NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Developmental Biology

Developmental Biology. 6th edition.

Show details

Plant Life Cycles

The plant life cycle alternates between haploid and diploid generations. Embryonic development is seen only in the diploid generation. The embryo, however, is produced by the fusion of gametes, which are formed only by the haploid generation. So understanding the relationship between the two generations is important in the study of plant development.

Unlike animals(see Chapter 2), plants have multicellular haploid and multicellular diploid stages in their life cycle. Gametes develop in the multicellular haploid gametophyte (from the Greek phyton, “plant”). Fertilization gives rise to a multicellular diploid sporophyte, which produces haploid spores via meiosis. This type of life cycle is called a haplodiplontic life cycle (Figure 20.1). It differs from our own diplontic life cycle, in which only the gametes are in the haploid state. In haplodiplontic life cycles, gametes are not the direct result of a meiotic division. Diploid sporophyte cells undergo meiosis to produce haploid spores. Each spore goes through mitotic divisions to yield a multicellular, haploid gametophyte. Mitotic divisions within the gametophyte are required to produce the gametes. The diploid sporophyte results from the fusion of two gametes. Among the Plantae, the gametophytes and sporophytes of a species have distinct morphologies (in some algae they look alike). How a single genome can be used to create two unique morphologies is an intriguing puzzle.

Figure 20.1. Plants have haplodiplontic life cycles that involve mitotic divisions (resulting in multicellularity) in both the haploid and diploid generations (paths A and D).

Figure 20.1

Plants have haplodiplontic life cycles that involve mitotic divisions (resulting in multicellularity) in both the haploid and diploid generations (paths A and D). Most animals are diplontic and undergo mitosis only in the diploid generation (paths B and (more...)

All plants alternate generations. There is an evolutionary trend from sporophytes that are nutritionally dependent on autotrophic (self-feeding) gametophytes to the opposite‐gametophytes that are dependent on autotrophic sporophytes. This trend is exemplified by comparing the life cycles of a moss, a fern, and an angiosperm (see Figures 20.220.4). (Gymnosperm life cycles bear many similarities to those of angiosperms; the distinctions will be explored in the context of angiosperm development.)

Figure 20.2. Life cycle of a moss (genus Polytrichum).

Figure 20.2

Life cycle of a moss (genus Polytrichum). The sporophyte generation is dependent on the photosynthetic gametophyte for nutrition. Cells within the sporangium of the sporophyte undergo meiosis to produce male and female spores, respectively. These spores (more...)

Figure 20.4. Life cycle of an angiosperm, represented here by a pea plant (genus Pisum).

Figure 20.4

Life cycle of an angiosperm, represented here by a pea plant (genus Pisum). The sporophyte is the dominant generation, but multicellular male and female gametophytes are produced within the flowers of the sporophyte. Cells of the microsporangium within (more...)

The “leafy” moss you walk on in the woods is the gametophyte generation of that plant (Figure 20.2). Mosses are heterosporous, which means they make two distinct types of spores; these develop into male and female gametophytes. Male gametophytes develop reproductive structures called antheridia (singular, antheridium) that produce sperm by mitosis. Female gametophytes develop archegonia (singular, archegonium) that produce eggs by mitosis. Sperm travel to a neighboring plant via a water droplet, are chemically attracted to the entrance of the archegonium, and fertilization results.* The embryonic sporophyte develops within the archegonium, and the mature sporophyte stays attached to the gametophyte. The sporophyte is not photosynthetic. Thus both the embryo and the mature sporophyte are nourished by the gametophyte. Meiosis within the capsule of the sporophyte yields haploid spores that are released and eventually germinate to form a male or female gametophyte.

Ferns follow a pattern of development similar to that of mosses, although most (but not all) ferns are homosporous. That is, the sporophyte produces only one type of spore within a structure called the sporangium (Figure 20.3). One gametophyte can produce both male and female sex organs. The greatest contrast between the mosses and the ferns is that both the gametophyte and the sporophyte of the fern photosynthesize and are thus autotrophic; the shift to a dominant sporophyte generation is taking place.

Figure 20.3. Life cycle of a fern (genus Polypodium).

Figure 20.3

Life cycle of a fern (genus Polypodium). The sporophyte generation is photosynthetic and is independent of the gametophyte. The sporangia are protected by a layer of cells called the indusium. This entire structure is called a sorus. Meiosis within the (more...)

At first glance, angiosperms may appear to have a diplontic life cycle because the gametophyte generation has been reduced to just a few cells (Figure 20.4). However, mitotic division still follows meiosis in the sporophyte, resulting in a multicellular gametophyte, which produces eggs or sperm. All of this takes place in the the organ that characterizes the angiosperms: the flower. Male and female gametophytes have distinct morphologies (i.e., angiosperms are heterosporous), but the gametes they produce no longer rely on water for fertilization. Rather, wind or members of the animal kingdom deliver the male gametophyte—pollen—to the female gametophyte. Another evolutionary innovation is the production of a seed coat, which adds an extra layer of protection around the embryo. The seed coat is also found in the gymnosperms. A further protective layer, the fruit, is unique to the angiosperms and aids in the dispersal of the enclosed embryos by wind or animals.

The remainder of this chapter provides a detailed exploration of angiosperm development from fertilization to senescence. Keep in mind that the basic haplodiplontic life cycle seen in the mosses and ferns is also found in the angiosperms, continuing the trend toward increased nourishment and protection of the embryo.



Have you ever wondered why there are no moss trees? Aside from the fact that the gametophytes of mosses (and other plants) do not have the necessary structural support and transport systems to attain tree height, it would be very difficult for a sperm to swim up a tree!

It is possible to have tree ferns, for two reasons. First, the gametophyte develops on the ground, where water can facilitate fertilization. Secondly, unlike mosses, the fern sporophyte has vascular tissue, which provides the support and transport system necessary to achieve substantial height.

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2000, Sinauer Associates.
Bookshelf ID: NBK9980


  • Cite this Page

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...