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Abstract
This document is intended to provide guidance for the design, development and statistical validation of in vivo 
assays residing in flow schemes of discovery projects. It provides statistical methodology for pre-study, cross-
study (lab-to-lab transfers and protocol changes), and in-study (quality control monitoring) validation. 
Application of the enclosed methods will increase confidence in data from in vivo assays in the critical path and 
enable better decisions about SAR directions and compound prioritization. Screens using both single dose and 
multiple dose in vivo assays are discussed, along with acceptance criteria at different stages of validation.

Flow Chart
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enclosed methods will increase confidence in data from in vivo assays in the critical path and enable better 
decisions about SAR directions and compound prioritization.
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The document is organized into three sections, and includes several examples. The Introduction (Section 1) 
provides general definitions of biological assays and provides general concepts in assay development and 
validation. Assay Validation (Section 2) contains the procedures and statistical details for in vivo assay 
validation, while Background Material (Section 3) covers general statistical concepts related to the design and 
analysis of in vivo experiments.

1. Introduction
This document is written to provide guidance to investigators who are developing and statistically validating in 
vivo assays for the evaluation of structure-activity relationships and/or compound collections to identify 
chemical probes that modulate the activity of biological targets. Specifically, this manual provides guidelines for:

a. Identifying potential assay formats of in vivo models compatible with Single Dose Screens (SDSs) and 
Dose-Response Curves (DRCs) for evaluating structure-activity relationships (SAR).

b. Statistical validation of the assay performance parameters (pre-study, in-study, and cross-study 
validation).

c. Optimizing assay protocols with respect to sensitivity, dynamic range, and stability.
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1.1. General definition of biological assays
A biological assay is defined by a set of methods that produce a detectable signal allowing a biological process to 
be quantified. In general, the quality of an assay is defined by the robustness and reproducibility of this signal in 
the absence of any test compounds or in the presence of inactive compounds. This robustness will depend on the 
type of signal measured (biochemical, physiological, behavioral, etc.), and the analytical and automation 
instrumentation employed. The quality of the SDS is then defined by the behavior of this assay system when 
screened against a collection of compounds. These two general concepts, assay quality and screen quality, are 
discussed with specific examples in this manual.

1.2. General Concepts in Method (Assay) Development and Validation of 
an In vivo Model
The overall objective of any method validation procedure is to demonstrate that the method is acceptable for its 
intended purpose. Usually, the purpose is to determine the biological and or pharmacological activity of new 
chemical entities (NCE). The acceptability of a measurement procedure or bioassay method begins with its 
design and construction, which can significantly affect its performance and robustness.

The validation process originates during identification and/or design of a model and method development and 
continues throughout the assay life cycle (Figure 1). During method development, assay conditions and 
procedures are selected that minimize the impact of potential sources of invalidity (e.g. so-called false positives 
or false negatives) on the measurement of analyte or the biological end point (e.g. biochemical, physiological or 
behavioral changes). There are three fundamental general areas in method development and validation: (a) Pre-
study (Identification and Design phase) validation (b) In-study (Development and Production phase) validation, 
and (c) Cross-validation or method transfer validation. These stages encompass the systematic scientific steps in 
an assay development and validation cycle.

1.2.1. Pre-study validation:
This validation occurs prior to implementing the assay. At this stage the choice of an assay format is made. Close 
attention must be paid to factors such as the selection of methods with appropriate specificity and stability. It is 
important that the assay be designed and the protocol written to facilitate the statistical analysis (i.e. appropriate 
design and analysis method, and adequate sample size), and that proper randomization techniques be used. This 
requires the generation and statistical analysis of confirmatory data from planned experiments to document that 
analytical results satisfy pre-defined acceptance criteria. Within-run statistical measures of assay performance 
such as the Minimum Significant Difference (MSD) for SDSs and Minimum Significant Ratio (MSR) for DRCs 
are calculated. If available, the assay sensitivity and pharmacology is evaluated using control compounds.

1.2.2. In-study validation:
These procedures are needed to verify that a method remains acceptable during its routine use. In order to 
compare data for compounds tested at different times, the pre-study statistical measures of assay performance 
(MSD or MSR) are updated to include between-run variability. Each run of the assay should contain appropriate 
{maximum and minimum} control groups or treatments to serve as quality controls of each run and to check 
overall performance. (Maximum and/or minimum quality controls differ conceptually from an “active” positive 
or negative controls; see Control Compounds or Treatment Groups.) This will allow the investigator to check for 
procedural errors and to evaluate stability of the method over time. Control Charts illustrates procedures which 
may be used to evaluate assay performance over time (i.e., control chart monitoring).
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1.2.3. Cross validation:
This portion includes the assay hand-off from the individual investigator’s team to another laboratory or a 
screening center. More broadly, this procedure is used at any stage to verify that an acceptable level of agreement 
exists in analytical results before and after procedural changes in a method as well as between results from two or 
more methods or laboratories. Typically, each laboratory assays a subset of compounds and the agreement in 
results is compared to predefined criteria that specify the allowable performance of the assay.

1.2.4. Resources:
The validation guidelines described here should be applicable to most in vivo models encountered in drug 
discovery research. However, situations could arise in which their verbatim application would be impractical 
given resource constraints, intended use of the assay, or other reasons. In these situations, and in general, the 
following principles should apply:

• Some form of statistical validation should always be performed and is better than no validation.
• The amount of resources, including time, spent on validation should be kept to a reasonably small fraction 

of the total resources to be used for testing compounds. What is “reasonable” will be have to be 
determined by the key personnel involved with each project.

These guidelines are intended to be used as “guidelines” and not exact “requirements.” The specified assay 
performance measures serve to quantify how well the assay is performing and should be used to guide proper 
interpretation of the data. Determining whether an assay is “fit for its intended purpose” should be based on a 
combination of these assay performance measures and sound scientific judgment of the team.

Figure 1: The In vivo Model Assay Development Cycle.
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2. Assay Validation Procedures

2.1. Overview
The statistical validation requirements for an assay vary, depending upon the prior history of the assay. The four 
main components of the statistical validation are:

1. Adequate study design and data analysis method.
2. Proper randomization of animals.
3. Appropriate statistical power and sample size.
4. Adequate reproducibility across assay runs.

Assays should be designed so that all biologically meaningful effects are statistically significant. In an exploratory 
study, this “meaningful effect” might correspond to any effect that is pharmacologically relevant. For a project/
program team, it might correspond to an effect that meets the critical success factors (CSFs) defined in the 
compound development flow scheme. Power and sample size analyses are especially relevant for experiments 
that are designed to address key endpoints in a flow scheme. It is not acceptable to set a CSF equal to the effect 
size that is statistically significant since that effect size may or may not be biologically relevant. A CSF should be 
established based upon its biological relevance to the discovery effort. The assay is designed, optimized and 
validated so that biologically meaningful effects (e.g., CSFs) are statistically significant. Quantifying the 
reproducibility of an in vivo flow scheme assay will enable a team to discern whether compounds tested in 
different runs of the assay are exhibiting differential activity. This will result in better decisions about SAR 
directions and compound prioritization.

If the assay is new, or has never been previously validated relative to the targeted purpose, or mechanism of 
action, of the assay, then full validation should be performed. If the assay has been previously validated in a 
different laboratory, and is being transferred to a new laboratory, then a Replicate-Determination study (Pre-
Study Validation) and a formal comparison between the new assay and the existing (old) assay (i.e., cross-study 
validation; Cross Validation) should be performed. If an assay is being transferred, it is considered validated if it 
has previously been assessed by all the methods in Section 2.2, and is being transferred to a new laboratory 
without undergoing any substantive changes to the protocol. If the intent is to store the data under the same 
Assay Method Version (or AMV) in an electronic database as the previous laboratory’s AMV, then an assay 
comparison study (Cross Validation) should be done as part of the Replicate-Determination study. Otherwise 
only the intra-laboratory part of the Replicate-Determination study (Pre-Study Validation) is recommended.

If the assay is updated from a previous version run in the same facility then the requirements vary, depending 
upon the extent of the change. Major changes require a validation study equivalent to the validation of a new 
assay. Minor changes require bridging studies that demonstrate the equivalence of the assay before and after the 
change. See Section 2.4 - Cross Validation for examples of major and minor changes.

An assay methodology which has been previously validated for a different target or mechanism of action should 
be validated in full when used for a new or different target or mechanism as the variability, in particular, and 
reproducibility may be quite different for different mechanisms even though the methods may be very similar or 
identical. This concept is analogous to separately validating receptor binding assays for different receptors.

2.2. Pre-Study Validation: Replicate-Determination Study for Single-Dose 
Screens and Dose-Response Curves

2.2.1. Overview and Rationale
It is important to verify that assay results from multiple determinations or assay runs have acceptable 
reproducibility with no material systematic trends in the key endpoints. In this section, we define how to 
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quantify assay variability and determine assay equivalence. We also explain the rationale for the statistical 
methods employed in calculating reproducibility of activity and potency. We strongly recommend consultation 
with a statistician before designing experiments to estimate variability, and the sources thereof, described below. In 
particular, you should discuss with a statistician alternatives for assays with significant time, resource, or 
expenditure constraints as well as assays which will be used to test a minimal number of compounds to properly 
balance validation requirements with these constraints.

Replicate-Determination studies with two runs are used to formally evaluate the within-run assay variability (i.e., 
pre-study validation), or to formally compare a new assay to an existing (old) assay (i.e., cross-study validation). 
Replicate-Determination studies also allow a preliminary assessment of the overall or between-run assay 
variability, but two runs are not enough to adequately assess overall variability. In-study methods (In-Study 
Validation) are used to formally evaluate the overall variability in the assay in routine use. Note that the 
Replicate-Determination study is a diagnostic and decision tool used to establish that the assay is ready to go 
into production by showing that the endpoints of the assay are reproducible over a range of efficacies or 
potencies. It is not intended as a substitute for in-study monitoring or to provide an estimate of the overall MSD 
or MSR.

It may seem counter-intuitive to call the differences between two independent assay runs “within-run.” However, 
the terminology results from the way those terms are defined. Experimental variation is categorized into two 
distinct components: between-run and within-run sources.

Consider the following examples:

• Between-run variation: If there is variation in the concentrations of the components in the vehicle 
between two runs then the assay results could be affected. However, assuming that the same vehicle is used 
with all compounds within the run, each compound will be equally affected and so the difference will only 
show up when comparing the results of two runs: one run will appear higher on average than the other 
run. This variation is called between-run variation.

• Within-run variation: If the concentration of one compound in the vehicle varies from the intended 
concentration (or dose) then all animals receiving that compound will be affected. However, animals 
receiving other compounds will be unaffected. This type of variation is called within-run as the source of 
variation affects different compounds in the same run differently. Therefore, it is necessary to compare 
results for one compound on each of two occasions.

• Some sources of variability affect both within- and between-run variation. For example, environmental 
conditions in an animal room have the potential to contribute to both types of variability. Suppose within 
a run of a particular in vivo assay, the temperature in the animal room exhibits spatial variation and 
animal response is sensitive to temperature. Animals will then respond differently depending upon their 
location in the room, and these differences are within-run as not all animals are equally affected. In 
comparison, suppose that during a particular run of the assay the room temperature on average is higher 
or lower than in previous runs. In this instance, the animals will respond differently on average during this 
run relative to other runs, and since all animals are affected this is between-run variation. Thus, a variable 
such as animal room temperature can be a source of both within- and between-run variation.

The total variation is the sum of both sources of variation. When comparing two compounds across runs, one 
must take into account both the within-run and between-run sources of variation. But when comparing two 
compounds in the same run, one must only take into account the within-run sources, since, by definition, the 
between-run sources affect both compounds equally.

In a Replicate-Determination study, the between-run sources of variation cause one determination to be on 
average higher than another determination. However, it would be very unlikely that the difference between the 
two determinations would be exactly the same for every compound in the study. These individual compound 
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“differences from the average difference” are caused by the within-run sources of variation. The higher the 
within-run variability the greater the individual compound variation within assay runs.

The analysis approach used in the Replicate-Determination study is to estimate and factor out between-run 
variability, and then estimate the magnitude of within-run variability.

Note: The between- and within-run sources of variability assessed during assay validation calculations apply to 
the treatment group means, not to the animal level data. Animal-to-animal variability is obviously present in in 
vivo experiments and this variability affects the reproducibility of the resulting treatment group means, but as 
shown subsequently, the animal-to-animal variability is not directly used in the calculation of the MSD and 
MSR. It is used to assess whether a data transformation is needed, and to assess sample size adequacy. See 
Section 2.5 for additional information about sources of variability in an in vivo assay.

2.2.2. Procedure (Steps)
All assays should have a reproducibility comparison (Steps 1 – 3). Single-dose screens should be validated 
separately from dose-response curve determinations, but it may be possible to validate both methods 
concurrently (consult with a statistician for options; also see Section 2.2.7 for an example). If the assay is to 
replace an existing assay using the same AMV code then an assay comparison study should also be done (Step 
4).

1. Select a minimum of 3 to 5 compounds that have activities covering the effect range of interest and, if 
applicable, potencies that cover the dose-range to be tested. The compounds should be well spaced over 
these ranges.

2. All of the compounds should be tested in each of two runs of the assay.
3. Compare the two runs (as per Section 2.2.5 – 2.2.6.2.)
4. If the assay is to replace an existing assay:

a. All compounds should be tested in a single run of the former assay as well as in two runs of the 
new assay. If a single run of the former assay already exists that meets the requirements in Step 1, 
it can be used for validation as long as the run is reasonably contemporaneous in time with the 
run of the new assay.

b. Compare the results of the two assays, or labs, by analyzing the first run of the new assay with the 
single run of the former assay.

2.2.3. Summary of Acceptance Criteria (discussed in detail below)
1. For new assays, in Step 3 conduct reproducibility and equivalence tests for activity (single-dose screens 

and dose-response assays) and/or potency (dose-response assays) comparing the two runs. The assay 
should have an MSD < 20% and both Limits of Agreement on Differences (LsAd) between -20% and 
+20% for % activity. For potency results, recommendations are an MSR < 3 and both Limits of 
Agreement (LsA) between 0.33 and 3.0.

2. For assay transfer purposes, in Step 3 conduct reproducibility and equivalence tests for activity (single-
dose screen and dose-response assays) and/or potency (dose-response assays) comparing the two runs in 
the new lab. The assay should have an MSD < 20% and both Limits of Agreement between -20% and 
+20% for % activity, and an MSR < 3 and both Limits of Agreement between 0.33 and 3.0 for potency.

3. For assay transfer purposes, in Step 4b conduct reproducibility and equivalence tests for activity and/or 
potency comparing the first run of the new lab to the single run of the old lab. The assays should have 
Limits of Agreement between -20% and +20% for % activity and Limits of Agreement between 0.33 and 
3.0 for potency to be declared equivalent.
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2.2.4. Notes
1. The Replicate-Determination study as laid out in Sections 2.2.2 and 2.2.3, assumes that the entire study is 

accomplished in just two runs of the assay (i.e. selected compounds are tested in each of two runs). While 
this design is preferred, it may not be possible for low-throughput assays in which only a small number of 
compounds can be tested per run. Alternatives are available in which each half of the replicate 
determination spans multiple runs (i.e., selected compounds are tested in each of a set of assay runs). 
Teams should discuss possible design alternatives and the appropriate analysis with their statistician. See 
also Section 2.2.7 for one possible alternative design and analysis.

2. The acceptance criteria summarized above should be considered guidelines, and may in fact be too stringent 
for some assays. Failure to meet the acceptance guidelines does not necessarily mean that the assay is 
unusable. Teams should consult with their statistician to understand the ramifications of missing the 
recommended criteria, and how it affects setting the CSF for the project and making decisions about 
compounds. For example, if the CSF is >80% and the MSD is 30%, then the assay will fail too many 
efficacious compounds, since even a 90%-active compound will fall below the CSF some of the time when 
the MSD is 30%. A more appropriate CSF in this situation might be 70 or even 60%. Furthermore, a 30% 
MSD indicates that a compound would need an activity test result of at least 80% to be considered to have 
differential activity from a compound with an activity test result of 50%. If the team desires increased 
power to discriminate among test compounds, the assay may need to be re-optimized to identify and 
reduce sources of variability (see Section 2.5 for additional details).

3. If a project is very new, there may not be 3 to 5 unique compounds with activity in vivo (where activity 
means some measurable activity above the minimum threshold of the assay). In that case it is acceptable 
to test compounds more than once, and/or at different doses, to get an acceptable sample size. For 
example, if there are only 2 active compounds then test each compound twice at the same two or three 
doses in each determination. However, when doing so, (a) it is important to biologically evaluate them as 
though they were different compounds, including independent sample preparation (i.e., weighing and 
solubilization), and (b) label the compounds and/or doses as “a”, “b” etc. so that it is clear in the Replicate-
Determination analysis which results are being compared across runs.

4. Dose-response assays need to be compared for both potency (ED50) and efficacy (% maximum response). 
It is acceptable to use the same compounds for both single-dose and dose-response assays.

An assay may pass the reproducibility assessment (Steps 1-3 in the procedure [Section 2.2.2]), but may fail the 
assay comparison study (Step 4 in the procedure [Section 2.2.2]). The assay comparison study may fail either 
because of an absolute Mean Difference (MD) > 5% (or Mean Ratio (MR) different from 1), or a high MSD (or 
MSR) in the assay comparison study. If it’s the former then there is an activity or potency shift between the 
assays. You should assess the values in the assays to ascertain their validity (e.g., which assay’s results compare 
best to those reported in the literature?). If it fails because the assay comparison study MSD (or MSR) is too large 
(but the new assay passes the reproducibility study) then the old assay lacks reproducibility. In either case, if the 
problem is with the old assay, then the team should consider re-running key compounds in the new assay to 
provide comparable results to compounds subsequently run in the new assay.

2.2.5. Activity/Efficacy; Single Dose Screens

2.2.5.1. Analysis: Activity\Efficacy; Single Dose Screens

The points below describe and define the terms used in the acceptance criterion summarized in Section 2.2.3 
and discussed in the Diagnostic Tests (Section 2.2.5.2). Individual animal data should be normalized to the 
positive (maximally effective) and negative (minimally effective) control averages to yield % activity for each 
animal. The computations that follow should then be made on the % activity averages for each compound, not 
the individual animal % activities.
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1. Compute the difference in activity (first minus second) between the first and second determination for 
each compound. Let  be the sample mean and standard deviation of the difference in activity.

2. Compute the Mean-Difference:  This is the average difference in activity between the two 
determinations.

3. Compute the Difference Limits: , where n is the number of compounds. This is a 95% 
confidence interval for the Mean-Difference.

4. Compute the Minimum Significant Difference: . This is the smallest activity difference between 
two compounds that is statistically significant.

5. Compute the Limits of Agreement: . Most of the compound activity differences should fall 
within these limits (approximately 95%).

6. For each compound compute the Difference (first minus second) of the two activities, and the Mean 
activity (average of first and second).

Items 2-6 can be combined into one plot: the Difference-Mean plot (see example below).

2.2.5.2. Example

What follows is an example of an in vivo assay which measures the inhibition of EnzymeX Desaturase Index in 
rats, and which was transferred to Lab B from Lab A. Nine compounds were tested in each of two runs in Lab B 
with n=5 rats per compound. Table 1 displays the % inhibition averages of 5 rats per compound, along with the 
differences in compound averages. The MD, MSD, and Limits of Agreement are also shown which are computed 
from the average and standard deviation of the differences. This particular assay easily meets the acceptance 
criteria summarized in Section 2.2.3.

The compound averages can also be entered directly into the Replicate-Experiment template developed for in 
vitro assays and available on the NIH website. This template will perform the MD, MSD, and LsAd calculations 
and display them in the Difference-Mean plot.

Figure 2 shows the desired result of pure chance variation in the difference in activities between runs. The blue 
solid line shows the Mean Difference, i.e. the average relationship between the first and second run. The green 
long-dashed lines show the 95% confidence limits (or Difference Limits) of the Mean Difference. These limits 
should contain the value 0, as they do in this case. The red short-dashed lines indicate the Limits of Agreement 
between runs. They indicate the individual compound variation between the first and second run. You should see 
all, or almost all, the points fall within the red dashed lines. The lower line should be above -20, while the upper 
line should be below +20, which indicates a 20% difference between runs in either direction. The MD should be 
less than 5%, as it is in this example.

As this assay originated in Lab A, the lab comparison described in Step 4 of Section 2.2.2 was also completed. 
Eight of the nine compounds tested in the Lab B Replicate-Determination were also tested in Lab A. The eight 
compound averages of n=5 rats were entered into the template along with the corresponding eight compound 
averages from the first run in Lab B. Figure 3 shows the results, which meet the acceptance criteria summarized 
in Part 3 of Section 2.2.3.

Note: Although this assay achieved a successful transfer from Lab A to Lab B, demonstrating reproducibility 
within Lab B, as well as equivalence between labs, the validation has a shortcoming with respect to the selected 
compounds. The selected compounds are not well spaced over the activity range of interest, with most compound 
activities clustered together and falling well above the CSF of 50%. Since the reproducibility of a compound 
result from a given assay could depend on the activity level of the compound, it is very important to make an 
effort to cover the range of potential activity, and in particular to include compounds with activity bracketing the 
CSF (recognizing that this may be difficult depending on the maturity of a particular project).
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Figure 2: Result of reproducibility and equivalence tests for activity comparing the two runs in the new lab, Lab B. This example shows 
the desired result of pure chance variation in the difference in activities between runs.
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Table 1: EnzymeX Desaturase Index Assay Replicate-Determination in Lab B.

Compound Test1 %Inh Test2 %Inh Difference

A 76.19 76.68 -0.49

B 17.01 12.21 4.79

C 80.78 77.76 3.02

D 75.49 61.77 13.72

E 77.87 76.04 1.83

F 59.78 63.13 -3.35

G 79.47 79.84 -0.36

H 75.28 77.26 -1.98

I 81.92 79.30 2.61

MD = AVG of diffs 2.20

MSD = 2 x STD of diffs 10.06

LsAd = MD ± MSD 
(2.20 ± 10.06) -7.87 12.26

Figure 3: Result of reproducibility and equivalence tests for activity comparing the first run of the new lab (Lab B) to the single run of 
the old lab (Lab A). This example shows results that meet the acceptance criteria.
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2.2.5.3. Diagnostic Tests and Acceptance Criterion: Activity\Efficacy; Single Dose Screens

1. If the MSD ≥ 20% then there is poor agreement for individual compounds between the two 
determinations. This problem occurs when the within-run variability of the assay is too high. An assay 
meets the MSD acceptance criterion if the (within-run) MSD < 20%.

2. If the Difference Limits do not contain the value 0, then there is a statistically significant average 
difference between the two determinations. Within a lab (Step 3) this is due to high between-run assay 
variability. Between labs (Step 4), this could be due to a systematic difference between labs, or high 
between-run variability in one or both labs. Note that it is possible with a very “tight” assay (i.e., one with 
a very low MSD) or with a large set of compounds to have a statistically significant result for this test that 
is not very material, i.e., the actual MD is small enough to be ignorable. If the result is statistically 
significant then examine the MD. If it is between -5% and +5% then the average difference between runs 
is deemed immaterial.

3. The MD and the MSD are combined into a single interval referred to as the Limits of Agreement. An 
assay that either has a high MSD and/or an MD different from 0 will tend to have poor agreement of 
results between the two determinations. An assay meets the Limits of Agreement acceptance criterion if 
both the upper and lower limits of agreement are between -20 and +20.

2.2.6 Potency; Dose-response curves

2.2.6.1. Analysis: Potency; Dose-response curves

The points below describe and define the terms used in the acceptance criterion summarized in Section 2.2.3 
and discussed in the Diagnostic Tests (Section 2.2.6.2). See Section 3.5 for guidelines for fitting in vivo dose-
response curves.

1. Compute the difference in log-potency (first minus second) between the first and second determination 
for each compound. Let  be the sample mean and standard deviation of the difference in log-
potency. Since ratios of ED50 values (relative potencies) are more meaningful than differences in potency 
(1 and 3, 10 and 30, 100 and 300 have the same ratio but not the same difference), we take logs in order to 
analyze ratios as differences.

2. Compute the Mean-Ratio: . This is the geometric average fold-difference in potency between two 
determinations.

3. Compute the Ratio Limits: , where n is the number of compounds. This is the 95% confidence 
interval for the Mean-Ratio.

