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Voltage-Gated Calcium Channels in Epilepsy
Stuart M Cain and Terrance P Snutch*.1

Voltage-gated calcium channels mediate calcium influx that both controls neuronal excitability and regulates 
calcium-sensitive intracellular signalling pathways. While the substrates underlying epileptic seizures remain to 
be fully understood, burst-firing in the thalamocortical circuitry is known to be evoked by activation of low-
voltage-activated (T-type) calcium channels and is thought to give rise to spike-wave discharges associated with 
absence epilepsy. Naturally occurring rodent genetic models of absence epilepsy have revealed that at least the 
CaV3.1 and CaV3.2 T-type channel isoforms play critical roles in disease etiology. Additionally, altered 
expression of several calcium channel subtypes has been observed and gain-of-function mutations have been 
identified in calcium channel genes from both epilepsy patients and animal models of epilepsy further providing 
useful tools for elucidating the underlying involvement of calcium channels towards disease pathophysiology. A 
number of the currently prescribed anti-epileptic drugs have been shown to inhibit calcium channel activity 
although these agents typically interact with multiple molecular targets. Given their unique distributions and 
contributions to higher brain functions, the selective pharmacological blockade of T-type calcium channel 
subtypes may provide attractive targets for the development of future therapeutic treatments.

Voltage-gated calcium channels are integral membrane proteins that form calcium-selective pores in the plasma 
membrane (Figure 1). Calcium ions flowing into the cell are driven by an electro-chemical gradient generated by 
a high concentration of calcium outside the cell to a low calcium concentration inside. In neurons the rapid 
influx of calcium depolarizes the cell membrane potential due to its divalent positive charge and mediates 
biophysical processes such as action potential firing and membrane potential oscillations. A second effect of 
calcium ion influx is to regulate the intracellular signaling pathways and biochemical machinery required for 
physiological functions such as neurotransmitter release. Cells contain numerous calcium sensitive proteins, 
such as enzymes and DNA transcription factors that can be up or down-regulated by the binding of calcium 
ions. Due to the highly complex and widespread effects of calcium channels, even small alterations in their 
expression or biophysical properties can induce pathophysiological changes in the brain with the potential to 
induce epileptic seizures.
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CALCIUM CHANNEL NOMENCLATURE
Calcium channels are generally classed as either high voltage-activated (HVA) or low voltage-activated (LVA), 
depending on whether they open at more positive (e.g. −40mV) or more negative (e.g. −60 mV) membrane 
potentials, respectively (Figure 1).1, 2 High voltage-activated channels can be further classified according to their 

Figure 1. Voltage-gated calcium channels. (a) Schematic illustrating the topography of the high voltage-activated calcium channel 
complex showing the main pore-forming α1 subunit and ancillary subunits. The α1 and δ subunits are integral membrane proteins, the 
β subunit is intracellular and binds directly to the α1, while the α2 subunit is thought to be largely extracellular. (b) Schematic diagram 
showing structure of the calcium channel α1 subunit with its four domain structure. (c) The left panel shows the phylogenic 
relationship between the ten known calcium channel α1 subunits. CaV1 subunits form the L-type subfamily, CaV2 channels the P/Q-
type, N-type and R-type, and the CaV3 subunits form the low voltage-activated T-type calcium channels. The right panel shows 
representative traces of calcium currents recorded from reticular thalamic neurons in response to depolarization of the membrane 
potential. The upper trace shows a slow inactivating high voltage-activated current and the lower trace shows the fast inactivating low 
voltage-activated current.
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pharmacological sensitivities and genetic α1 subunit protein (CaV) composition into L-type (CaV1.1-CaV1.4), 
P/Q-type (CaV2.1), N-type (CaV2.2) and R-type (CaV2.3). Low voltage-activated channels, also known as “T-
type”, for their comparatively “tiny” or “transient” currents are further classified to according to their α1 subunit 
composition (CaV3.1-CaV3.3).1 Additional structural and functional variants of each CaV subtype can be 
generated by alternative splicing to produce a large number of different “splice variants” and therefore increase 
the repertoire and complexity of calcium channel properties. It should be noted that CaV1.3 L-type and CaV2.3 
R-type channels can exhibit characteristics of “mid-voltage-activated” channels, opening at membrane potentials 
that are more negative than HVA channels and more positive than LVA channels. For simplicity in this chapter, 
CaV3.1-CaV3.3 will be referred to as “T-type channels” and all other calcium channels will be referred to as 
“HVA channels”.

While each calcium channel α1 subunit contains the molecular machinery necessary to conduct calcium ions 
(calcium-selective pore, voltage sensing and gating mechanisms), a number of ancillary proteins (β, α2δ and γ 
subunits) are associated with the HVA channel types and which modify channel biophysical properties and 
expression (Figure 1).2 Four β subunit genes (β1-β4), four α2δ subunit genes (α2δ1 - α2δ4) and eight γ subunit 
genes (γ1-γ8) have been identified in vertebrates. There is no firm biochemical evidence as yet that T-type 
calcium channels require ancillary subunits for native functioning. Nine of the ten of calcium α1 subunits (all but 
Cav1.1) are widely expressed in the central and peripheral nervous systems and several have been implicated in 
contributing to epilepsy pathophysiology.

CALCIUM CHANNEL BIOPHYSICAL PROPERTIES
From their closed/resting state calcium channels open once the membrane potential depolarizes to a threshold 
point, at which the internal voltage sensor moves and the channel conformation changes to an open-pore 
calcium conducting state. Calcium channels only conduct ions in the open state and with ongoing 
depolarization an internal inactivation mechanism induces additional conformational changes to prevent 
further conduction. Once in the inactivated state, the channels can only be reopened by re-polarization to 
hyperpolarized membrane potentials, allowing the voltage sensor to return to its original closed conformation 
and the inactivation machinery to return to its de-inactivated position. Only from this state can further 
membrane depolarization reopen the channels to their ion conducting state. The membrane potentials and rates 
at which these steps occur varies between the calcium channel subtypes and splice variants, producing channel 
variants with widely differing conducting properties.2–4

Calcium channels are generally slower at opening (activation) and closing (deactivation) than typical voltage-
activated sodium channels. Amongst the calcium channel subtypes, HVA channels generally display slower 
activation and faster deactivation that LVA channels. Further, HVA channels generally inactivate much more 
slowly than LVA channels. Together these properties result in HVA channels generating longer lasting calcium 
influxes upon sustained depolarizations with T-type channels conducting more rapid and shorter calcium 
influxes under both brief and sustained depolarizations (Figure 1). Of particular note, T-type channels also 
exhibit a distinct overlap of the membrane potentials at which they both activate and inactivate, uniquely 
enabling them to regulate subthreshold excitability including mediating intrinsic oscillatory behaviours and 
firing rates.

CALCIUM CHANNELS AND EXCITABILITY

T-type channels and excitability

T-type calcium channels and burst-firing
T-type channels typically open at membrane potentials around −70 to −50 mV, more negative than that required 
to open both typical HVA calcium channels and sodium channels (~−40 to −30 mV).4 The comparatively 
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smaller depolarization required to open T-type channels from resting bestows a particular importance with 
regard to cellular excitability. Small depolarizations induced by, for example, NMDA receptor activation, can 
cause T-type calcium channels to open leading to further membrane depolarization and which in turns leads to 
the opening of additional T-type calcium channels5–7. If the expression of these channels is of a sufficient 
density, this cascade depolarization induces a “calcium spike” also known as a “Low Threshold Spike” (LTS), 
similar to an action potential, but slower in activation and inactivation rate and peaking at more hyperpolarized 
membrane potentials (~−45 to −35mV).8, 9

This calcium spike can depolarize the membrane to a level whereby sodium channels and potassium channels 
then open and initiate high frequency action potential (AP) firing on the crest of the LTS. The AP firing can 
continue until the T-type calcium channels inactivate and the membrane is repolarized by small conductance 
Ca-activated potassium (sK) channels. This type of event is known as a “burst” and burst-firing is thought to 
underlie the spike-and-wave discharges (SWDs) that are both the hallmark of absence epilepsy seizures on 
electroencephalography (EEG) recordings and that can also be observed in some other generalized and partial 
epilepsies (Figure 2).10, 11 The “spikes” in these events are thought to correspond to summated 
neurotransmission, whereas the “wave” complexes are predicted to correspond to a period of neural quiescence. 
Together, they represent the oscillatory nature of absence seizures as they progress and resonate in the brain.

Different T-type channel subtypes contribute to particular parts of the burst due to their differing activation / 
inactivation kinetics (fastest CaV3.1>CaV3.2>>CaV3.3 slowest), deactivation kinetics (fastest 
CaV3.3>CaV3.1>CaV3.2 slowest) and rate of recovery from inactivation (fastest CaV3.1>CaV3.3>CaV3.2 
slowest).8, 12 CaV3.1 channels are predicted to generate very fast activating, short lasting bursts, CaV3.2 to 
generate fast activating, longer-lasting bursts and CaV3.3 slow activating and very long lasting bursts. Neuronal 
bursting properties likely depend on the relative proportion of the three T-subtypes that are expressed within a 
given neuron.

T-type calcium channels and slow oscillations
In addition to the oscillations generated by burst-firing, T-type calcium channels are involved in generating a 
number of other types of oscillations, especially in the thalamocortical network and which are of particular 
importance in some epileptic disorders. The membrane potentials at which T-type channel variants open, close, 
inactivate and de-inactivate are known to overlap and vary between subtypes. At potentials of overlap in 
conducting and non-conducting states some percentage of channels are always open, although the entire 
population is constantly shifting between open, closed and inactivated states. This produces a constant inward 
calcium current known as a “window current”.4, 8, 13, 14 Whether a given neuron is at a membrane potential 
where the window current is “on” or “off” can have great effect on excitability, and the switching between these 
states, controlled by different leak, hyperpolarization-activated depolarizing and cation-activated depolarizing 
conductances, is thought to underlie a number of neural rhythms and oscillations.15–19 While burst-firing is a 
critical propagator of seizure activity, intrinsic oscillations within cells and networks potentially underlie the 
actual initiation of seizures.20 This can be observed by artificial enhancement of T-type channel expression in 
inferior olivary neurons using computer modeling combined with patch clamp (known as “dynamic clamp”), 
and is sufficient to induce spontaneous oscillations.21 This likely occurs since subtle changes in T-type channel 
current density can lead to large changes in electrophysiological oscillatory behavior.21, 22 For example, 
overexpression of the CaV3.3 channel alone in neuroblastoma cells induces spontaneous oscillatory activity and 
low threshold firing.23

HVA calcium channels and excitability
HVA channels are intrinsically involved in many different aspects of neuronal excitability and a comprehensive 
discussion is beyond the scope of this chapter. However, some of their roles relative to epilepsy are of particular 
note. Postsynaptically expressed HVA channels generate large, long lasting depolarization and modification to 

4 Jasper's Basic Mechanisms of the Epilepsies

A
uthor M

anuscrip
t

A
uthor M

anuscrip
t

A
uthor M

anuscrip
t



their biophysical properties or expression can have substantial effects on the intrinsic firing properties of 
neurons. While HVA channels all play a role in low threshold burst-firing in that they conduct large amounts of 
calcium during bursts, especially during action potentials, they do not appear crucial for bursting activity to 
occur.6, 24 R-type channels however, are becoming increasingly linked to a role in burst-firing as they have a 

Figure 2. The thalamocortical network and burst-firing. (a) Diagram of the thalamocortical network showing connections between 
the somatosensory cortex (SCX), the sensory relay neurons of the ventrobasal posterior thalamic groups (VB) and the reticular 
thalamic nucleus (RTN). (b) Under normal physiological conditions as sensory signals from the periphery are relayed to the cortex the 
VB and RTN neurons fire tonically in response to depolarization. In this state there is minimal T-type calcium channel activity. During 
epileptiform activity burst-firing becomes predominant (c) and the thalamocortical network becomes locked in a self-propagating 
oscillatory loop (Vm=membrane potential). (c: Inset) In the absence of sodium channel (600nM tetrodotoxin applied) activity the low 
threshold spike that underlies burst-firing is evident. (d) Burst-firing in the RTN of the GAERS epileptic rat model of absence epilepsy 
correlates with burst-firing in the RTN. Upper panels in show EEG recordings and lower panels show corresponding intracellular 
recordings in an RTN neuron with expanding timescales from on right side. Note that tonic neuronal firing does not correspond to 
spikes in the EEG trace (1), however burst-firing correlates closely with spikes observed on the EEG trace during spike-wave discharges 
(2).
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lower threshold for activation than typical HVA channels, are capable of transient surges of current and are 
linked to after-depolarization, which is required for repetitive bursting.25, 26 Furthermore, R-type channels may 
be involved in generating adequate activation of sK channels to ensure sufficient repolarization following a burst, 
which is a requirement for T-type de-inactivation over a series of multiple bursts. In addition, R-type channels 
have been proposed to contribute to sustained depolarizations, known as “plateau potentials”, which have been 
implicated in pro-epileptic neuronal activity.27

A number of the HVA calcium channel subtypes are also expressed presynaptically and are critically involved in 
neurotransmitter release.28–30 With an absolute dependence of neural functions on synaptic neurotransmission, 
it follows that even small alterations in the biophysical properties of presynaptic calcium channels could have a 
significant impact on the firing properties of nerve cells and neural networks with the potential to lead to 
epileptic seizure activity.

CALCIUM CHANNELS IN ABSENCE EPILEPSY

T-type calcium channels in the thalamocortical network and absence 
seizures
The thalamocortical network components involved in absence seizures appear comprised of three primary 
nuclei; sensory relay neurons including those located in the ventrobasalposterior thalamic groups, the 
corticothalamic pyramidal neurons in layers V-VI of the sensory cerebral cortex (SCX) and the reticular 
thalamic nucleus (RTN; Figure 2). In this network, glutamatergic axonal efferents from the SCX synapse on VB 
neurons, which send reciprocal glutamatergic projections back to the SCX. The RTN forms a shell around the 
dorsal-anterior face of the thalamus and as axons from SCX and VB neurons also project to pass through the 
RTN they synapse upon RTN neurons inducing depolarization. RTN neurons are GABAergic and send 
projections both to VB neurons and to other RTN neurons, inducing hyperpolarization in both neuronal types. 
Ventrobasal thalamic neurons are thought to respond more faithfully to hyperpolarizing inputs via the RTN than 
directly from depolarizing inputs from the SCX.31

During wakefulness or seizure-free periods, VB neurons act as a simple relay by forwarding sensory signals from 
the periphery to the cortex. In this mode thalamic neurons are relatively depolarized and T-type channels in 
both VB and RTN neurons are, in general, inactivated. In this state, thalamic neurons follow a generally “tonic” 
or repetitive firing pattern of variable frequency with regular action potentials and little bursting (Figure 2).

However, during absence seizures (which follow a similar pattern to non-REM sleep) the SCX, VB and RTN 
neurons become locked in a self propagating oscillatory loop. During this state RTN neurons are more 
hyperpolarized allowing burst-firing to occur via the de-inactivation of CaV3.2 and CaV3.3 T-type channels 
expressed in these cells in response to depolarization from VB and SCX collaterals (Figure 2).32–35 Close 
correlation is observed between the timing of burst-firing in neurons of the RTN and the spikes observed in 
SWDs on EEG recordings during absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg 
(GAERS) model of absence epilepsy (Figure 2).36, 37 Burst-firing in the RTN induces hyperpolarization of VB 
neurons via GABAA and/or GABAB receptor activation, de-inactivating CaV3.1 T-type channels and as 
hyperpolarization-activated channels (HCN; Ih) and corticothalamic inputs depolarize the neuron back toward 
the resting potential, a “rebound burst” is induced by opening of the de-inactivated CaV3.1 channels (Figure 
2).33, 38 This process in turn induces depolarization in the SCX, which send excitatory signals back to the 
thalamus and the absence seizure propagates.18, 39 Overall, despite RTN neurons being GABAergic, they 
actually drive excitatory behavior in their burst-firing state by de-inactivating the T-type calcium channels 
expressed in VB neurons

The role of T-type calcium channels in the SCX is less clear. All three T-subtypes exist in the cortex, with CaV3.1 
and CaV3.3 being expressed throughout, but with greatest expression in layer V; also the only layer to express 
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CaV3.2.33 While oscillatory activity and low-threshold spiking has been identified in the cortex, burst-firing is 
generally uncommon in cortical neurons.40–44 Correspondingly, T-type currents are generally either absent or 
of small magnitude in cortical neurons, while HVA calcium channels are abundant. 45–50 However, evidence 
from genetic rat models of absence epilepsy, suggests that seizures actually initiate in the SCX, which then 
recruits the thalamus and spreads to other cortices.43, 51–53 Whether intrinsic normal oscillatory activity in this 
region recruits a hyperexcitable thalamus to induce seizures, or pathophysiological hyperexcitablity in the cortex 
is responsible for inducing seizures directly is as yet unknown.20, 54, 55

Calcium channels in human epilepsy

T-type calcium channel mutations in human epilepsy
A number of apparent mutations have been identified in the human CACNA1G (CaV3.1) and CACNA1H 
(CaV3.2) genes within subpopulations of idiopathic generalized and childhood absence epilepsy patients.56–59 

Some of the alterations in CaV3.2 have been shown to induce altered biophysical properties or increase channel 
expression when examined in exogenous expression systems. However, some have no apparent effect, potentially 
reflecting the polygenic nature of idiopathic generalized epilepsies and/or that a subset of the changes represent 
single nucleotide polymorphisms.60–65 Details of these results have been comprehensively reviewed (see refs 66, 
67, 68), however these findings provide a strong indication that T-type calcium channels play a role in human 
idiopathic generalized epilepsies, supporting a large volume of data provided by experiments on animal models.

P/Q-type calcium channel mutations in human epilepsy
The CaV2.1 subunit encodes both P-type and Q-type channels through an alternate splicing mechanism.69 

These channels are highly expressed presynaptically where they are critically involved in neurotransmission and 
synaptic efficacy and therefore have a great influence on neuronal excitability.70, 71 This aspect is reflected by a 
number of mutations in the CaV2.1 gene identified in patients suffering from severe neurological disorders 
including ataxias and congenital migraine.66 While instances wherein HVA channel mutations have been 
identified in human absence epilepsy patients are rare, such cases do exist for CaV2.1. Within three generations 
of a single family, five members suffered from a combination of absence seizures / episodic ataxia and were 
found to possess a missense mutation (E147K) in the CaV2.1 subunit gene.70 In another study, an eleven year 
old boy was identified with primary generalised epilepsy, episodic and progressive ataxia, and mild learning 
difficulties. Analysis of his genome revealed a truncation mutation (R1820-stop) in the CaV2.1 channel.73 Both 
of these distinct mutations result in a loss in P/Q-type channel function. Another missense mutation (I712V) has 
been reported in the CaV2.1 subunit gene of an 11-year-old girl suffering from episodes of seizures, ataxia and 
other neural disorders, although no functional effects have yet been observed on the channel properties.74 

Furthermore, a small proportion of patients with familial hemiplegic migraine type-1 and with underlying 
mutations in the CaV2.1 channel also display both generalized and complex partial seizures.66, 67, 75–79

T-type calcium channels in absence epilepsy animal models

Genetic Absence Epilepsy Rats from Strasbourg (GAERS)
Genetic rodent models of epilepsy have been useful as tools in understanding the mechanisms that underlie 
absence seizures. Some of these models are generated by inbreeding rats that have developed epilepsy naturally 
to produce fully epileptic strains. The GAERS inbred Wistar rat model displays spontaneous absence seizures 
with similar characteristics to the human condition, with the exception that SWDs occur at a higher frequency 
(3–4 Hz in humans vs 7–9 Hz in GAERS).80, 81 Calcium channels have been implicated in SWDs in GAERS 
since an early experiment wherein the injection of cadmium into the RTN at a concentration that blocks all 
calcium channel subtypes (1 mM) was found to abolish SWDs.82 An increase in T-type current density has been 
found in the RTN neurons of GAERS with a corresponding increase in expression of CaV3.2 but not CaV3.3 
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mRNA.83, 84 Furthermore, GAERS has been shown to possess a missense mutation (R1584P) in the Cacna1h 
gene encoding CaV3.2 and which correlates closely with seizure expression when the GAERS rats are outcrossed 
with non-epileptic control rats (Figure 3).85 The R1584P mutation induces a gain-of-function in a particular 
CaV3.2 splice variant (+exon 25), increasing the rate at which channels recover from inactivation and allowing 
enhanced charge conduction during high frequency depolarizations such as those which occur during burst-
firing. Since a greater number of CaV3.2 channels will recover from inactivation during multiple bursting in 
GAERS, the LTS magnitude is predicted to decrease less over a series of bursts. As LTS magnitude has been 
shown to correlate directly with number of action potentials per burst,86 the resultant effect in GAERS RTN 
neurons is that over a series of multiple bursts, the number of APs per burst decreases to a lesser degree 
throughout a burst train. In addition to the R1584P mutation effect on CaV3.2 channel biophysical properties, 
the thalamic expression of the affected splice variant (+exon 25) also increases with development, potentially 
exacerbating hyperexcitability and underlying the temporal nature of seizure expression in GAERS animals.

Wistar Albino Glaxo Rats from Rijswijk (WAG/Rij)
Wistar Albino Glaxo Rats from Rijswijk (WAG/Rij) are another well studied genetic absence epilepsy model that 
display spontaneous seizures.87 Like GAERS, these rats also display upregulation of T-type calcium channel 
expression, although in WAG/Rij this involves the CaV3.1 subtype in thalamic centrolateral and lateral 
geniculate (visual cortex projecting) neurons and with CaV3.3 in centrolateral and RTN neurons (Figure 3).88 

Despite increased T-type currents in all three neuron types, no differences have been observed in the number of 
APs generated per burst. However, modeling studies predict that smaller depolarizations would be required to 
induce burst-firing in lateral geniculate neurons of WAG/Rij animals. In addition, as with the CaV3.2 T-type in 
GAERS, alterations in the expression of specific splice variants of CaV3.1 have been noted in the WAG/Rij 
model, which is of particular interest since this occurs in the same domain III-IV linker region that seizure-
related splice variation was observed with CaV3.2 in GAERS (exon 25–26).89 In support of the involvement of 
CaV3.1 channels in seizure generation in this model, specific block of CaV3.1 using indomethacin-related 
compounds has been shown to attenuate seizures in WAG/Rij.90 Interestingly, the systemic administration of the 
L-type calcium channel blocker, nimodipine, apparently exacerbates seizures in this model.91

Manipulation of CaV3.1 channels and absence seizures
In support of a role for CaV3.1 T-type channels in absence seizures, genetic enhancement of CaV3.1 expression 
in mice results in spontaneous bilateral SWDs (Figure 3).92 Accordingly, genetic knockout of the CaV3.1 
channel in mice generates a phenotype whereby thalamic relay neurons cannot burst-fire and in vivo the mice 
show resistance to classic pharmacologically-induced absence seizures using GABAB agonists, baclofen and 
butyrolacetone (a prodrug of γ-hydroxybutyric acid).38

Overall, it appears that an increase in the activity of any of the three T-type channel subtypes in the 
thalamocortical system may have the effect of enhancing or inducing absence seizures as a direct result of 
increased burst-firing in any of the thalamocortical regions, whether it occurs from increased expression or 
increased function of a T-type calcium channel subtype. Certainly, enhancement of either CaV3.1 or CaV3.2 
channels seems to have strong pro-epileptic effects in the thalamocortical system.

HVA channels in absence epilepsy animal models

HVA channels in Wistar Albino Glaxo Rats from Rijswijk
In the WAG/Rij model of absence epilepsy, as well as an increase in T-type currents, an increase in the 
expression of P/Q-type channel protein occurs in the RTN.93 This expression appears to occur presynaptically 
although experiments have yet to be conducted to determine the functional significance of this expression 
change on synaptic neurotransmission and absence seizure activity.
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HVA channels in absence epileptic mice models
Mice generated or identified with mutations that suppress P/Q-type channel function exhibit many features of 
absence epilepsy. CaV2.1 gene knock-out mice suffer from severe ataxia and seizures and die in early life 
following massive neuronal damage, in particular in the cerebellum where P/Q-type channels play a vital role in 

Figure 3. T-type calcium channels and absence epilepsy. (a-b) In the GAERS rodent model of absence epilepsy an arginine to proline 
missense mutation at position 1584 (R1584P) correlates with the expression of seizure activity. Mating GAERS with a non-epileptic 
strain (NEC) through two generations produces offspring that have no copies (wt/wt), one copy (wt/m) or two copies (m/m) of the 
R1584P mutation in an otherwise similar genetic background. Animals with two copies of the mutation spend increased time in 
seizure activity and experience more seizures than animals with no copies of the R1584P mutation. The missense GAERS mutation 
does not affect either the duration or morphology of individual seizures. (c) The WAG/Rij model of absence epilepsy displays increased 
expression of the CaV3.1 T-type calcium channel in thalamic centrolateral (CL) and lateral geniculate (LGN) neurons and of the 
CaV3.3 T-type in CL and RTN neurons. (d) In mice with a genetically enhanced expression of CaV3.1 channels (Tg1 and Tg2) larger T-
type currents are observed in lateral dorsal (LDN) and ventrobasal (VB) thalamic neurons and the mice display spontaneous bilateral 
spike-wave discharges in EEG recordings.
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movement control.66, 67, 94–97 Tottering mice (CaV2.1 P601L) display absence and motor seizures, whereas 
Leaner (C-terminal truncation) and Rolling Nagoya mice (R1262G) display absence seizures only.98–100 Each of 
these mutations results in decreased P/Q-type current density and a number of other biophysical alterations, 
generally considered as loss-of-function.68, 101 The reduced activity can be observed physiologically as 
attenuated excitatory synaptic neurotransmission in cortical and thalamic neurons.102, 103 Similarly, Rocker 
mice (T1310K) display absence-like seizures, however the effects on channel biophysics are not currently 
known.104 It should be noted that all of these mouse models display ataxia, likely due to the critical role of 
cerebellar P/Q-type channels in movement control, although which may have pro-epileptic downstream effects 
concerning the production of secondary seizures. In this regard, it should be noted that with the Tottering mouse 
an increase is observed in the T-type currents (CaV3.1) in thalamic relay neurons.105

Of further note, seizures in CaV2.1 knockout mice can be abolished by introducing a second mutation to also 
knockout CaV3.1 T-type channel function.106 Although similar investigations have not been reported for the 
other absence model mice carrying CaV2.1 mutations, this implies that decreased activity of P/Q-type channels 
may lead to a compensatory increase in T-type currents, which may be responsible for the absence seizures 
observed. However, since in the WAG/Rij model an increase in P/Q-type channel expression is observed in 
conjunction with increased T-type activity, a compensatory decrease in P/Q-type / increase in T-type model 
cannot be accepted as absolute. In addition, combined knock-out studies must be treated with caution since the 
absence seizures observed in CaV2.1 knockout mice can be abolished by a second mutation to knockout shaker-
like potassium channels, which normally increases excitability.107 Thus, it might be argued that any number of 
mutations that interfere with excitability in the thalamocortical network may block the epileptic phenotype 
caused by a first mutation.

The mid-voltage activated R-type channel has been shown to play a role in modulating thalamocortical 
rhythmicity, altering the frequencies displayed during pharmacologically-induced SWD.108 Mice lacking CaV2.3 
channels do not display spontaneous absence seizures, however, they do exhibit increased susceptibility to the 
absence seizures and motor arrest induced by systemic administration of γ-hydroxybutyrolactone.106 This is of 
particular interest since these mice also demonstrate resistance to generalized convulsive and limbic seizures 
(discussed in “CaV2.3 R-type channels in the kainic acid-Induced limbic epilepsy model” and “Generalized 
seizures in CaV2.3 transgenic mice”).110, 111

Calcium channel ancillary subunits in absence epilepsy models
The β, α2δ and γ ancillary calcium channel subunits that modulate the biophysical properties and expression of 
the HVA α1 subunits have also been implicated in absence epilepsy.112 Mice containing a mutation that 
genetically deletes the β4 subunit, known as lethargic, express SWDs and ataxia, along with defects in 
presynaptic function.113 In addition, two strains of mice with mutations in the α2δ2 subunit, known as ducky 
and ducky2J, both also display SWDs and ataxia. 114, 115 Furthermore, a mutation that renders the α2δ2 subunit 
non-functional (the entla mouse) has also been linked to SWDs.116 All three α2δ2 mutated mice models possess 
reduced P/Q-type currents and display similar absence and/or ataxia phenotypes to that for the CaV2.1 gene 
knockout / mutated mice described above, suggesting that at least part of the mechanism by which they induce 
seizures may be due to attenuated α2δ2 -mediated modulation of the CaV2.1 P/Q-type calcium channel. A 
similar mechanism may underlie the β4 knockout lethargic mice since β subunits are essential for P/Q-type 
channel function.

Mutations in the γ2 subunit protein, also known as “stargazin”, have been found in stargazer and waggler mouse 
epilepsy models and result in increased inactivation of P/Q-type channels.117, 118 These mice both display 
SWDs as well as a head tossing behavior, which are exacerbated in waggler mice due to an additional knockout 
of the γ4 subunit.119 As a note of caution, in addition to the modulatory role of this subunit on HVA calcium 
channels, stargazin is known to be involved in the synaptic trafficking and biophysical modulation of α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Therefore some or all of the 
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phenotype associated with mutations in these mice could alternately involve AMPA-mediated signaling. This 
may also be reflected in the GAERS model where the stargazin subunit is upregulated in both the SCX and 
thalamus; key areas involved in absence seizures, although no alterations in P/Q-type channel activity have yet 
been reported in this model.120

CALCIUM CHANNELS IN TEMPORAL LOBE / COMPLEX PARTIAL 
EPILEPSY

T-type calcium channels in the pilocarpine model of temporal lobe 
epilepsy/complex partial epilepsy
In the pilocarpine model of temporal lobe epilepsy (TLE) status epilepticus is induced by systemic 
administration of the muscarinic receptor agonist, pilocarpine.121, 122 During an initial “acute” phase lasting up 
to approximately 24 hours rodents suffer from seizures resembling temporal lobe epilepsy. Following this, a 
seizure-free period lasting from a few days to weeks occurs until a “chronic” phase resembling complex-partial 
seizures develops (Figure 4). Immediately after the acute phase significant pathophysiological damage can be 
observed in hippocampal, thalamic, cortical and striatal structures. During this period CaV3.2 expression is 
upregulated and a corresponding upregulation of T-type currents is thought to occur in the apical dendrites of 
hippocampal CA1 neurons.123–126 Some small changes have also been observed in the biophysical properties of 
the T-type currents in these neurons.126 Burst-firing is increased in CA1 neurons after the induction of status 
epilepticus, as would be expected with increased T-type conductance, and can be reversed by specific blockade 
of CaV3.2 channels (Figure 4). Furthermore, in CaV3.2 knock-out mice, the number of seizures is attenuated, 
burst-firing is abolished and neuronal damage in the CA1 region (cell loss and mossy fiber sprouting) is 
reduced.125 Therefore, T-type channels, specifically CaV3.2, appear to be upregulated by temporal lobe seizures 
and/or have a strong influence on development of complex-partial seizures in the pilocarpine model. In 
addition, there is a direct correlation between seizure-induced neuronal damage and upregulated expression of 
CaV3.2 channels; although whether increased CaV3.2 expression induces neuronal damage or if damage itself 
increases the expression of CaV3.2 is unknown.

T-type channels in electrical kindling model of limbic epilepsy
Seizure “kindling” is another established model for studying epilepsy in both rodents and higher animals.127 In 
this model, low intensity focal electrical stimulation of a particular area of the brain is used to induce seizures, 
which increase in intensity and duration as the induction is repeated, due to the phenomenon that seizures lower 
the threshold for further seizures. For example, electrical stimulation of limbic structures can induce temporal 
lobe epilepsy. In rats, similar to what is seen for the pilocarpine model, kindling increases T-type currents in 
CA1 hippocampal neurons following stimulation applied to CA3 hippocampal efferents (Schaffer collaterals) 
which innervate the CA1.128 The increase in T-type currents remains six weeks following the cessation of 
kindling stimulation. Simultaneous increases in neuronal hyperexcitability and damage are also observed in this 
model, implying that increased T-type currents may drive neurons into a pathophysiological, hyperexcitable 
state wherein over-excitability induces neuronal damage. Conversely, and again similar to the pilocarpine model, 
the reverse may be true whereby seizure-induced damage leads to an upregulation of T-type currents.

HVA channels in electrical kindling models of limbic epilepsy
In the same electrical kindling model using rats, HVA currents increase by ~50% in comparison to controls in 
hippocampal CA1 neurons.128 Correspondingly, CaV1.3, CaV2.1 and CaV2.3 channel mRNA is increased in the 
CA1 and dentate gyrus hippocampal regions in the initial stages of epileptogenesis as seizures are developing.129 

Contrastingly, at these stages the expression of CaV2.2 N-type channel mRNA is decreased. However, once 
kindling is fully developed a significant increase is observed in expression of the CaV2.2 subtype alone. 
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Therefore, alterations in both HVA and T-type calcium channel expression occurs at different levels and rates in 
the kindling model in a subtype-specific manner making elucidation of the specific role of each subtype 
somewhat complicated. Nonetheless, there is a clear correlation of calcium channel expression with the 
development and maintenance of seizures in this limbic epilepsy model.

Figure 4. T-type Ca channels in temporal lobe / complex partial epilepsy. (a) Systemic injection of pilocarpine in mice induces the 
development of complex-partial seizures as observed with EEG recording. Seizure morphology and duration is similar in wild-type 
(CaV3.2+/+) and CaV3.2 gene knockout mice (CaV3.2−/−), however CaV3.2−/− mice display fewer seizures per day than CaV3.2+/+ 

mice following status epilepticus (SE). (b) CA1 hippocampal neurons do not display burst-firing activity in response to depolarization 
in sham-treated CaV3.2+/+ mice (top left panel), however in CaV3.2+/+ mice displaying pilocarpine-induced seizures 7–15 days after 
SE (top right panel) clear burst-firing is observed. Conversely, in CaV3.2−/− mice burst-firing is not observed in either sham-treated 
(bottom left panel) or pilocarpine-treated (bottom right panel) animals. (b; far right panel) Increased T-type tail currents are detected 
in CA1 neurons of CaV3.2+/+ mice treated with pilocarpine but not in CA1 neurons of sham-treated controls or CaV3.2−/− mice. (c) 
Neuronal cell loss occurs via a CaV3.2-dependent mechanism. Representative hippocampal sections from sham-control and SE-
experienced Cav3.2+/+ and Cav3.2−/− mice stained with an antibody directed against the neuron-specific epitope NeuN 50 days after 
treatment. Note the pronounced neuronal cell loss in CA1 and CA3 areas after SE in Cav3.2 mice but not in Cav3.2−/− mice. The 
higher-magnification micrographs of representative CA1 subfields of SE-experienced animals highlight the substantial neuronal 
degeneration in Cav3.2+/+ but not Cav3.2−/− mice (bottom). Neuronal cell loss is quantified in the right panel.
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CaV2.3 R-type channels in kainic acid-induced limbic epilepsy model
CaV2.3 knockout mice exhibit altered susceptibility to absence seizures, and decreased susceptibility to 
generalized seizures as discussed in detail in “HVA channels in absence epileptic mice models” and in 
“Generalized Seizures in CaV2.3 transgenic mice” and are thought to contribute toward epileptogenic plateau 
potentials in CA1 hippocampal neurons.108-111 Further studies have revealed that CaV2.3 deficient mice are 
also resistant to limbic seizures and secondary generalized seizures induced by systemic administration of the 
glutamate receptor agonist, kainic acid.110 It should be noted that this only applies to the more severe stages of 
seizure in this model and that lower severity seizures actually display signs of increased sensitivity as has been 
suggested for absence seizures in these mice.108 In addition, these mice show reduced neuronal cell loss and 
neurodegeneration within the CA3 region in response to seizures and their survival rate is significantly 
improved.

CALCIUM CHANNELS IN GENERALIZED CONVULSIVE SEIZURES

HVA calcium channels in Genetic Epilepsy Prone Rats
Genetic Epilepsy Prone rats (GEPRs) are inbred Sprague-Dawley strains that develop either moderate (GEPR-3) 
or severe (GEPR-9) predisposition to, and expression of spontaneous as well as audiogenic and kindling-induced 
complex-partial seizures leading to secondary tonic-clonic seizures. Seizures are thought to originate from the 
forebrain and/or brainstem circuitry as well as the inferior colliculus.130, 131 HVA calcium currents have been 
shown to be increased in inferior colliculus neurons of the less severe seizure expressing GEPR-3 strain.132 

Corresponding increases in CaV1.3 L-type and CaV2.3 R-type protein levels are observed in neurons from this 
region in GEPR-3 rats which have not yet suffered seizures.133 Following a single audiogenic seizure GEPR-3 
rats display a further increase in the expression of both CaV1.3 and CaV2.3 calcium channels and also an 
increase in the expression of the CaV2.1 P/Q-type. Interestingly, these are the same calcium channel types 
upregulated in limbic electrical kindling models, further supporting their role in epileptic susceptibility.

Generalized seizures in CaV2.3 transgenic mice
The CaV2.3 knockout mouse model displays altered susceptibility to pharmacologically-induced absence and 
limbic seizures.108, 109, 110 While these mice display no spontaneous seizures, it has been demonstrated that 
CaV2.3 knockout mice show resistance to generalized convulsive seizures and reduced lethality induced by 
systemic administration of the GABA receptor antagonist pentylenetetrazol.111 However, these mice do not 
show any altered susceptibility to seizures induced administration of the potassium channel blocker, 4-
aminopyrridine.

Calcium channels ancillary subunits in genetic convulsive animal models
In addition to the alterations in HVA channel α1 subunit expression in GEPRs, expression abnormalities of the 
calcium channel ancillary subunits have also been observed in this model. Expression of the β3 subunit is 
increased in seizure-naïve GEPR-3 rats and increases further following induction of a single audiogenic 
seizure.133 Contrastingly, expression of the α2δ subunit is decreased in seizure-naïve GEPR-3 rats and decreases 
further following induction of a single audiogenic seizure. The overall affect on calcium currents remains 
difficult to establish due to the altered expression of the HVA channel subunits that also occurs in GEPRs.

CONCLUSIONS
A number of currently used anti-epileptic drugs (AEDs) have been shown to block calcium channels.134 These 
include front line absence treatments such as ethosuximide49, 135–150 and valproic acid49, 138, 151–152, 
zonisamide153–157 and leviteracetam160, 172–173 in the treatment of partial-onset and generalized seizures, 
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lamotrigine49, 158–163 and gabapentin/pregabalin174–182 for partial seizures and primary/secondary 
generalized convulsive seizures and phenytoin49, 164, carbamazepine47, 165,166and topiramate150, 167–170 to 
control complex-partial and tonic-clonic seizures. In many cases the exact relevance of the in vitro 
pharmacological findings are difficult to interpret since the cells in which the AEDs have been tested in vitro are 
often not from the region where the drug has its intended effect in vivo. Further difficulties arise from the drug 
concentrations used since the accurate measurement of clinical AED concentrations in specific human brain 
areas is often not possible, resulting in the drug concentrations for in vitro testing being estimated from human 
plasma concentrations combined with animal cerebral spinal fluid concentration to plasma concentration ratios. 
The result is often that higher or lower concentrations may be tested in comparison to those existing in the 
brains of epileptic patients. Within these limitations, in most in vitro studies 100% block of calcium channel 
activity is rarely observed with clinical concentrations of AEDs. Despite this, convincing evidence for the 
involvement of subtype-selective calcium channels in AED pharmacology is mounting for some of the currently 
used AEDs. As a result, calcium channels are more commonly being viewed as attractive targets for novel 
epileptic therapies. While small molecules with the ability to specifically block individual calcium channel 
subtypes are not presently available, considerable effort is ongoing towards developing new and selective calcium 
channel blocking compounds aimed at the treatment of epilepsy.183
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