adulthood. People with HNF1A-MODY have a higher-than-average risk of developing noncancerous (benign) liver tumors known as hepatocellular adenomas.\n\nThe different types of MODY are distinguished by their genetic causes. The most common types are HNF1A-MODY (also known as MODY3), accounting for 50 to 70 percent of cases, and GCK-MODY (MODY2), accounting for 30 to 50 percent of cases. Less frequent types include HNF4A-MODY (MODY1) and renal cysts and diabetes (RCAD) syndrome (also known as HNF1B-MODY or MODY5), which each account for 5 to 10 percent of cases. At least ten other types have been identified, and these are very rare.\n\nRCAD is associated with a combination of diabetes and kidney or urinary tract abnormalities (unrelated to the elevated blood sugar), most commonly fluid-filled sacs (cysts) in the kidneys. However, the signs and symptoms are variable, even within families, and not everyone with RCAD has both features. Affected individuals may have other features unrelated to diabetes, such as abnormalities of the pancreas or liver or a form of arthritis called gout.\n\nMaturity-onset diabetes of the young (MODY) is a group of several conditions characterized by abnormally high blood sugar levels. These forms of diabetes typically begin before age 30, although they can occur later in life. In MODY, elevated blood sugar arises from reduced production of insulin, which is a hormone produced in the pancreas that helps regulate blood sugar levels. Specifically, insulin controls how much glucose (a type of sugar) is passed from the blood into cells, where it is used as an energy source.
Mitochondrial myopathy with diabetes
MedGen UID:
333236
Concept ID:
C1839028
Disease or Syndrome
A rare, genetic, mitochondrial DNA-related mitochondrial myopathy disorder characterized by slowly progressive muscular weakness (proximal greater than distal), predominantly involving the facial muscles and scapular girdle, associated with insulin-dependent diabetes mellitus. Neurological involvement and congenital myopathy may be variably observed.
Maturity-onset diabetes of the young type 7
MedGen UID:
351232
Concept ID:
C1864839
Disease or Syndrome
Any maturity-onset diabetes of the young in which the cause of the disease is a mutation in the KLF11 gene.
Narcolepsy 7
MedGen UID:
481896
Concept ID:
C3280266
Disease or Syndrome
Some people with narcolepsy have all of the major features of the disorder, while others have only one or two. Most of the signs and symptoms persist throughout life, although episodes of cataplexy may become less frequent with age and treatment.\n\nNarcolepsy also affects nighttime sleep. Most affected individuals have trouble sleeping for more than a few hours at night. They often experience vivid hallucinations while falling asleep (hypnogogic hallucinations) or while waking up (hypnopompic hallucinations). Affected individuals often have realistic and distressing dreams, and they may act out their dreams by moving excessively or talking in their sleep. Many people with narcolepsy also experience sleep paralysis, which is an inability to move or speak for a short period while falling asleep or awakening. The combination of hallucinations, vivid dreams, and sleep paralysis is often frightening and unpleasant for affected individuals.\n\nAnother common feature of narcolepsy is cataplexy, which is a sudden loss of muscle tone in response to strong emotion (such as laughing, surprise, or anger). These episodes of muscle weakness can cause an affected person to slump over or fall, which occasionally leads to injury. Episodes of cataplexy usually last just a few seconds, and they may occur from several times a day to a few times a year. Most people diagnosed with narcolepsy also have cataplexy. However, some do not, which has led researchers to distinguish two major forms of the condition: narcolepsy with cataplexy and narcolepsy without cataplexy.\n\nNarcolepsy is characterized by excessive daytime sleepiness. Affected individuals feel tired during the day, and several times a day they may experience an overwhelming urge to sleep. "Sleep attacks" can occur at unusual times, such as during a meal or in the middle of a conversation. They last from a few seconds to a few minutes and often lead to a longer nap, after which affected individuals wake up feeling refreshed.\n\nNarcolepsy is a chronic sleep disorder that disrupts the normal sleep-wake cycle. Although this condition can appear at any age, it most often begins in adolescence.
Morbid obesity and spermatogenic failure
MedGen UID:
816654
Concept ID:
C3810324
Disease or Syndrome
A rare, genetic form of obesity characterized by morbid obesity, hypertension, type 2 diabetes mellitus and dyslipidemia leading to early coronary disease, myocardial infarction and congestive heart failure. Intellectual disability and decreased sperm counts or azoospermia have also been reported.
Sideroblastic anemia 3, pyridoxine-refractory
MedGen UID:
895975
Concept ID:
C4225155
Disease or Syndrome
Sideroblastic anemia-3 is an autosomal recessive hematologic disorder characterized by onset of anemia in adulthood. Affected individuals show signs of systemic iron overload, and iron chelation therapy may be of clinical benefit (summary by Liu et al., 2014). For a discussion of genetic heterogeneity of sideroblastic anemia, see SIDBA1 (300751).
ABDOMINAL OBESITY-METABOLIC SYNDROME 4
MedGen UID:
1704861
Concept ID:
C5231430
Disease or Syndrome
Microcephaly, developmental delay, and brittle hair syndrome
MedGen UID:
1718781
Concept ID:
C5394425
Disease or Syndrome
Microcephaly, developmental delay, and brittle hair syndrome (MDBH) is a multisystem disorder with clinical variability. Affected individuals show cognitive and motor disabilities, as well as some degree of fine, brittle hair with microscopic shaft abnormalities. Other shared features include failure to thrive in early childhood and short stature, with some patients exhibiting feeding difficulties and hepatic steatosis (Kuo et al., 2019).

