Click to search

Cannabinoid modulation of dynorphin A: correlation to cannabinoid-induced antinociception.

Mason DJ Jr, et al. Eur J Pharmacol. 1999.

Abstract

Intrathecal administration of anandamide, delta9-tetrahydrocannabinol (THC) and (-)-3-[2-hydroxy-4-(1,1-dimethyheptyl)ptyl)phenyl]-4-(3-hydr oxypropyl)-cicloexan-1-ol (CP55,940) induced spinal antinociception accompanied by differential kappa-opioid receptor involvement and dynorphin A peptide release. Antinociception using the tail-flick test was induced by the classical cannabinoid THC and was blocked totally by 17,17'-bis(cyclopropylmethyl)-6',6,7,7'-tetrahydro-4,5,4'5'-diepoxy++ +-6,6'-(imino)[7,7'-bimorphinan]-3,3',14,14'-tetrol (norbinaltorphimine) indicating a significant and critical kappa-opioid receptor component. The endogenous cannabinoid, anandamide and the non-classical bicyclic cannabinoid, CP55,940, induced non-nor-BNI-sensitive effects. The N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazo le-carboxamide (SR141716A)-mediated attenuation of spinal antinociception imparted by the various cannabinoids indicates cannabinoid CB1 receptor involvement. THC-induced an enhancement of immunoreactive dynorphin A release which coincided with the onset, but not duration antinociception. The release of dynorphin A was also attenuated by SR141716A suggesting it is cannabinoid CB1 receptor-mediated. These data indicate a critical role for dynorphin A release in the initiation of the antinociceptive effects of the cannabinoids at the spinal level.

PMID

10493099 [Indexed for MEDLINE]

Full text