NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE24775 Query DataSets for GSE24775
Status Public on Dec 02, 2010
Title Genome-wide expression analysis of the mouse pars tuberalis (PT) under chronic short-day and long-day conditions
Organism Mus musculus
Experiment type Expression profiling by array
Summary Living organisms detect seasonal changes in day length (photoperiod), and alter their physiological functions accordingly, to fit seasonal environmental changes. This photoperiodic system is implicated in seasonal affective disorders and the season-associated symptoms observed in bipolar disease and schizophrenia. Thyroid-stimulating hormone beta subunit (Tshb), induced in the pars tuberalis (PT), plays a key role in the pathway that regulates animal photoperiodism. However, the upstream inducers of Tshb expression remain unknown. Here we show that late-night light stimulation acutely triggers the Eya3-Six1 pathway, which directly induces Tshb expression. Using melatonin-proficient CBA/N mice, which preserve the photoperiodic Tshb-expression response, we performed a genome-wide expression analysis of the PT under chronic short-day and long-day conditions. These data comprehensively identified long-day and short-day genes, and indicated that late-night light stimulation induces long-day genes. We verified this by advancing and extending the light period by 8 hours, which acutely induced Tshb expression, within one day. In a genome-wide expression analysis under this condition, we searched for candidate upstream genes by looking for expression that preceded Tshb’s, and identified Eya3 gene. These results elucidate the comprehensive transcriptional photoperiodic response in the PT, revealing the complex regulation of Tshb expression and unexpectedly rapid response to light changes in the mammalian photoperiodic system.
 
Overall design Mice were separated into 2 groups. One group was maintained under the short-day conditions (light: dark = 8 h:16 h, ZT0 = lights on, ZT8 = lights off, 400 lux) and the other was housed under long-day conditions (light:dark = 16 h:8 h, ZT0 = lights on, ZT16 = lights off, 400 lux) for 2 weeks. The PTs of both groups were retrieved every 4 h for 1 day (6 time points for each group), starting at ZT0. For the experiments performed during the first day of the long-day conditions, we applied two different conditions, following 3 weeks under short-day conditions. In one, the light-onset was advanced by 8 hours (advance condition), and in the other, the dark period was delayed by 8 hours (delay condition). PTs from both groups were obtained every 4 h for 1 day, starting at the lights-on time. (Lights on for the advance condition was ZT16 as defined by the short-day condition. Lights on for the delay condition was ZT0). We sampled 25 mice at each time point. This whole procedure was repeated twice (n = 2) to obtain experimental replicates.
 
Contributor(s) Masumoto K, Ukai-Tadenuma M, Kasukawa T, Nagano M, Uno KD, Tsujino K, Horikawa K, Shigeyoshi Y, Ueda HR
Citation(s) 21129973
Submission date Oct 18, 2010
Last update date Feb 11, 2019
Contact name Hiroki R Ueda
E-mail uedah-tky@umin.ac.jp
Phone +81-78-306-3191
URL http://brainstars.org/
Organization name RIKEN
Department Center for Developmental Biology
Lab Functional Genomics Unit
Street address 2-2-3, Minatojima-minamimachi, Chuo-ku
City Kobe, Hyogo
ZIP/Postal code 6500047
Country Japan
 
Platforms (1)
GPL1261 [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array
Samples (48)
GSM610250 PP SD 700, rep1
GSM610251 PP SD 700, rep2
GSM610252 PP SD 1100, rep1
Relations
BioProject PRJNA132221

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE24775_RAW.tar 195.2 Mb (http)(custom) TAR (of CEL)
Raw data provided as supplementary file
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap