A Better Lower Bound for On-Line Bottleneck
Matching

Ramana M. Idury* Alejandro A. Schaffer *

1 Introduction:

These notes concern the on-line bottleneck matching problem posed by Kalyanasundaram
and Prubs[Proc. 2nd Ann. ACM-SIAM Symp. Discr. Alg., pp. 234-240]. In this problem
the initial input consists of a metric space and k servers placed in the metric space. Then
a sequence of k requests is placed. After each request is placed, the on-line algorithm
must match an unused server to the new request. The cost of a matching is the length
of the heaviest edge (i.e., server-to-request distance) used. The competitiveness for a
particular request sequence is the ratio of the on-line cost to the cost of the optimal ofi-
line matching. The competitiveness of an algorithm is the limit as & grows without bound
of the maximum ratio over all inputs with k servers and k requests.

Kalyanasundaram and Pruhs exhibited an algorithm with competitiveness 2k — 1 and
claimed a lower bound of k + 1. In these notes we improve the lower bound to c(kYk,
where c(k) is a slowly decreasing function of k whose value is 1.5 for & = 2 and whose
limit is 1/(In 2) or approximately 1.44. In our lower bound construction the metric space
is the real line.

Throughout these notes we define § = {S,..., 5.} to be the sequence of servers in
the left-to-right order on the real line and {s1,...,sx} to be their locations. Similarly we
define B = {R,,..., Ry} and {ry,... i} for the sequence of requests. In general R does

not necessarily represent the chronological order of the requests.

2 A Lower Bound:

We need the following natural lemma before proving our lower bound.

Lemma 2.1 Let S = {S1,...,5} and R = {Ri,...,Ri} be any set of servers and

requests respectively in the left-to-right order on the real line. The matching

{(‘911 RI)> (527 R?,)r IR (Sk} Rk)}
*Department of Computer Science, Rice University, P. O. Box 1892, Houston, Texas 77251 U.S.A.

1

is an optimal off-line matching.

Proof: We can represent any bipartite perfect matching as a permutation of the set
R; the ' request in the permutation is matched to S;. It suffices to prove that the
identity permutation {R,,..., Rx} represents an optimal off-line matching. Let H(R) be
an optimal matching. We use the unique decomposition Cyy of the permutation II{R) into
cycles to deduce that {(1),(2),...,(k)} is an optimal matching. Specifically, suppose that
Cn has ¢ < k cycles. We construct a different matching whose cost is no more than that
of II{R) whose cyclic representation has at least ¢ + 1 cycles .

In writing out parts of the cycle decomposition we consider only the subscripts as the
symbo! R is redundant. Let m be the smallest element in R that is not a fixed point of
II(R} Let (---2m j ---) be the cycle containing m in Cp; note that we may have i = j,
but m is distinct from both ¢ and j and less than them. This definition implies that
(St Rr), (Sws R;) € TH(R). There are two cases depending on the relative positions of R,,
and S,,.

case I: Ry, is to the left of S,,. R; must be to the right of R, and S: to the
right of S, giving us a linear arrangement (from left-to-right) of either R,,R;S,S; or
B SmB;Si or Ry S SiR;. In all the three arrangements we can rearrange the matching
and replace {(Si, Ry), (S, Ri)} by {(Sm, Bm), (Si, R;)} without increasing the weight of
the bottleneck edge. In each case the replacement increases the number of cycles by at
least one.

case 2: S, is to the left of R,,. This case is essentially similar to case 1.

We can inductively do the above replacement and eventually obtain the identity per-

mutation that has k cycles. |

We use an on-line adversary and present a lower bound of 2 + g_rl-i‘: for the on-line
bottleneck matching problem with & > 2 servers. Initially the adversary provides the
set of servers S = {5j,..., 5} with locations {s1,...,8:}. For 1 <1{ < k, the distance
between S; and Sitq, or ;47 — s;, is set to (1+¢)" where ¢ = 2% _ 1. Then the adversary
specifies the request sequence R = {R;,..., R;} with locations {r1,...,71} according to

the following strategy:

forie1tok—1
if 57 is already matched, say to R;, then r; = s;41 — (1 +¢) +1
elser; = s; + 1

if 51 is already matched, say to R;, then ry = s, — (14+¢) +1

else rp = s + 1

Using the above adversary construction, we prove:

Theorem 2.2 The competitiveness of any deterministic on-line algorithm for bottleneck
matching with k > 2 servers is at least 2 —?L?——l .
& B * 2F=T

Proof:

case 1: Sy is matched to R; for some 1 < j < k. In this case the adversary places
a request at most (1 + ¢)? — 1 to the left of every server. The cost of optimal off-line
matching is (14 ¢€)? — 1 by Lemma 2.1. However, from the fact that S; és matched to R;
for some 1 < j < k, the length of the edge (S, R;) is s;41 — 81 + {1 +¢)? — 1. Hence the
cost incurred by any on-line algorithm is at least s;4, — s; + (1 + €)Y — 1, which is equal

to (1+e) =14+, (1+¢) = Ll—if}i:—l— (1 +2¢). The competitiveness is at Jeast 4%
which is equal to 2 + —,;:_—-—

case 2: Sy is matched 1‘0 Ri. In this case, the adversary places a request exactly 1
unit to the right of every server. Therefore, the cost of optimal off-line matching is 1
by Lemma 2.1. Because of the edge (S;, Ry) the cost incurred by any on- line algorithm
and hence its competitiveness is at least rp — ¢; = s, —s; + 1 = 1 A+ T+ €)=
L+ B (1 o 1) = 14 M[(27 ¥ 1] = 1 Le[p) = LR =2+QF_L1 -~

Our lower bound 1s not a linear function of k& but we show that it is bounded from below
by k/In2. Let us express our lower bound as ¢(k)k. For example, 2 + —73:1“__1 evaluates
to 3 for k£ = 2 implying that we can choose ¢(2) = 1.5. To obtain the asymptotic bound
e(k) = 1/1n2, we proceed as follows. The choice of ¢ in the proof of Theorem 2.2 balances

the competitiveness values in cases 1 and 2. Thus we set

c(k)k = L+ 1+‘[(1 +e)f7 1]
This 1mphes €= m
For large k, we set ¢ & (A) and obtain the underestimate

c(k)ke = e(RYE[(1 + C(A_)J,_) — 1] or
(1+ ﬁ)" = 2 or asymptotically
ezﬁﬁ =2 or

(k) =In2 = 1.44.

