NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE50118 Query DataSets for GSE50118
Status Public on Aug 19, 2014
Title Effect of AMPK activation by AICAR on MA-10 Leydig cell transcriptome
Organism Mus musculus
Experiment type Expression profiling by array
Summary Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by LH via its receptor leading to increased cAMP production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Leydig cell steroidogenesis then passively decreases following the rapid degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutive steroidogenic cell line R2C. Our data identify AMPK as an active repressor of steroid hormone biosynthesis in steroidogenic cells that is essential to preserve cellular energy and prevent excess steroid production.
Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by LH via its receptor leading to increased cAMP production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Leydig cell steroidogenesis then passively decreases following the rapid degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutive steroidogenic cell line R2C. Our data identify AMPK as an active repressor of steroid hormone biosynthesis in steroidogenic cells that is essential to preserve cellular energy and prevent excess steroid production.
 
Overall design MA-10 Leydig cells were treated with either DMSO (control), 10 uM forskolin or forskolin+Aicar (1 mM) for 1.5 h before total RNA extraction
 
Contributor(s) ABDOU HS, TREMBLAY JJ
Citation(s) 25225331
Submission date Aug 22, 2013
Last update date Mar 04, 2019
Contact name Jacques J Tremblay
E-mail(s) jacques-j.tremblay@crchul.ulaval.ca
Organization name Centre de recherche du CHU
Department Department of Obstetrics, Gynecology, and Reproduction
Lab CHUL room T1-49
Street address 2705, boulevard Laurier
City Quebec
State/province Quebec
ZIP/Postal code G1V 4G2
Country Canada
 
Platforms (1)
GPL6246 [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]
Samples (9)
GSM1214426 MA-10_control no treatment_rep1
GSM1214427 MA-10_control no treatment_rep2
GSM1214428 MA-10_control no treatment_rep3
Relations
BioProject PRJNA216106

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE50118_RAW.tar 39.0 Mb (http)(custom) TAR (of CEL)
SRA Run SelectorHelp
Raw data provided as supplementary file
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap