Click to search

Is defective pancreatic beta-cell mass environmentally programmed in Goto-Kakizaki rat model of type 2 diabetes?: insights from crossbreeding studies during suckling period.

Calderari S, et al. Pancreas. 2006.


OBJECTIVE: The Goto-Kakizaki (GK) rat is a spontaneous model of type 2 diabetes with a well established pathological pancreatic beta-cell development. Hyperglycemia experienced during early postnatal life contributes to the programming of endocrine pancreas. We have analyzed the consequences of hyperglycemic versus euglycemic suckling period for the pancreatic beta-cell mass and the in vivo glucose tolerance and insulin secretion in 4-week-old unweaned control Wistar (W), diabetic GK, and in offspring issued from crosses between normoglycemic W and diabetic GK rats.

METHODS: Mother/father crosses yielded offspring designated as follows: W/W, GK/GK, W/GK, and GK/W. In vivo glucose tolerance and insulin secretion tests were performed on males 4 weeks after birth, that is, just before weaning. Beta-cell mass was determined by immunohistochemistry and morphometry.

RESULTS: Four-week-old W/GK and GK/W rats are normoglycemic, normoinsulinemic, and display a similarly small beta-cell mass. Both W/GK and GK/W rats exhibit in vivo glucose intolerance and defective insulin secretion in response to glucose.

CONCLUSIONS: Our data obtained from crossbreeding studies during suckling period suggest that the defective pancreatic beta-cell mass is not environmentally programmed in the GK model of type 2 diabetes. Rather, they support the hypothesis that the beta-cell mass defect in the GK is linked to genetic determinism.


17079948 [PubMed - indexed for MEDLINE]

Full text

 Citation 14 of 506 Back to results