Professional guidelines

PubMed

Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group.; Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group.
Genet Med 2013 Aug;15(8):612-7. Epub 2013 Mar 14 doi: 10.1038/gim.2013.9. PMID: 23492873
Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AF; Endocrine society.
J Clin Endocrinol Metab 2012 Sep;97(9):2969-89. doi: 10.1210/jc.2011-3213. PMID: 22962670Free PMC Article

Recent clinical studies

Etiology

Chowdhury JA, Nessa A, Nessa W, Jerin IA, Tasnim N
Mymensingh Med J 2021 Jul;30(3):651-656. PMID: 34226451
Xiao L, Li W, Zhu C, Yang S, Zhou M, Wang B, Wang X, Wang D, Ma J, Zhou Y, Chen W
Environ Res 2021 Jan;192:110259. Epub 2020 Sep 28 doi: 10.1016/j.envres.2020.110259. PMID: 33002504
Al-Zawawi AS, Bukhari IA, Bello-Correa FO, Sheikh SA, Albaijan R, Vohra F
Photodiagnosis Photodyn Ther 2020 Dec;32:102076. Epub 2020 Nov 2 doi: 10.1016/j.pdpdt.2020.102076. PMID: 33152543
Yokoyama M, Saito I, Ueno M, Kato H, Yoshida A, Kawamura R, Maruyama K, Takata Y, Osawa H, Tanigawa T, Sugiyama T
J Diabetes Investig 2020 Nov;11(6):1643-1650. Epub 2020 May 18 doi: 10.1111/jdi.13274. PMID: 32298536Free PMC Article
Kaneko K, Yatsuya H, Li Y, Uemura M, Chiang C, Hirakawa Y, Ota A, Tamakoshi K, Aoyama A
J Diabetes Investig 2020 Sep;11(5):1163-1169. Epub 2020 Mar 3 doi: 10.1111/jdi.13230. PMID: 32022993Free PMC Article

Diagnosis

Wang S, Cui H, Ji K, Song C, Ren C, Guo H, Zhu C, Wang S, Lai Y
Cardiovasc Diabetol 2020 May 13;19(1):64. doi: 10.1186/s12933-020-01036-1. PMID: 32404127Free PMC Article
Yokoyama M, Saito I, Ueno M, Kato H, Yoshida A, Kawamura R, Maruyama K, Takata Y, Osawa H, Tanigawa T, Sugiyama T
J Diabetes Investig 2020 Nov;11(6):1643-1650. Epub 2020 May 18 doi: 10.1111/jdi.13274. PMID: 32298536Free PMC Article
Chen Y, He D, Yang T, Zhou H, Xiang S, Shen L, Wen J, Chen S, Peng S, Gan Y
BMC Public Health 2020 Apr 6;20(1):452. doi: 10.1186/s12889-020-08552-5. PMID: 32252701Free PMC Article
Xing Z, Peng Z, Wang X, Zhu Z, Pei J, Hu X, Chai X
Cardiovasc Diabetol 2020 Mar 25;19(1):39. doi: 10.1186/s12933-020-01007-6. PMID: 32213183Free PMC Article
Raparelli V, Elharram M, Moura CS, Abrahamowicz M, Bernatsky S, Behlouli H, Pilote L
J Am Heart Assoc 2020 Jan 7;9(1):e012940. Epub 2020 Jan 4 doi: 10.1161/JAHA.119.012940. PMID: 31902326Free PMC Article

Therapy

Xiao L, Li W, Zhu C, Yang S, Zhou M, Wang B, Wang X, Wang D, Ma J, Zhou Y, Chen W
Environ Res 2021 Jan;192:110259. Epub 2020 Sep 28 doi: 10.1016/j.envres.2020.110259. PMID: 33002504
Al-Zawawi AS, Bukhari IA, Bello-Correa FO, Sheikh SA, Albaijan R, Vohra F
Photodiagnosis Photodyn Ther 2020 Dec;32:102076. Epub 2020 Nov 2 doi: 10.1016/j.pdpdt.2020.102076. PMID: 33152543
Wang S, Cui H, Ji K, Song C, Ren C, Guo H, Zhu C, Wang S, Lai Y
Cardiovasc Diabetol 2020 May 13;19(1):64. doi: 10.1186/s12933-020-01036-1. PMID: 32404127Free PMC Article
Xing Z, Peng Z, Wang X, Zhu Z, Pei J, Hu X, Chai X
Cardiovasc Diabetol 2020 Mar 25;19(1):39. doi: 10.1186/s12933-020-01007-6. PMID: 32213183Free PMC Article
García-Molina L, Lewis-Mikhael AM, Riquelme-Gallego B, Cano-Ibáñez N, Oliveras-López MJ, Bueno-Cavanillas A
Eur J Nutr 2020 Jun;59(4):1313-1328. Epub 2019 Nov 28 doi: 10.1007/s00394-019-02147-6. PMID: 31781857

