Hsp90 chaperones hemoglobin maturation in erythroid and nonerythroid cells

Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1117-E1126. doi: 10.1073/pnas.1717993115. Epub 2018 Jan 22.

Abstract

Maturation of adult (α2β2) and fetal hemoglobin (α2γ2) tetramers requires that heme be incorporated into each globin. While hemoglobin alpha (Hb-α) relies on a specific erythroid chaperone (alpha Hb-stabilizing protein, AHSP), the other chaperones that may help mature the partner globins (Hb-γ or Hb-β) in erythroid cells, or may enable nonerythroid cells to express mature Hb, are unknown. We investigated a role for heat-shock protein 90 (hsp90) in Hb maturation in erythroid precursor cells that naturally express Hb-α with either Hb-γ (K562 and HiDEP-1 cells) or Hb-β (HUDEP-2) and in nonerythroid cell lines that either endogenously express Hb-αβ (RAW and A549) or that we transfected to express the globins. We found the following: (i) AHSP and hsp90 associate with distinct globin partners in their immature heme-free states (AHSP with apo-Hbα, and hsp90 with apo-Hbβ or Hb-γ) and that hsp90 does not associate with mature Hb. (ii) Hsp90 stabilizes the apo-globins and helps to drive their heme insertion reactions, as judged by pharmacologic hsp90 inhibition or by coexpression of an ATP-ase defective hsp90. (iii) In nonerythroid cells, heme insertion into all globins became hsp90-dependent, which may explain how mixed Hb tetramers can mature in cells that do not express AHSP. Together, our findings uncover a process in which hsp90 first binds to immature, heme-free Hb-γ or Hb-β, drives their heme insertion process, and then dissociates to allow their heterotetramer formation with Hb-α. Thus, in driving heme insertion, hsp90 works in concert with AHSP to generate functional Hb tetramers during erythropoiesis.

Keywords: erythropoiesis; heme; hemeprotein; hemoglobin; nonerythroid.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Proteins / metabolism
  • Cell Differentiation
  • Cell Proliferation
  • Cells, Cultured
  • Erythroid Precursor Cells / cytology
  • Erythroid Precursor Cells / metabolism*
  • Erythropoiesis / physiology*
  • HSP90 Heat-Shock Proteins / metabolism*
  • Heme / chemistry
  • Heme / metabolism*
  • Hemoglobins / biosynthesis*
  • Hemoglobins / chemistry
  • Humans
  • Lung / cytology
  • Lung / metabolism*
  • Macrophages / cytology
  • Macrophages / metabolism*
  • Molecular Chaperones / metabolism
  • Protein Binding

Substances

  • AHSP protein, human
  • Blood Proteins
  • HSP90 Heat-Shock Proteins
  • Hemoglobins
  • Molecular Chaperones
  • Heme