4. Compute the Minimum Significant Ratio: . This is the smallest potency ratio between two 
compounds that is statistically significant.

5. Compute the Limits of Agreement: . Most of the compound potency ratios (approximately 
95%) should fall within these limits.

6. For each compound compute the Ratio (first divided by second) of the two potencies, and the Geometric 
Mean potency: .

Items 2-6 can be combined into one plot: the Ratio-GM plot. The plot is very similar to the Difference-Mean plot 
described previously in Section 2.2.5 except that both axes are on the log scale instead of the linear scale.

2.2.6.2. Diagnostic Tests and Acceptance Criterion: Potency; Dose-response curves

1. If the MSR ≥ 3 then there is poor agreement for individual compounds between the two runs. This 
problem occurs when the within-run variability of the assay is too high. An assay meets the MSR 
acceptance criterion if the (within-run) MSR < 3.

2. If Ratio Limits do not contain the value 1, then there is a statistically significant average difference 
between the two determinations. Within a lab (Step 3) this is due to high between-run assay variability. 
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Between labs (Step 4), this could be due to a systematic difference between labs, or high between-run 
variability in one or both labs. Note that it is possible with a very “tight” assay (i.e., one with a very low 
MSR), or with a large set of compounds, to have a statistically significant result for this test that is not 
very material, i.e., the actual MR is small enough to be ignorable. If the result is statistically significant 
then examine the MR. If it is between 0.67 and 1.5 then the average difference between runs is less than 
50% and is deemed immaterial. Note that there is no direct requirement for the MR, but values that are 
outside 0.67 and 1.5 are unlikely to pass the Limits of Agreement criterion in step 3 below.

3. The MR and the MSR are combined into a single interval referred to as the Limits of Agreement. An 
assay that either has a high MSR and/or an MR different from 1 will tend to have poor agreement of 
results between the two determinations. An assay meets the Limits of Agreement acceptance criterion if 
both the upper and lower limits of agreement are between 0.33 and 3.0.

2.2.7. Other Approaches for Assessing Reproducibility

2.2.7.1 Retrospective Assessment of Reproducibility

The preferred method for validating an in-vivo assay is by the Replicate-Determination Study described in 
Sections 2.2.1 – 2.2.6.2. This prospective approach provides an up-front assessment of the capability of an assay 
to reproducibly identify active compounds prior to placing the assay into production.

It is also possible to validate an assay retrospectively, that is, to collect validation data while screening test 
compounds. For example, a Single Dose Screen that has been adequately designed and powered, and that will 
use proper randomization and analysis techniques could be placed immediately into production. One could then 
include a “quality control” (see Sections 2.3.1 and 3.1 for a description) in each run of test compounds in order 
to assess the reproducibility component of assay validation. After six or more runs of the assay, the quality 
control data could be used to calculate an MSD for the assay.

One obvious risk in using the retrospective approach is that six or more runs of test compound data will be 
generated before knowing whether or not the reproducibility of the assay is adequate for a team’s needs. This can 
be an efficient approach provided the resulting MSD is acceptably small; if it is not, the assay may need to be re-
optimized to identify and reduce sources of variability (see Section 2.5 for additional details).

We strongly recommend consultation with a statistician before embarking on this approach to assessing the 
reproducibility component of assay validation. Teams should also consult a statistician regarding the calculation 
and interpretation of the MSD once the data are collected. Note also that this approach produces an “overall” 
MSD (see Section 2.1 for a description), since in addition to within-run variation, the resulting MSD also 
encompasses between-run variation from more than six runs.

2.2.7.1.1. Example

What follows is an example of an in vivo assay run in Lab B, which measures the inhibition of EnzymeX 
Desaturase Index in rats, and which was transferred to Lab B from Lab A and discussed in Section 2.2.5. The 
assay was retrospectively validated in Lab A by including a quality control in each of seven runs. These data are 
shown in Figure 4, which displays % inhibition data for individual animals as well as the averages for each run 
(connected by the blue line in the plot). The overall MSD of 16% is calculated from the standard deviation of the 
seven % inhibition averages and meets the validation criteria of MSD < 20%. The variability chart also indicates 
a decrease in animal-to-animal variation over time, as well as a slight increase in the activity of the quality 
control over time.

The % inhibition averages can also be entered into the control chart template (see Section 2.3.2 for additional 
details), which will calculate the overall MSD and allow monitoring of the averages over time. Output from the 
template is displayed in Figure 5.
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2.2.7.2. Concurrent Validation of SDSs and DRCs

As mentioned in Section 2.2.2, SDSs should be validated separately from DRCs, but it is possible to validate both 
methods concurrently. Rather than beginning with the SDS validation via a Replicate-Determination Study 
(described in Section 2) using several compounds at a single dose, one could proceed directly to the DRC 
Replicate-Determination Study using a smaller number of compounds tested in dose-response format. The pairs 
of % activity determinations for the individual doses of each compound can be used to calculate an MSD that is 
applicable to the assay in single-dose format, while the pairs of ED50 determinations can be used to calculate an 
MSR that is applicable to the assay in dose-response format.

2.2.7.2.1. Example

The Capsaicin-Induced Eye Wipe Assay evaluates the ability of compounds to alleviate conjunctival irritation 
caused by exposure to capsaicin, as measured by inhibition of eye wiping in rats. The assay was developed and 
validated in Lab A, and upon completion of these activities, the assay was transferred to Lab B. Since the 
operator in the receiving laboratory was well-trained with respect to running the assay, and since no other major 
changes to the protocol were made, a bridging study or “Single-Determination Study” was utilized to validate the 
transfer (see Section 2.4 for additional details).

Three compounds were selected and tested in dose-response format with n=6 rats per each of four doses plus a 
capsaicin control for a total of 30 animals. The three compounds were tested once in the originating lab and once 
in the receiving lab. Percent inhibitions of the capsaicin-induced numbers of eye wipes are displayed in the 
variability chart (Figure 6). One compound was lost for technical reasons in one of the labs, so only two are 
charted.

The variability chart indicates similar-dose response relationships for the two compounds between labs. There 
does however appear to be a consistent shift in the % inhibition for the individual compounds between labs. Also 
note that there is not complete overlap in the tested doses between labs, but each lab has four doses plus 
capsaicin available for estimation of the ED50 and 6 pairs of single-dose % inhibitions for calculation of the 
Mean Difference, Minimum Significant Difference, and Limits of Agreement.

This Single-Determination Study is also an example in which each lab’s set of three determinations spanned 
multiple runs of the assay (i.e., each compound was tested in a separate run) as described in Section 2.2.4 Note 1. 
Teams should consult their statistician for appropriate MD, MSD, and LsAd calculations when determinations 
span multiple runs.

Figure 4: Variability chart of EnzymeX Desaturase Index versus Study.

14 Assay Guidance Manual



Figure 5: Output from entering percent inhibition averages into the control chart template.
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For the data in this example, the MD is 17%, the MSD is 11%, and the LsAd are 5.1% and 28%. While the MSD is 
excellent at 11%, the LsAd do not fall between -20% to +20 due to the 17% average shift in % inhibition between 
labs. While ED50s from just two compounds are not enough to calculate an MSR, the ED50s estimated from a 
four-parameter logistic fit also exhibited a shift in potency between labs, but the magnitude of the shift was less 
than 3-fold for both compounds.

Even though the LsAd did not meet the within ±20% criterion, the transfer validation was accepted and the 
assay was implemented in the receiving laboratory. This decision was based on discussion with scientists 
regarding possible explanations for the shift, as well as implications for the projects the assay supports. While the 
LsAd failed the ±20% criterion, the limits did fall within ±30%, and the ED50s from the two compounds fell 
within 3-fold, which taken together was considered acceptable for the teams’ needs. No MSR could be calculated, 
but since each compound’s dose-response curve consisted of 30 independently tested animals (thereby providing 
confidence in the resulting ED50s), and the ED50s agreed to within 3-fold, the transfer was considered to be 
validated in both single-point and dose-response formats. Close monitoring of a quality control was also 
recommended for the assay going forward.

Another alternative approach is to include the dose used for the single-dose screen in dose-response 
determinations, and using the resulting repeats to calculate an MSD.

2.3. In-study Validation (Single-Dose Screens)
As mentioned previously in Section 2.2.1, the Replicate-Determination study is used to formally evaluate within-
run assay variability. The study also provides a preliminary assessment of the overall assay variability, but 
typically does not involve enough assay runs to adequately assess overall variability. Overall assay variability 
consists of both within-run and between-run sources of variability, and hence needs to be estimated from several 
runs of the assay.

Post-implementation monitoring of the measured activity of a control compound that is regularly included in 
runs of the assay is an effective means for estimating the overall variability in the assay, which can then be used 
to calculate an overall MSD. The resulting MSD will likely be larger than the Replicate-Determination MSD, 
since the between-run variability is now included, but it is the appropriate MSD for comparing and prioritizing 
compounds tested in different runs of the assay.

Continuous monitoring of a regularly tested control compound is also an effective means of tracking assay 
performance over time, thereby ensuring high quality data for compound prioritization. Control charting the 
activity of the same compound over time ensures that the activity remains stable without appreciable “assay 
drift,” and enables identification of suspect runs. Tracking assay performance over time will also ensure that the 
reproducibility of the assay (i.e., the MSD) remains at an acceptable level.

2.3.1. Control Compounds or Treatment Groups
Control compounds in in vivo experiments serve three purposes: (i) as comparator for the test compounds, (ii) 
to normalize responses across assay runs, and (iii) as a quality control marker. A negative (minimally effect) 
control is typically included in all runs of an assay and serves as the comparator for test compounds. A positive 
(maximally effective) control is also often included to establish that the assay is working and to normalize the 
response over assay runs. While these so-called minimum and maximum controls can be monitored over time to 
ensure that adequate separation is maintained, they may not be the best choice for monitoring assay 
performance and reproducibility as described in Section 2.3. Since these controls lie at the extremes of the 
dynamic range of the assay, they may not accurately represent the level of variability present within the interior 
of the range (i.e., assay variability may be different for low, medium, and high activity levels). Since interest often 
lies in prioritizing compounds whose activities fall in the middle to upper end of the dynamic range (but not 
necessarily at the top of the range), an additional control compound with a normalized (to positive and negative 
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controls) activity of 50 to 70% should also be included to adequately monitor assay performance and 
reproducibility. This quality control should be included in each run of the assay, if possible, but could be 
included periodically (e.g. every other or every third run) if practical limitations (cost, time, resources etc.) exist 
for the assay.

2.3.2. Control Charts
Monitoring assay performance can be accomplished with a simple scatter plot of the % activity of the quality 
control versus run date, which should be updated after each run of the assay. Assay drift (trends up or down) can 
be identified visually, and problems investigated and corrected as they occur. Suspect runs should also be 
investigated and repeated if warranted.

Full-fledged control charts that calculate and display control limits are preferred, since the limits can assist with 
identifying trends or steps in the data. Control chart monitoring templates that produce scatter plots, as well as 
the preferred control charts, for in vivo assays are available (check with your statistician). Both templates can be 
used for in vivo data by first normalizing the individual animal data to the positive and negative control averages 
in each run, and entering the % activity averages for the quality control from each run into the templates.

After six runs, both templates will also calculate the overall MSD, which incorporates both within-run and 
between-run sources of variability (in contrast to the Replicate-Determination MSD, which encompasses only 
within-run variability). As such, it is expected that inclusion of the within-run variability will inflate the overall 
MSD as compared to the Replicate-Determination MSD. Teams should consult with their statistician about the 
interpretation of the overall MSD and how it affects comparing activities of compounds (and subsequent 
prioritization) tested in different runs of the assay. After each subsequent run, a running MSD (i.e., last-6-runs 
MSD computed from last six runs) is also computed and displayed graphically to enable monitoring of the 
reproducibility of the assay over time to ensure that it remains at an acceptable level.

Figure 6: Variability chart for percent inhibition in a Single-Determination Study.
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2.3.2.1. Example

What follows is an example of an in vivo assay which measures the inhibition of EnzymeX Desaturase Index in 
DIO rats, and which was discussed previously in Section 2.2.5. A control compound was included in 14 runs of 
the assay. After normalizing the individual animal EnzymeX DIs to the positive and negative controls within 
each run, the average % inhibition (n=5 animals per group) of EnzymeX DI for the control compound in each 
run was entered into the control chart template. The output is shown in Figure 7.

Note the very stable activity of the quality control over the first 14 runs of the assay in the control chart of % 
activity versus run date. The % activity of the quality control tracks closely to the average of 79% over the 14 
runs, with no material drifts or jumps in activity apparent in the chart.

Also note the very stable level of reproducibility in the Last-6-Runs MSD versus run date chart (in fact, the 
reproducibility looks to be improving slightly over time). The running MSDs are well below 20% (actually fall 
below 10%), and the overall MSD is excellent at 7.6%, suggesting plenty of power to discriminate among 
compounds tested in different runs of the assay. However, it is important to note that the overall MSD of 7.64, 
which incorporates both within-run and between-run variability, is actually smaller than the Replicate-
Determination MSD of 10.06 (Section 2.2.5), which incorporates only the within-run variability. This could be 
the result of the operator simply getting better at running the assay (the slight improvement in the running 
MSDs noted above provides some evidence for this), or it could be due to the fact that the quality control is quite 
active. While not maximally effective, the % activity of the quality control was certainly outside the 
recommended range of 50 to 70% activity for a quality control. Since variability (and hence reproducibility) may 
depend on the activity level of the control (with more active compounds expected to be less variable), the 79% 
active control may in fact be overestimating the true reproducibility of the assay.

2.4. Cross Validation: Bridging Studies for Assay Upgrades/Minor 
Changes versus Major Changes
Sections 2.2 and 2.3 cover the validation of entirely new assays, or assays that are intended to replace existing 
assays. The replacement assays are “different” from the original assay, either because of facility changes, 
personnel differences, or substantively different measurement and recording or automation equipment. Assay 
upgrades and changes occur as a natural part of the assay life cycle. Requiring a full validation for every 
conceivable change is impractical and would serve as a barrier to implementing assay improvements. Hence, full 
validation following every assay change is not recommended. Instead, bridging studies or “mini-validation” 
studies are recommended to document that the change does not degrade the quality of the data generated by the 
new assay. In addition, if the assay is to report results in an Assay Method Version (AMV) previously reported 
into by another assay then it has to be verified that the two labs produce equivalent results.

The level of validation recommended has two tiers, either a Single-Determination Study (Tier I), or a Replicate-
Determination Study (Tier II) similar to the full validation package of Section 2.2. Examples of changes within 
each Tier are given below, along with the recommended validation study for that tier. Note that if the study 
indicates the change will have an adverse impact on assay quality (i.e., the study indicates there are problems), 
then the cause should be investigated, corrected, and a full validation should be done. If the results from that 
study indicate the assays are not equivalent, but the new assay is acceptable, then a new AMV should be 
established for the assay.

The following guidelines apply principally to changes in biological components of the protocol. If changes are 
made to the data analysis protocol then these can ordinarily be validated without generating any new data, but 
rather by comparing the results using the original and new data analysis protocols on a set of existing data. 
Discuss any changes with a statistician. If changes are made to both the data analysis and biological components 
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Figure 7: Output from entering average percent inhibition of EnzymeX DI into the control chart template.
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of the protocol then the appropriate tier should be selected according to the severity of the biological change as 
discussed below. The data analysis changes should be validated on the new validation data.

2.4.1. Tier I: Single Step and/or Minor Changes to the Assay
Tier I modifications are single changes in an assay such as a change in the person running the assay, an assay 
condition, instrumentation, or to a reagent, that is made either to improve the assay quality or increase the 
capacity without changing the assay quality. The changes can also be made for reasons unrelated to assay 
throughput or performance (e.g., change of a supplier for cost savings). Examples of such changes are

• Changes in supplier of animals
• Change in barrier facility used by the supplier
• Changes in recording instruments with similar or comparable electronics. E.g.: blood pressure recording 

instruments, clinical chemistry equipment, HPLCs, spectrophotometers, behavioral testing equipment 
such as locomotor activity instruments or operant conditioning chambers. A performance check for signal 
dynamic range, and signal stability is recommended prior to switching instruments.

• For ex vivo analysis of tissues, changes in liquid handling equipment with similar or comparable volume 
dispensing capabilities. Volume calibration of the new instrument is recommended prior to switching 
instruments. [Note that plate and pipette tip materials can cause significant changes in derived results 
(IC50, EC50). This may be due to changes in the adsorption and wetting properties of the plastic material 
employed by vendors. Under these conditions a full validation may be required].

• Changes in dilution protocols covering the same concentration range for the concentration–response 
curves. A bridging study is recommended when dilution protocol changes are required.

• Lot changes of critical reagents such as a new lot of receptor membranes or a new lot of serum antibodies.
• Assay moved to a new laboratory without major changes in instrumentation, using the same reagent lots, 

same operators (or operators with similar experience and/or training), and assay protocols.
• Assay transfer to an associate or technician within the same laboratory having substantial experience in 

the assay platform, biology and pharmacology. No other changes are made to the assay.

The purpose of the validation study is to document that the change does not reduce the assay quality.

2.4.2.1. Protocol and Analysis

Conduct the assay comparison portion of the Replicate-Determination Study discussed in Section 2.2, i.e., 
compare one run of a minimum of 3 to 5 compounds using the existing assay to one run of the assay under the 
proposed format. If the compound set used in the original validation is available then one need to only run the 
set again in the new assay protocol, and compare back to Run 1 of the original Replicate-Determination Study. 
The acceptance criterion is the same as for the assay comparison study: the assay should have Limits of 
Agreement between -20% and +20% for % activity, and an MSR < 3 and Limits of Agreement should between 
0.33 and 3.0 for potency.

2.4.2. Tier II: Substantive Changes
Substantive changes requiring full assay validation: when substantive changes are made in the assay procedures, 
measured signal responses, target pharmacology and control compound activity values may change significantly. 
Under these circumstances, the assay should be re-validated according to methods described in Section 2.2. The 
following changes constitute substantive changes, particularly when multiple changes in factors listed below are 
involved:

• Changes in strain of animals: e.g., SD to Fischer
• Transfer of the assay to a different laboratory location, with distinctly different instrumentation, QB 

practices or training.
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• Changes in detection instruments with significant difference in the optics and electronics. For example, 
blood pressure monitors, behavioral test equipment, counting equipment, spectrophotometers, and plate 
readers.

