|
Status |
Public on Nov 03, 2023 |
Title |
Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota |
Organisms |
Arabidopsis thaliana; unidentified soil bacteria |
Experiment type |
Expression profiling by high throughput sequencing
|
Summary |
The identification of processes activated by specific microbes during microbiota colonization of plant roots has been hampered by technical constraints in metatranscriptomics. These include lack of reference genomes, high representation of host or microbial rRNA sequences in datasets, or difficulty to experimentally validate gene functions. Here, we recolonized germ-free Arabidopsis thaliana with a synthetic, yet representative root microbiota comprising 106 genome-sequenced bacterial and fungal isolates. We used multi-kingdom rRNA depletion, deep RNA-sequencing and read mapping against reference microbial genomes to analyse the in-planta metatranscriptome of abundant colonizers. We identified over 3,000 microbial genes that were differentially regulated at the soil-root interface. Translation and energy production processes were consistently activated in planta, and their induction correlated with bacterial strains’ abundance in roots. Finally, we used targeted mutagenesis to show that several genes consistently induced by multiple bacteria are required for root colonization in one of the abundant bacterial strains (a genetically tractable Rhodanobacter). Our results indicate that microbiota members activate strain-specific processes but also common gene sets to colonize plant roots.
|
|
|
Overall design |
Comparative gene expression profiling analysis of RNA-seq data from soil and root samples inoculated with Synthetic microbial consortia
|
|
|
Contributor(s) |
Vannier N, Mesny F, Getzke F, Chesneau G, Dethier L, Ordon J, Thiergart T, Hacquard S |
Citation(s) |
38092730 |
|
Submission date |
May 06, 2023 |
Last update date |
Jan 02, 2024 |
Contact name |
Fantin Mesny |
E-mail(s) |
mesny@mpipz.mpg.de
|
Organization name |
Max Planck Institute for Plant Breeding Research
|
Department |
Plant-Microbes interaction
|
Lab |
Hacquard group
|
Street address |
Carl-von-Linné-Weg 10
|
City |
Cologne |
ZIP/Postal code |
50829 |
Country |
Germany |
|
|
Platforms (2) |
GPL21179 |
Illumina HiSeq 3000 (Arabidopsis thaliana) |
GPL33384 |
Illumina HiSeq 3000 (unidentified soil bacteria) |
|
Samples (6)
|
|
Relations |
BioProject |
PRJNA968016 |