NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE35583 Query DataSets for GSE35583
Status Public on Jun 07, 2012
Title Histone Modifications by ChIP-seq from ENCODE/University of Washington
Project ENCODE
Organism Homo sapiens
Experiment type Genome binding/occupancy profiling by high throughput sequencing
Summary This data was generated by ENCODE. If you have questions about the data, contact the submitting laboratory directly (Richard Sandstrom mailto:sull@u.washington.edu). If you have questions about the Genome Browser track associated with this data, contact ENCODE (mailto:genome@soe.ucsc.edu).

This track was produced as part of the ENCODE Project. This track displays genome-wide maps of histone modifications in different cell lines (http://hgwdev.cse.ucsc.edu/cgi-bin/hgEncodeVocab?type=cellType) using ChIP-seq high-throughput sequencing.

For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
 
Overall design Cells were grown according to the approved ENCODE cell culture protocols (http://hgwdev.cse.ucsc.edu/ENCODE/protocols/cell). Cells were cross-linked with 1% formaldehyde, and the reaction was quenched by the addition of glycine. Fixed cells were rinsed with PBS, lysed in nuclei lysis buffer, and the chromatin was sheared to 200-500 bp fragments using a Fisher Dismembrator (model 500). Sheared chromatin fragments were immunoprecipitated with specific polyclonal antibodies at 4 °C with gentle rotation. Antibody-chromatin complexes were washed and eluted. The cross-linking in the immunoprecipitated DNA was reversed and treated with RNase-A. Following proteinase K treatment, the DNA fragments were purified by phenol-chloroform-isoamyl alcohol extraction and ethanol precipitation. A quantity of 20-50 ng of ChIP DNA was end-repaired, followed by the addition of adenine, ligation to Illumina adapters, and creation of a Solexa library for sequencing.
ChIP-seq affinity was directly measured through the raw tag density (Raw Signal), which is shown in the track as density of tags mapping within a 150 bp sliding window (at a 20 bp step across the genome). ChIP-seq affinity zones (HotSpots) were identified using the HotSpot algorithm described in Sabo et al. (2004). One percent false discovery rate thresholds (FDR 1.0%) were computed for each cell type by applying the HotSpot algorithm to an equivalent number of random uniquely mapping 36-mers. ChIP-Seq affinities (Peaks) were identified as signal peaks within FDR 1.0% hypersensitive zones using a peak-finding algorithm.
All tracks have a False Discovery Rate of 1% (FDR 1.0%).
Data were verified by sequencing biological replicates displaying a correlation coefficient > 0.9.
Web link http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeUwHistone
 
Contributor(s) Sandstrom R
Citation(s) 22955617
BioProject PRJNA63443
Submission date Feb 07, 2012
Last update date Feb 21, 2019
Contact name ENCODE DCC
E-mail encode-help@lists.stanford.edu
Organization name ENCODE DCC
Street address 300 Pasteur Dr
City Stanford
State/province CA
ZIP/Postal code 94305-5120
Country USA
 
Platforms (1)
GPL9052 Illumina Genome Analyzer (Homo sapiens)
Samples (171)
GSM945159 UW_ChipSeq_HMEC_H3K4me3
GSM945160 UW_ChipSeq_HRE_H3K27me3
GSM945161 UW_ChipSeq_SKMC_Input
Relations
SRA SRP015928

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE35583_RAW.tar 30.2 Gb (http)(custom) TAR (of BIGWIG, BROADPEAK, NARROWPEAK)
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap