GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
Series GSE11970 Query DataSets for GSE11970
Status Public on Jul 24, 2008
Title Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803
Organism Synechocystis sp. PCC 6803
Experiment type Expression profiling by array
Summary The unicellular cyanobacterium Synechocystis sp. PCC 6803 is a model system for studying biochemistry, genetics and molecular biology of photobiological processes. Despite its importance in basic and applied research, the genome-wide picture of transcriptional regulation in this bacterium is limited. Characteristic transcriptional responses to changes in the growth environment are expected to provide a scaffold for describing the Synechocystis transcriptional regulatory network as well as efficient means for functional annotation of genes in the genome. We designed, validated and used Synechocystis genome-wide oligonucleotide (70-mer) microarray (representing 96.7% of all chromosomal ORFs) to study transcriptional activity of the cyanobacterial genome in response to S deprivation. The microarray data were verified by quantitative RT-PCR. We made five main observations: 1) Transcriptional changes upon sulfate withdrawal were relatively moderate, but significant and consistent with growth kinetics; 2) S acquisition genes encoding for a high-affinity sulfate transporter were significantly induced, while decreased transcription of genes for phycobilisome, photosystems I and II, cytochrome b6/f, and ATP synthase indicated reduced light-harvesting and photosynthetic activity; 3) S deprivation elicited transcriptional responses associated with general growth arrest and stress; 4) A large number of genes regulated by S availability encode hypothetical proteins or proteins of unknown function; 5) Hydrogenase structural and maturation accessory genes were not identified as differentially expressed, even though increased hydrogen evolution was observed. The expression profiles recorded by using this oligonucleotide-based microarray platform revealed that during transition from the condition of plentiful sulfur to no sulfur, Synechocystis undergoes coordinated transcriptional changes, including genes whose products are involved in sensing nutrient limitations and tuning bacterial metabolism. The transcriptional profile of the nutrient limitation was dominated by decrease in abundances of many transcripts. However, these changes were unlikely due to the across-the-board, non-specific shut down of transcription in a condition of growth arrest. Down-regulation of transcripts encoding proteins whose function depends on a cellular sulfur status indicated that the observed repression has a specific regulatory component. The repression of certain sulfur-related genes was paralleled by activation of genes involved in internal and external S scavenging.

Keywords: stress response, time course
Overall design Synechocystis sp. PCC 6803 was grown photoautotrophically in BG-11 medium supplemented with 8mM NaHCO3 and buffered with 10mM HEPES (pH 7.4). The cells were grown in 250ml flasks at 32oC under a light intensity of 25µmol photons m-2 s-1. Cultures were bubbled with sterile air containing 1% (v/v) CO2. Log phase cells (OD730nm=0.6) were harvested by centrifugation (2000×g for 12 min) washed once and then re-suspended in sulfate-free media (MgSO4 replaced by the same molarity of MgCl2). In addition, all S-containing trace metals in BG-11 were replaced by non-S containing metals. Cells were harvested and fixed for microarray analysis by adding 10% (v/v) ice-cold 5% phenol in ethanol stop solution at the following time points: before S-depravation (time 0, control), 1, 3, 6, 12, 24, 48 and 72 hr after S-depravation. S-deprivation with HEPES buffering control experiment was performed as described above, except that HEPES buffer was used upon sulfate removal. Bacterial samples for a time course were taken at time 0, 1, 12 and 24 hrs after sulfate withdrawal. Growth stage control experiment was done in parallel with S deprivation experiments. Samples were taken at 0, 1, 2.5, 4, 7, 11 and 48 hr after OD730nm reached 0.60. All the experiments were done in biological replicates.
Contributor(s) Zhang Z, Pendse ND, Khodursky A
Citation(s) 18644144
Submission date Jul 02, 2008
Last update date Mar 19, 2012
Contact name Zhigang Zhang
Organization name University of Minnesota
Department BioTechnology Institute
Street address 1479 Gortner Avenue, Suite 140
City St. Paul
State/province MN
ZIP/Postal code 55108
Country USA
Platforms (1)
GPL7016 Synechocystis sp. PCC 6803 oligo array
Samples (27)
GSM303159 Sulfate deprivation (-SO4/-HEPES) time course 1hr_rep1
GSM303160 Sulfate deprivation (-SO4/-HEPES) time course 1hr_rep2
GSM303161 Sulfate deprivation (-SO4/-HEPES) time course 1hr_rep3
BioProject PRJNA105843

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE11970_RAW.tar 14.7 Mb (http)(custom) TAR (of GPR)
Raw data provided as supplementary file
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap