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Enhanced excitatory connectivity and decreases in GABAergic inhibition are important mechanisms underlying 
injury-induced epileptogenesis in many animal models and in humans. Sprouting of excitatory axons and 
establishment of new synapses is a ubiquitous epileptogenic response to cortical injury. In the rodent chronic 
partial isolation (undercut) model of posttraumatic epilepsy, tetrodotoxin treatment of undercut cortex during a 
critical period decreases this axonal response to injury and blocks epileptogenesis. Gabapentin, an agonist that 
competes with glial-derived thrombospondins at the α2δ-1 calcium subunit receptor, is antiepileptogenic in 
neocortical slices from undercut rats and decreases injury-induced excitatory synapse formation, cell death, and 
neurofilament immunoreactivity. GABAergic interneurons become atrophic and dysfunctional in undercuts, 
resulting in decreases in inhibitory connectivity and the strength of inhibition on pyramidal cells. A potential 
underlying mechanism is loss of trophic support from brain derived neurotrophic factor (BDNF) released by 
pyramidal neurons acting on interneuronal TrkB receptors. Treatment of undercut rats after injury with agents 
that mimic activation of TrkB receptors by BDNF may reduce signs of injury and dysfunction of interneurons 
and provide a second promising antiepileptogenic approach. A focus on limiting new excitatory connectivity 
and providing trophic support for injured GABAergic interneurons may allow development of effective 
prophylactic measures for posttraumatic epilepsy.

The epidemiology of posttraumatic epilepsy (PTE) has been extensively analyzed and reviewed in a number of 
studies of both civilian and military brain injuries1,2; reviewed in3. Several conclusions from this research are 
relevant to considerations of the potential mechanisms and prophylaxis of PTE. Results clearly show that the 
incidence of PTE is related to the severity of injury, and is therefore significantly higher in the military during 
wartime than in the civilian population, ranging up to 53 % with penetrating wounds1,2; reviewed in3. Both the 
increased incidence at older ages, and the potential development of PTE by the large number of individuals who 
have survived severe concussive injury during recent conflicts, suggest that the size of the affected population 
will increase in coming years, emphasizing the need for understanding the underlying pathophysiological 
processes and the development of prophylactic strategies.4,5 Although initial seizures in those who develop 
epilepsy most commonly have a focal origin in neocortex, both partial neocortical and temporal lobe epilepsy 
can follow traumatic brain injury (TBI) in man6. One remarkable feature of PTE is the variable, often very 
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prolonged latency from injury to epilepsy which can range from weeks to years1,2,6. This provides a possible 
window for prophylactic intervention, once more information regarding the underlying pathophysiological 
processes and strategies for modifying them is available. However the long latency also represents a potential 
therapeutic problem, particularly in the absence of reliable biomarkers of “epileptogenesis in progress”. This 
chapter will focus on examples of aberrant excitatory and inhibitory processes in injured epileptogenic cortex 
and potential approaches to prevention of epileptogenesis that are focused on these pathophysiological 
mechanisms. Some of the challenges for development of prophylactic therapies are also discussed. Readers are 
referred to a number of reviews and papers published very recently that deal with various aspects of the basic 
mechanisms, pathogenesis and potential prophylaxis of PTE, and complement the areas covered in this 
chapter6–18.

Spectrum of potential epileptogenic mechanisms induced by 
traumatic brain injury
A large number of alterations in gene expression19 and a variety of pathophysiological processes occur in 
parallel following a brain injury20–22, reviewed in7,23, making it unlikely that an intervention focused on any 
one of these, in isolation, will emerge as a prophylactic “silver bullet”. The situation is further complicated by the 
likelihood that variables such as the level of brain maturation, site and distribution of injury (focal vs. multifocal 
vs. diffuse), type of trauma (e.g. concussive versus penetrating), presence or absence of significant bleeding, and 
other factors may affect the underlying type and sequence of epileptogenic events and the optimal timing of a 
potentially successful intervention in a given individual. Do different combinations of pathophysiological 
mechanisms underlie human epileptogenesis that follows different types of cortical injuries such as those due to 
stroke with cortical infarction, penetrating vs. closed concussive head injuries, focal infections or other 
etiologies? The same question is relevant to potential similarities or differences in events underlying chronic 
epileptogenesis in various models of TBI such as fluid percussion injury24 versus controlled cortical impact25 

versus neocortical partial isolation or “undercut”26. Are underlying mechanisms in these models in neocortex 
the same as those in posttraumatic temporal lobe epilepsy models, or when hippocampal damage is induced by 
status epilepticus rather than direct trauma? These are critical questions because they bear on potential 
prophylactic therapies and, unfortunately, the detailed data required for answers are incomplete.

A survey of the limited cellular results from neocortical injury models, and from animals whose temporal lobes 
are injured in the course of experimental status epilepticus, as well as from available human material, indicates 
that two pathophysiological processes are prominent in focal epileptogenesis, namely, enhanced excitatory 
connectivity10,27–34, and alterations in GABAergic inhibitory mechanisms33,35–40. But even within these broad 
categories, different types of abnormalities may be present that will require different prophylactic or therapeutic 
approaches. For example, disinhibition might involve alterations in gamma-aminobutyric acid A (GABAA) 
receptor subunits41,42, decreases in voltage dependent calcium channels40 or Na+/K+ adenosine triphosphatase 
(ATPase) at inhibitory terminals43,44, shifts in the chloride gradient due to changes in expression of chloride 
transporters KCC2 or NKCC45–47, loss of inhibitory connectivity due to structural changes in interneurons16,48 

or actual loss of interneurons of various subtypes36,38.

Subsets of abnormalities can also affect the mechanisms controlling excitation, such as alterations in the 
probability of release (Pr) at terminals49, burst firing in axons50, reviewed in51, receptor efficacy or number52–
56, and dysfunction of ion or transmitter transport57–62. In addition to alterations in inhibitory efficacy and 
enhanced excitation, many other potentially epileptogenic changes are present following injury such as 
alterations in voltage dependent ion channels63–67, blood brain barrier disturbances68, inflammatory responses 
and release of cytokines21,69, alterations in glia70,71, and so on. In terms of evaluation of therapeutic trials of 
potential prophylactic agents, this plethora of abnormalities raises a difficult issue: a single agent may fail to 
prevent PTE, even though it is effective at its intended target, that is a false negative result may be obtained due 
to the presence of other epileptogenic mechanisms acting in parallel.
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Choice of models for research on posttraumatic epilepsy
There is no perfect model of human posttraumatic epilepsy. The advantages and disadvantages of acute and 
chronic models of epilepsy have recently been reviewed in detail72. Fluid percussion injury, controlled cortical 
impact and undercut models each have their place in advancing our understanding of PTE. Valuable 
information has also been obtained from status epilepticus temporal lobe injury models, although direct 
traumatic injury is not present and the resulting epileptogenesis represents a different epilepsy syndrome that 
may involve a somewhat different spectrum of underlying mechanisms. Discussions about the merits of one 
model versus another thus are only useful in the context of the particular pathophysiological process or event to 
be investigated. Obviously, to determine whether a drug will be prophylactic against seizures in vivo, a model in 
which there might be extensive injury and an expected high incidence of electrographic and behavioral 
posttraumatic seizures at relatively short latency after injury (i.e. high throughput), would be most practical and 
desirable.73–75 However, this might not be the model of choice for investigation of the details of functional or 
structural alterations in neocortical GABAergic interneurons or pyramidal cells that occur at a site of 
stereotyped restricted epileptogenic focal injury, and the potential prophylactic effects induced by the same drug 
on these alterations. Such a question would be better addressed with a more reductionistic approach using a 
model that would facilitate detailed cellular in vitro experiments and avoid the complications of widespread 
damage and variability.30,32,76 Both kinds of experiments are critical for progress, and fitting the preparation 
used to the question posed is certainly not a new concept in neurobiological research. There is no one best 
approach to unraveling the mechanisms underlying the pathogenesis and prophylaxis of PTE.

Partial neocortical isolation (“undercut”) model
The authors’ familiarity with this model, the significant amount of anatomical and cellular electrophysiological 
data available (references below and in77) and the fact that this is the first case in which prophylaxis of 
epileptogenesis after local cortical injury has been demonstrated (discussion below), has lead us to focus on the 
undercut model in this review. The advantages of this model have been detailed elsewhere.77 Most important is 
the relatively short interval between injury and epileptiform activity that is present in a high proportion of 
neocortical slices cut through the damaged area and maintained in vitro 78–80 (Figure 1C,D). This has allowed 
the detailed examination of epileptogenic cellular structural and functional alterations in pyramidal (Pyr) cells 
and GABAergic interneurons detailed below. We have also obtained in vivo video/electroencephalographic 
(EEG) recordings that show electrographic and behavioral seizures beginning with focal discharge in the 
undercut cortex, spreading across the cortex on the injured side and propagating contralaterally (Figure 2 in77).

Partially isolated neocortical islands with intact pial circulation (“undercuts” below) are an established in vivo 
and in vitro model for development of chronic post-traumatic hyperexcitability and epileptogenesis32,78,79,81,82, 
and partially isolated neocortex is also epileptogenic in man83; Figure 1A). The undercut cortex retains normal 
laminations (Figure 1B), although it becomes thinner with modest cell loss and obvious structural alterations in 
deep lying pyramidal (Pyr) cells78,84, (K Graber and DA Prince, unpublished). Disinhibition, increases in 
neuronal membrane excitability, and increases in excitatory synaptic coupling have been suggested as potential 
mechanisms in this chronic epilepsy model.32,78,85–87 The undercut cortex becomes progressively more 
epileptogenic over several weeks82,88, and spontaneous interictal discharges can persist for at least 1 year in the 
monkey26. The time of onset of epileptogenesis, or the “critical period” in rats occurs during the first 3 days after 
injury89 and recent data suggest that epileptogenic activity is already present at 3 days after the undercut (DK 
Takahashi and DA Prince, unpublished results). Isolated islands of neocortical gray matter, with 
neuropathological evidence of substantial axonal reorganization, are also present in postmortem specimens from 
epileptic children who developed extensive underlying white matter lesions as infants90. Interictal epileptiform 
activity can be recorded within partially isolated cortex of anesthetized rats, and c-fos immunoreactivity (IR) is 
increased for weeks in the injured cortex, suggesting ongoing abnormal activity91. Behavioral and electrographic 
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seizures occur in in vivo experiments on monkey, cat and rodents in this model (see above and references in77). 
Areas of partially isolated cortex with underlying loss of white matter are also present in the cortical contusion 
(Figure 2 in25 and fluid percussion injury models (Figure 1D in23), although it is not clear whether seizure 
activity originates from the cortex above these sites. Of interest are reports of chronic electrographic and clinical 
seizures in humans as a complication of psychosurgery in which connections from portions of frontal lobes were 
severed, essentially producing large partially isolated neocortical slabs 92,93 (Figure 1A).

Abnormalities in excitatory mechanisms in the undercut cortex
The capacity of injured brain to make new connections has been known since the groundbreaking anatomical 
studies of Cajal94 who described sprouting of injured Pyr cell axons in neocortex. Maladaptive axonal sprouting 
and establishment of new excitatory connections occur in mature undercut neocortex32 and as early as 2 days 
after injury in isolated immature neocortex95. Excitatory sprouting also occurs following injury to the 
hippocampus in other animal models of epileptogenesis27,28,96–102; and in epileptic human temporal lobes103–
107. The ubiquitous nature of this phenomenon is shown by its occurrence in other models of cortical trauma 
such as stroke108,109, thermo-ischemic lesions110 and fluid percussion injury111, where it may begin hours after 
the trauma112. The onset of an axonal reaction and sprouting, as signaled by increases in immunoreactivity for 
growth-associated protein (GAP)43, may begin in as early as 12h after lesions in culture and these alterations are 
well established by 3 days after injury30,113. Sprouting occurs 3-4 days after injury to dissociated neocortical 
neurons in culture114. Hyperexcitability due to synaptic innervation by sprouted axons has been shown in 
experiments in hippocampus29,30,76 and neocortex34. Activation of brain-derived neurotrophic factor (BDNF) 
may be an important mechanism underlying injury-induced sprouting and hyperactivity in 
hippocampus.115,116

Results from whole cell recordings of layer V pyramidal (Pyr) neurons done 2–3 weeks after injury in the 
undercut cortex model support the conclusion that there is enhanced synaptic excitatory connectivity by 
showing (1) an increased frequency of miniature (m) excitatory postsynaptic currents (EPSCs); (2) a steeper 
input/output relationship for evoked EPSCs; and (3) an increased probability of release of glutamate from 
excitatory terminals33,49. The latter finding suggests intrinsic abnormalities in the terminals of Pyr cells. In 
addition, anatomical studies of biocytin-filled layer V Pyr cell axons showed evidence of significant sprouting, 
mainly in layer V32, where the epileptogenic field potentials were initiated78,79. These functional and structural 
abnormalities presumably contribute to the large polysynaptic excitatory currents in Pyr cells that occur 
synchronously with field potential epileptiform bursts (Figure 1D) and propagate across the cortex (Figure 1C).

More recently, laser scanning photostimulation of caged glutamate in epileptogenic slices from undercuts 
allowed detailed mapping of excitatory and inhibitory connectivity34,48. Results showed that the excitatory 
“map” was significantly expanded, particularly in layer V, and that both Pyr cells and fast-spiking inhibitory 
interneurons were targets of presumed sprouted axons and terminals from other nearby Pyr neurons32. These 
alterations in excitatory synaptic connectivity and strength, together with abnormalities in inhibitory circuits 
discussed below may contribute to the development and increased conduction of epileptiform activity across 
cortex in the in vivo undercut model in cat117 (reviewed in118).

It is interesting that hyperexcitability closely resembling that recorded in layer V of undercut cortex has also 
been shown in neocortical slices from the fluid percussion injury model. Rats from both models have 
epileptiform seizures in vivo77,119, and there is also a similarity in the morphology of field potentials that are 
evoked or occur spontaneously in slices versus those in in vivo EEG recordings in these two models. Also, recent 
recordings from another TBI model studied in vitro clearly show repetitive bursts of EPSCs that coincide with 
epileptiform field potentials which would be termed “ictal” EEG discharges if they occurred in vivo10.
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Abnormalities in GABAergic inhibitory mechanisms in undercut cortex
A variety of structural and electrophysiological evidence shows that GABAergic inhibition is compromised in 
undercut cortex. Recent experiments in the cat suggest that glutamic acid decarboxylase (GAD-) or GABA- 
positive neocortical interneurons are selectively and progressively reduced in density in cat undercut cortex84. 
Although our initial cell counts in undercut rat cortex have not shown a selective decrease in density of 

Figure 1. Undercut cortex in rats and humans. A: Coronal section of human brain in patient who underwent undercutting surgery of 
right frontal lobe for intractable pain. Dashed white lines drawn through the undercut here and in C. (Modified from Scoville WB. 
Selective cortical undercutting as a means of modifying and studying frontal lobe function in man; preliminary report of 43 operative 
cases. J Neurosurg 1949; 6:65, with permission.) B: Fixed coronal section cut through rat sensorimotor cortex containing a partial 
cortical isolation made 3 wks earlier. Black arrow points to layer V pyramidal cell filled with biocytin. Open arrows mark edge of 
undercut that extends from pial surface to white matter. C: Upper: Evoked epileptiform field potentials recorded simultaneously by 2 
electrodes (On column, Off column) in layer V of an in vitro slice 3 wks after partial isolation. Lower: Nissl stained section from the 
same slice showing approximate site of undercut lesion and electrode positions. Stim: stimulation electrode. All-or-none prolonged 
polyphasic epileptiform activity was evoked by stimulus in layer VI/whitematter just above undercut margin. Epileptiform burst was 
initiated by on-column stimulation and propagated across cortex to off-column electrode. From Graber KD, Prince DA. A critical 
period for prevention of posttraumatic neocortical hyperexcitability in rats. Ann Neurol 55(6):860, 2004, with permission. D: 
Representative voltage clamp recording (upper trace) from layer V pyramidal cell in undercut during a spontaneous epileptiform event. 
Vhold: −50 mV, close to ECl; inward current downward. Random EPSCs are followed by large spontaneous epileptiform event 
consisting of summed polysynaptic EPSCs coincident with epileptiform field potential burst in bottom trace. Field: negativity down; 
current peak clipped). Evoked epileptiform field potential and cell recording were similar to those evoked by extracellular stimuli (not 
shown). Slice perfused with standard ACSF. From Salin P, Tseng GF, Hoffman S, Parada I, Prince DA. Axonal sprouting in layer V 
pyramidal neurons of chronically injured cerebral cortex. J Neurosci 15:8234, 1995, with permission.
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parvalbumin (PV)-immunoreactive interneurons120, we have found significant structural changes in biocytin-
filled fast-spiking PV-containing cells, including marked decreases in axonal lengths and dendritic volume 
(Figure 2), giving them an appearance similar to that seen in immature PV interneurons (cf Figure 3A of121 

with Figure 2B). Further, the axons of these interneurons in the undercut cortex have a significant increase in the 
proportion of small (<1 um in diameter) boutons and a decrease in numbers of larger (>1 um in diameter) 
boutons (see Figure 5 in16), changes that would be associated with altered pre- and postsynaptic structures at 
GABAergic synapses and with less effective inhibitory transmission122,123.

Results of several electrophysiological experiments confirm a decreased efficacy of GABAergic inhibitory 
transmission in the undercut cortex. Whole cell recordings in rat undercut slices showed a decreased frequency 
of mIPSCs in Pyr cells33, and quantitative electronmicroscopic experiments confirmed a decreased density of 

Figure 2. Structural alterations in fast-spiking interneurons in undercut cortex. A,B: Images of single layer V fast-spiking 
interneurons filled with biocytin and processed in control (A) and undercut slice (B). The cell from the undercut has thinner dendrites 
(arrows) and a less dense axonal arbor. Calibration in B: 10 μm for A, B. C–D: Graphs show significant decreases in axonal length (C) 
and mean dendritic volume (D) in undercut (hatched bars) vs. control cells (white bars). Numbers of cells analyzed shown in each 
column. Measurements obtained from stacks of confocal images. Mean ± SD axonal length for control: 3429.8 ± 968.1 μm and for 
undercut: 726.9 ± 325.1 μm. **p < 0.001; *p<.01. A–B,D: from I Parada, DA Prince, unpublished. C: modified from Prince DA, Parada 
I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential 
prophylaxis. Epilepsia 50, Suppl 2:30, 2009, with permission.
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symmetrical (inhibitory) synapses on somata of layer V Pyr cells (J. Wenzel, PA Schwartzkroin and DA Prince, 
unpublished results) as one potential mechanism for decreased miniature inhibitory postsynaptic current 
(mIPSC) frequency. More recently, we have also shown that the axonal terminals of layer V interneurons in 
undercuts are abnormal in that they have a decreased probability of GABA release and increased failure rate40 

due in part to a downregulation of N-type calcium channels in terminals.123a Dual recordings from synaptically 
coupled FS-Pyr or FS-spiny stellate pairs in layer IV of undercuts showed a decrease in Pr, a large reduction in 
the amplitude of unitary IPSCs, increased coefficient of variation and increased failures, indicating alterations in 
presynaptic terminals of the largest subgroup of GABAergic neurons in cortex, FS cells 123b. Neuronal injury can 
also decrease the efficacy of postsynaptic inhibition by decreasing expression of KCC2 and impairing outward 
chloride transport124,125. In the undercut, there are also decreases in KCC2 and in the outward transport of 
chloride in postsynaptic Pyr cells that would make GABAergic inhibition less effective at times of high frequency 
activity126. Recent results, obtained with laser scanning photostimulation of caged glutamate in combination 
with whole cell recordings, have shown that the net effects of some of the above-mentioned anatomical and 
electrophysiological abnormalities are to reduce the spatial extent of inhibitory inputs onto both Pyr cells and FS 
interneurons in the chronic undercut127.

Fast-spiking interneurons in neocortex normally have a high density of Na+-K+ ATPase (“sodium pump”) in 
their membranes44 and particularly in their axonal terminals surrounding Pyr cell somata43,128; (Figure 3A). 
Sodium pump activation would be important in fast-firing neurons to prevent excessive increases in [Na+]i that 
might depolarize terminals and decrease GABA release. There is a significant loss of Na pump immunoreactivity 
in undercut cortex surrounding Pyr cells (Figure 3B), similar to that previously found in the freeze-microgyrus 
model of epileptogenesis43, suggesting another potential mechanism that would lead to terminal dysfunction 
and decreased GABA release.

When does posttraumatic epileptogenesis begin?
Answers to this critical question would influence decisions about the timing of potential antiepileptogenic 
treatment. From the available data, it appears likely that processes eventually leading to hyperexcitability in 
cortical networks and to seizures may be set into motion at the time of the TBI, although the latency to the first 
behavioral spontaneous seizure is highly variable. Seizures in the first week after injury are usually not followed 
by epilepsy in man; however they are associated with an increased statistical risk of subsequent epilepsy3, 
indicating that, at least in some individuals, an epileptogenic process is initiated early. Epileptiform activity may 
be initially undetectable by surface EEG, making this an unreliable marker of the onset of epileptogenesis129. 
There is evidence for early emergence of epileptogenesis in a variety of experimental data. In models of acute 
neocortical trauma, epileptiform activity may develop within minutes or hours after injury in vitro130,131 and 
results from acute partial isolation experiments done under ketamine anesthesia in cats do show that acute 
epileptiform discharges are generated in cortex near the isolation132. However the underlying mechanisms in 
these early seizures may be different from those in more chronic models in that they might involve acute 
alterations such as release of excitatory amino acids131, spreading depression, large increases in [K+]o and 
blood-brain barrier disruption.

Recently we recorded in vitro from undercut slices obtained 3 days after the injury and found that they generate 
robust prolonged spontaneous and evoked epileptiform field potentials associated with large amplitude EPSCs. 
Confocal images obtained after immunocytochemical processing for GAP43, vesicular glutamate transporter 1 
(vGLUT1) and postsynaptic density (PSD)95 have suggested that there is significant sprouting of excitatory 
axons onto pyramidal somata within days after the undercut is placed. Other electrophysiological data suggest 
that these sprouted terminals are functional and contribute to epileptogenesis (D.K. Takahashi and D.A. Prince, 
unpublished).
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Figure 3. Loss of perisomatic α3Na+K+ ATPase in undercut cortex. A: Immumoreactivity (IR) for α3Na+K+ATPase in layer V of 
control cortex contralateral and homotopic to undercut on rat 21d after lesion. IR is localized around the somata of pyramidal cells 
(asterisks in A,B), suggesting that it is in terminals of FS interneurons that target somata. Dual staining with GAD65 (not shown) 
confirmed this conclusion43.
B: Undercut side from animal of A shows significant downregulation of α3Na+K+ATPase-IR. From128.

Figure 5. Gabapentin (GBP) in vivo reduces epileptogenesis and excitatory synapse density in undercut slices. A–B: Field 
potentials evoked in layer V of undercut slice by stimuli in partial cortical isolations 14 d after injury. A: Rat was treated with i.p. 
infusion of saline for 14d, followed by slice experiment. Single stimuli within isolation evoke typical epileptiform discharges consisting 
of slow potentials lasting ~400–500 ms with superimposed extracellular unit bursts. B: Representative non-epileptiform responses to 
stimulation of slice from rat treated ×14d with an ip infusion of ~8 mg/d GBP via Alzet pump. Recordings done 1d after termination of 
GBP infusion. C: Group data showing percentage of epileptogenic slices 14 d after undercuts in GBP- vs. saline-treated animals. UC: 
undercut in both groups. Numbers in bars: numbers of animals. Average of 4.3 slices/rat. GBP significantly reduced epileptogenesis in 
these experiments. D–E: Confocal images of neocortical layer V from undercut rats treated with ip saline (D) or GBP (E; ~8 mg/kg × 
7d) after undercut. Sections were immunoreacted with antibodies for postsynaptic (PSD95, red) and presynaptic markers (vGlut1, 
green). Sites of putative synapses shown by close appositions (yellow; arrows) were fewer in sections from GBP-treated rats (E vs. D). F: 
Group data from saline (white bar) and GBP-treated animals (hatched bar). Numbers in bars: total number of sections examined. 
Three images were taken from each section and 2–3 sections from each of 5 rats in each group. ***: p<001. From H Li, KD Graber, DA 
Prince, unpublished.
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Axonal sprouting and excitatory synapse formation occur in parallel with a number of other pathophysiological 
events following TBI (e.g. alterations in GABAergic inhibition discussed above, intrinsic changes in membrane 
excitability78), so it is difficult to determine whether hyperconnectivity alone would be sufficient to induce 
posttraumatic epileptogenesis. A potential answer to this question comes from recent results in C1q knockout 
mice that have behavioral and electrographic seizures resulting from failure to prune excitatory cortical synapses 
during development.133 In vitro slices from these animals are epileptogenic due to increased excitatory 
connectivity without apparent alterations in inhibitory events.

In experiments using controlled cortical impact (CCI), epileptiform activity and electrographic seizures are 
present in vitro at the first week after injury10 and appear to progress with generation of “ictal” discharges 
lasting for many seconds by the second week. In other experiments such as those involving kainate kindling, 
epileptogenic activity is present early in hippocampus but goes undetected in in vivo recordings from the usual 
skull electrodes134. Our previous results in the undercut model provided the first proof-in principle that 
posttraumatic epileptogenesis, as gauged by the occurrence of epileptiform activity in in vitro slices, begins 
shortly after injury and can be prevented80. However this prophylaxis was only effective if the treatment, namely 
topical exposure of the injured cortex to tetrodotoxin (TTX) in a slow release resin, was administered for the first 
3 days after injury. Later applications were ineffective at limiting the proportion of slices that were 
epileptogenic89. Thus the results revealed a brief critical period of a few days beginning after the partial isolation 
when the seeds for subsequent epileptogenesis are sown in the undercut cortex model. Tetrodotoxin has also 
been effective in decreasing axonal sprouting and rhythmic neocortical burst discharges that begin by the second 
day after thermocoagulation lesions in rat neocortex, although the relationship to later epileptogenesis is 
unclear.110 These results with TTX appear contrary to the hypothesis that the enhanced excitability and 
epileptogenesis in the undercut may be due to activation of homeostatic increases in excitatory 
neurotransmission due to deafferentation118,135. It is possible that homeostatic compensatory increases in 
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors do occur, but are offset by decreases 
in innervation of postsynaptic targets induced by the TTX treatment. Immunocytochemical analysis of undercut 
cortex shows that TTX blockade of activity down-regulates anatomical markers of the axonal and terminal 
sprouting response that are evident as early as 3 days after injury (Figure 4A–C) and are long-lasting (Figure 
4D–F). Other as yet unexplored results of silencing injured cortex may account for the blockade of 
hyperexcitability in the undercut that outlasts the TTX treatment by many months (K.D. Graber and D.A. 
Prince, unpublished results). It is important to note that TTX may produce quite different (opposite) effects on 
epileptogenesis when given during early development in hippocampus136, a result that emphasizes the difficulty 
of generalizing results from one model to another in terms of potential prophylactic approaches.

Prophylaxis of posttraumatic epileptogenesis
Potential approaches to modification of the increased excitatory sprouting and synapse formation and decreased 
GABAergic interneuronal structure/function, are suggested by results of experiments dealing with normal 
development of excitatory synapses and interneurons.

Limiting excitatory connectivity
Reactive astrogliosis is a ubiquitous pathological finding following TBI and is present in all of the models 
discussed above, including the undercut. Release of thrombospondins (TSPs) by astrocytes provides an 
important signal for excitatory synapse formation early in development137,138 and following injury to the 
mature central nervous system (CNS).139,140 The α2δ-1 voltage-gated calcium channel subunit, that is up-
regulated in peripheral pain models and after brain injury, is the receptor for the antiallodynic/antiepileptic drug 
gabapentin (GBP)141,142, reviewed in143,144 and is also the receptor for TSPs137. GBP can block excitatory 
synapse formation in the developing retinogeniculate pathway by interfering with TSP actions137. The increased 
axonal sprouting and synapse formation are reduced in TSP knockout animals in a stroke model, leading to the 
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hypothesis that GBP would have similar actions and might be an antiepileptogenic agent in the undercut model. 
In recent experiments, GBP, given by sc infusion or ip for 2-3d up to 14d following the day of the undercut, 
decreased the proportion of slices that subsequently generated evoked epileptiform activity (Figure 5A–C; H Li, 
KD Graber, DA Prince. Soc Neurosci abstr, 2009). In addition, dual immunocytochemical processing of sections 
from the animals treated with GBP showed significantly fewer presumptive excitatory synapses (i.e. close 
appositions between pre- [vGLUT1] and postsynaptic markers [PSD95] (Figure 5D–F)). GBP also reduced 
expression of 200 kD neurofilament-IR and the numbers of neurons stained with fluorojade C (not shown), 
suggesting potential neuroprotective effects.

Preventing structural/functional alterations in GABAergic interneurons
The above structural changes in FS interneurons gave them an appearance that resembled, in some respects, that 
seen in immature GABAergic cells121, prompting us to assess expression of BDNF in neurons of the undercut, as 
this trophic factor is a key molecule in regulating development and maintenance of both interneuronal and Pyr 
cell structure and function121,135,145–147, reviewed in145. Immunoreactivity for BDNF in Pyr cells and its TrkB 
receptor on parvalbumin-containing interneurons and the associated mRNAs were significantly down-regulated 
as early as 3d after the undercut, suggesting that supplying this or another trophic factor after injury might be an 
approach to prevention of trauma-induced alterations in these cells (Figure 6 in16; see also17. BDNF has many 
potential actions including both enhancement of network excitation and inhibition150,151, so that it is unclear 
whether the net effect of BDNF or other TrkB receptor agonists will be anti- or pro-epileptogenic at this time. 

Figure 4. Immunoreactivity (IR) of axons and terminals in partially isolated neocortex. A–C: Sections through layer V of rat 
sensorimotor cortex reacted with growth-associated protein (GAP) 43 antibody. D–F: Comparable sections from rats reacted with 
antibody for 68-kDa neurofilaments. A,D: Control from layer V of hemisphere contralateral to the undercut. B,E: GAP43-IR (B) and 
68-kDa neurofilament-IR (E) in layer V of undercuts made 3 days earlier, contralateral to A and D, respectively. C,F: Representative 
sections from undercuts of two other rats in which Elvax impregnated with tetrodotoxin was placed subdurally over the undercut area 
at the time of surgery. Immunocytochemistry was done after 3 days in A–C and after 3 weeks in D–F. Tetrodotoxin (TTX) treatment 
reduced IR for both GAP43 and neurofilament in the undercuts. Calibrations in C and F: 50 μm for A–C and D–F, respectively. From 
Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets 
for potential prophylaxis. Epilepsia; 50 Suppl 2:30, 2009, with permission.
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Variables such as dose level and timing or choice of mimetic molecule might allow differentiation of beneficial 
vs. detrimental effects.

Important unresolved issues affecting application of 
antiepileptogenic therapies for PTE

1. The question of adaptive vs. maladaptive changes in connectivity following injury is a key one that must 
be considered in approaching potential preventative treatments that decrease epileptogenic sprouting. A 
number of reports implicate axonal sprouting and new connections as major adaptive plastic events in 
recovery of function after cortical lesions108,109. In recent experiments in a stroke model where middle 
cerebral artery occlusion induces expression of TSPs in astrocytes, TSP1–2 knock-out mice showed 
significant defects in the axonal sprouting and synaptic density compared to wild type animals, together 
with defects in functional recovery140. The post-stroke incidence of epilepsy was not studied in these 
experiments; however the results, and those in the above references, provide a cautionary note.

2. A number of pathophysiological processes occur in parallel after a serious epileptogenic brain injury. 
Although any one of these in isolation might not induce seizure activity, in combination their effects on 
excitability would summate and epileptogenesis could result. Thus, a single prophylactic approach might 
be ineffective and a “prophylactic cocktail” might be required.

3. Two key elements in developing epileptogenesis in a variety of injury models are reductions in functional 
GABAergic inhibition and enhanced new excitatory connectivity. Although attempts to reverse such 
alterations may be effective, the relationships between both excitatory and inhibitory circuit function, 
circuit repair and epileptiform activity are complex. GABAergic synchronization of cortical networks 
occurs in epileptogenic cortical lesions152, and in both acute153 and genetic models of epileptiform 
discharge154. Also, depolarizing GABA responses due to altered chloride gradients occur in excitatory 
cells during development155 and after injury125,156. These factors make the net effect of enhanced 
interneuronal output hard to predict. Antiepileptogenesis, through decreases in excitatory circuit 
activities might also have obverse effects such as decreased activation of interneurons157; but see158–160 

or reduced activity-dependent axonal sprouting, pathfinding and circuit repair110,161,162.
4. As more becomes known about processes controlling excitation and inhibition during cortical 

development or following injury, it is possible that prophylactic therapies selectively affecting maladaptive 
processes might be applied. One important obstacle at this time is the unavailability of a reliable 
biological marker that would select for individuals who will go on to develop post-traumatic epilepsy, 
although it is clear that the incidence increases with the severity of brain injury (reviewed in163).

5. We know little about the temporal extent of critical periods in man when prophylactic intervention would 
be effective, or how to identify epileptogenesis “in progress”. The latent period may be very long between 
injury and expression of behavioral seizures1; however the critical period for intervention could closely 
follow injury89,164.

6. Finally, multiple offsetting potential effects of a given intervention are possible, such as both enhancement 
of excitatory connectivity together with “rescue” of inhibitory interneurons by TrkB receptor agonists 
(e.g. 165,166).

The chapters in this volume suggest that significant progress is being made in understanding the basic 
mechanisms leading to epilepsy, and that we may have potential prophylactic therapies available in the years to 
come, providing that some of the issues mentioned above are settled by detailed basic and clinical investigations.
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