A single-blind, randomised, crossover study to reduce hypoglycaemia risk during postprandial exercise with closed-loop insulin delivery in adults with type 1 diabetes: announced (with or without bolus reduction) vs unannounced exercise strategies

Diabetologia. 2020 Nov;63(11):2282-2291. doi: 10.1007/s00125-020-05244-y. Epub 2020 Aug 1.

Abstract

Aims/hypothesis: For individuals living with type 1 diabetes, closed-loop insulin delivery improves glycaemic control. Nonetheless, maintenance of glycaemic control during exercise while a prandial insulin bolus remains active is a challenge even to closed-loop systems. We investigated the effect of exercise announcement on the efficacy of a closed-loop system, to reduce hypoglycaemia during postprandial exercise.

Methods: A single-blind randomised, crossover open-label trial was carried out to compare three strategies applied to a closed-loop system at mealtime in preparation for exercise taken 90 min after eating at a research testing centre: (1) announced exercise to the closed-loop system (increases target glucose levels) in addition to a 33% reduction in meal bolus (A-RB); (2) announced exercise to the closed-loop system and a full meal bolus (A-FB); (3) unannounced exercise and a full meal bolus (U-FB). Participants performed 60 min of exercise at 60% [Formula: see text] 90 min after eating breakfast. The investigators were not blinded to the interventions. However, the participants were blinded to the sensor glucose readings and to the insulin infusion rates throughout the intervention visits.

Results: The trial was completed by 37 adults with type 1 diabetes, all using insulin pumps: mean±SD, 40.0 ± 15.0 years of age, HbA1c 57.1 ± 10.8 mmol/mol (7.3 ± 1.0%). Reported results were based on plasma glucose values. During exercise and the following 1 h recovery period, time spent in hypoglycaemia (<3.9 mmol/l; primary outcome) was reduced with A-RB (mean ± SD; 2.0 ± 6.2%) and A-FB (7.0 ± 12.6%) vs U-FB (13.0 ± 19.0%; p < 0.0001 and p = 0.005, respectively). During exercise, A-RB had the least drop in plasma glucose levels: A-RB -0.3 ± 2.8 mmol/l, A-FB -2.6 ± 2.9 mmol/l vs U-FB -2.4 ± 2.7 mmol/l (p < 0.0001 and p = 0.5, respectively). Comparison of A-RB vs U-FB revealed a decrease in the time spent in target (3.9-10 mmol/l) by 12.7% (p = 0.05) and an increase in the time spent in hyperglycaemia (>10 mmol/l) by 21% (p = 0.001). No side effects were reported during the applied strategies.

Conclusions/interpretation: Combining postprandial exercise announcement, which increases closed-loop system glucose target levels, with a 33% meal bolus reduction significantly reduced time spent in hypoglycaemia compared with the other two strategies, yet at the expense of more time spent in hyperglycaemia.

Trial registration: ClinicalTrials.gov NCT0285530 FUNDING: JDRF (2-SRA-2016-210-A-N), the Canadian Institutes of Health Research (354024) and the Fondation J.-A. DeSève chair held by RR-L.

Trial registration: ClinicalTrials.gov NCT02855307.

Keywords: Closed-loop insulin delivery; Hypoglycaemia; Postprandial exercise; Type 1 diabetes.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Blood Glucose / metabolism*
  • Cross-Over Studies
  • Diabetes Mellitus, Type 1 / blood*
  • Exercise / physiology
  • Female
  • Humans
  • Hypoglycemia / blood*
  • Male
  • Middle Aged
  • Postprandial Period
  • Single-Blind Method

Substances

  • Blood Glucose

Associated data

  • ClinicalTrials.gov/NCT02855307