Click to search

Sex differences in neuromuscular androgen receptor expression and sociosexual behavior in a sex changing fish.

Schuppe ER, et al. PLoS One. 2017.

Abstract

Androgen signaling, via receptor binding, is critical for regulating the physiological and morphological foundations of male-typical reproductive behavior in vertebrates. Muscles essential for male courtship behavior and copulation are highly sensitive to androgens. Differences in the distribution and density of the androgen receptor (AR) are important for maintaining dimorphic musculature and thus may provide for anatomical identification of sexually selected traits. In Lythrypnus dalli, a bi-directional hermaphroditic teleost fish, both sexes produce agonistic approach displays, but reproductive behavior is sexually dimorphic. The male-specific courtship behavior is characterized by rapid jerky movements (involving dorsal fin erection) towards a female or around their nest. Activation of the supracarinalis muscle is involved in dorsal fin contributions to both agonistic and sociosexual behavior in other fishes, suggesting that differences in goby sexual behavior may be reflected in sexual dimorphism in AR signaling in this muscle. We examined sex differences in the local distribution of AR in supracarinalis muscle and spinal cord. Our results demonstrate that males do express more AR in the supracarinalis muscle relative to females, but there was no sex difference in the number of spinal motoneurons expressing AR. Interestingly, AR expression in the supracarinalis muscle was also related to rates of sociosexual behavior in males, providing evidence that sexual selection may influence muscle androgenic sensitivity to enhance display vigor. Sex differences in the distribution and number of cells expressing AR in the supracarinalis muscle may underlie the expression of dimorphic behaviors in L. dalli.

PMID

28520775 [Indexed for MEDLINE]

PMCID

PMC5433761

Full text

 Citation 27 of 1090 Back to results