Prognosis

de la Cruz-Ares S, Gutiérrez-Mariscal FM, Alcalá-Díaz JF, Quintana-Navarro GM, Podadera-Herreros A, Cardelo MP, Torres-Peña JD, Arenas-de Larriva AP, Pérez-Martínez P, Delgado-Lista J, Yubero-Serrano EM, López-Miranda J
Nutrients 2021 Apr 7;13(4) doi: 10.3390/nu13041217. PMID: 33917099Free PMC Article
Wang S, Cui H, Ji K, Song C, Ren C, Guo H, Zhu C, Wang S, Lai Y
Cardiovasc Diabetol 2020 May 13;19(1):64. doi: 10.1186/s12933-020-01036-1. PMID: 32404127Free PMC Article
Yokoyama M, Saito I, Ueno M, Kato H, Yoshida A, Kawamura R, Maruyama K, Takata Y, Osawa H, Tanigawa T, Sugiyama T
J Diabetes Investig 2020 Nov;11(6):1643-1650. Epub 2020 May 18 doi: 10.1111/jdi.13274. PMID: 32298536Free PMC Article
Chen Y, He D, Yang T, Zhou H, Xiang S, Shen L, Wen J, Chen S, Peng S, Gan Y
BMC Public Health 2020 Apr 6;20(1):452. doi: 10.1186/s12889-020-08552-5. PMID: 32252701Free PMC Article
Kaneko K, Yatsuya H, Li Y, Uemura M, Chiang C, Hirakawa Y, Ota A, Tamakoshi K, Aoyama A
J Diabetes Investig 2020 Sep;11(5):1163-1169. Epub 2020 Mar 3 doi: 10.1111/jdi.13230. PMID: 32022993Free PMC Article

Clinical prediction guides

Chowdhury JA, Nessa A, Nessa W, Jerin IA, Tasnim N
Mymensingh Med J 2021 Jul;30(3):651-656. PMID: 34226451
Xiao L, Li W, Zhu C, Yang S, Zhou M, Wang B, Wang X, Wang D, Ma J, Zhou Y, Chen W
Environ Res 2021 Jan;192:110259. Epub 2020 Sep 28 doi: 10.1016/j.envres.2020.110259. PMID: 33002504
Yokoyama M, Saito I, Ueno M, Kato H, Yoshida A, Kawamura R, Maruyama K, Takata Y, Osawa H, Tanigawa T, Sugiyama T
J Diabetes Investig 2020 Nov;11(6):1643-1650. Epub 2020 May 18 doi: 10.1111/jdi.13274. PMID: 32298536Free PMC Article
Kaneko K, Yatsuya H, Li Y, Uemura M, Chiang C, Hirakawa Y, Ota A, Tamakoshi K, Aoyama A
J Diabetes Investig 2020 Sep;11(5):1163-1169. Epub 2020 Mar 3 doi: 10.1111/jdi.13230. PMID: 32022993Free PMC Article
García-Molina L, Lewis-Mikhael AM, Riquelme-Gallego B, Cano-Ibáñez N, Oliveras-López MJ, Bueno-Cavanillas A
Eur J Nutr 2020 Jun;59(4):1313-1328. Epub 2019 Nov 28 doi: 10.1007/s00394-019-02147-6. PMID: 31781857

Recent systematic reviews

Shang R, Gao L
J Am Dent Assoc 2021 Mar;152(3):189-201.e1. doi: 10.1016/j.adaj.2020.11.015. PMID: 33632408
You Y, Liu Z, Chen Y, Xu Y, Qin J, Guo S, Huang J, Tao J
Acta Diabetol 2021 Jun;58(6):671-685. Epub 2021 Jan 8 doi: 10.1007/s00592-020-01648-9. PMID: 33417039
Hu M, Cai X, Yang W, Zhang S, Nie L, Ji L
J Am Heart Assoc 2020 Apr 7;9(7):e015323. Epub 2020 Mar 30 doi: 10.1161/JAHA.119.015323. PMID: 32223390Free PMC Article
García-Molina L, Lewis-Mikhael AM, Riquelme-Gallego B, Cano-Ibáñez N, Oliveras-López MJ, Bueno-Cavanillas A
Eur J Nutr 2020 Jun;59(4):1313-1328. Epub 2019 Nov 28 doi: 10.1007/s00394-019-02147-6. PMID: 31781857
Rijal A, Nielsen EE, Hemmingsen B, Neupane D, Gæde PH, Olsen MH, Jakobsen JC
Syst Rev 2019 Dec 17;8(1):330. doi: 10.1186/s13643-019-1233-z. PMID: 31847918Free PMC Article

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center