• Changes in assay platform: e.g.: filter binding to LS/MS detection for ex vivo binding assays.
• Changes in assay reagents (including lot changes and supplier) that produce significant changes in assay 

response, pharmacology and control activity values. For example, changes in enzyme substrates, isozymes, 
cell-lines, label types, control compounds, calibration standards, (radiolabel vs. fluorescent label), plates, 
tips and bead types, major changes in buffer composition and pH, co-factors, metal ions, etc.

• Changes in liquid handling equipment with significant differences in volume dispensing capabilities.
• Changes in liquid handling protocol with significant differences in volume dispensing methods.
• Changes in assay conditions such as shaking, incubation time, or temperature that produce significant 

change in assay response, pharmacology and control activity values.
• Major changes in dilution protocols involving mixed solvents, number of dilution steps and changes in 

concentration range for the concentration-response curves.
• Change in analyst/operator running the assay, particularly if new to the job and/or has no experience in 

running the assay in its current format/assay platform.
• Making more than one of the above-mentioned changes to the assay protocol at any one time.

Substantive changes typically require full validation, i.e., a complete Replicate-Determination Study. If the intent 
is to report the data in the same AMV then an assay comparison study must be conducted as part of the 
Replicate-Determination study.

2.5. How to Deal with High Assay Variability
As mentioned previously, the sources of variation in an assay include the between- and within-run sources of 
variability. In addition, the animal-to-animal variability as well as variability in measuring the response of the 
subject also contributes to the overall variability in the assay. In order to optimize an assay and/or when an assay 
fails to meet the acceptance criteria, it is important to specifically assess each of these sources of variability. The 
variance, which is the square of the standard deviation, can be used to estimate the magnitude, or relative 
contribution, of each of these sources of variability. Variance is useful because the sources of variation are 
additive on the variance scale, but not on the standard deviation scale. When an assay fails to meet the 
acceptance criteria, it is necessary to determine the source of the high assay variability in order to be able to 
make changes to reduce the relevant variability. For example, simply increasing the number of animals per group 
may not necessarily reduce between-run variability.

2.5.1. Example: Analyzing Variability in an Ex Vivo Binding Assay
In an ex vivo receptor binding assay, subjects (5 rats per dose group) were administered a dose of a test 
compound orally, sacrificed 1 hour later, the cerebellum removed and stored at -70° until used in the binding 
assay. For the ex vivo receptor binding assay, the tissue was homogenized and incubated for 30 minutes at 37°C 
in a water bath. The tissue from each animal was aliquoted into 8 tubes, together with radioligand and buffer, 
and incubated for 2 hours. Four tubes were used to measure total binding and four tubes to measure non-
specific binding. Each tube was centrifuged at 12000 x g for 5 minutes, washed and then placed in a gamma 
counter and counted. Counts for each tube were converted to DPM and recorded. A plot of the data from each of 
the vehicle treated animals for each of 3 experiments is presented in Figure 8. The variance in the assay is 
summarized in Table 2.

The total variance was partitioned statistically into study-to-study, animal-to-animal, and tube-to-tube 
variability. In this example, the result for each of the four tubes is the difference between the DPM in one of the 
four tubes used to estimate total binding minus the mean of the four tubes used to estimate nonspecific binding. 
Thus, each of the four tubes represents a different measurement of one subject and the variability among the four 
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tubes from one animal represents variability in the measurement of binding in that animal. In this example, 
study-to-study variability accounts for approximately 68% of the total (Table 2, far right column). In order to 
optimize the assay and reduce the overall variability, reducing the study-to-study variability would have the 
greatest impact. One way of reducing study-to-study variability is to normalize the data within each study in 
order to compare results across each study. In this example, the radiolabel was 125I, and its relatively short half-
life is the major source of the study-to-study variability; normalizing the data within each study would reduce 
study-to-study variability due to isotopic decay. The need to normalize, rather than using raw counts, is well 
known and accepted for in vitro binding studies, but this practice is not common for in vivo assays. It is 
appropriate to compare raw signals across studies only when the study-to-study variation is negligible. Note that 
increasing the sample size would not reduce this source of variability. The second largest source of variability, 
approximately 18%, is tube-to-tube, that is, the variability in measuring each animal. In order to reduce this 
source of variability, additional measurements of each animal would be needed. Using 5 tubes to assess specific 
binding, rather than 4, and only 3 tubes to assess nonspecific binding (which is typically not highly variable) 
would reduce this source of variability. If only one measurement on an animal is made, the measurement-to-
measurement variability still exists, but cannot be calculated. (Another example is that of measuring tumor 
volume with calipers – measuring only once at a given assessment versus measuring multiple times at a given 
assessment.) Note that increasing the sample size would not reduce this source of variability. Multiple 
measurements of the response for one subject are the exception rather than the rule for in vivo experiments, and 
yet variability in the measurement process may be a major source of variance in the study. It is important during 
assay development and optimization to assess the potential contribution of measurement variability on the total 
variability in the assay and address this potential source as needed, for example by taking the average (or 
median) of multiple measures on a given subject. The smallest source of variability in the present example, 
approximately 13% of the total, was due to animal-to-animal variability. Thus, increasing sample size would have 
impacted the smallest source of variability. The relative contributions of “animal” and “measurement” variation 
can be used to determine the optimal number of measurements per animal, as well as number of animals. In 
conclusion, the relative contribution from different sources of variability needs to be directly assessed during 
assay development and optimization. This assessment allows one to directly address the most relevant sources of 
variability in order to optimize and statistically validate an assay.
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Table 2: Estimated variance contributed by study-to-study variability, animal-to-animal variability, and tube-to-tube variability in an ex 
vivo binding assay.

Source of Variation Estimated Variance Estimated Std Dev Pct of Total (%)

Study 373088 610.8 68.3

Animal 72819 269.9 13.3

Tube 100033 316.3 18.3

Total 545941 100

2.5.2. High Variation in Single Dose Determinations
Table 3 below can be used as a reference to determine the sample size necessary for single dose or dose-response 
assays with high variability. For a given coefficient of variation (CV) of the raw data values based on a sample 
size of 1 subject, the table shows the number of subjects per dose needed for the CV of a mean to be less than or 
equal to 10 or 20%.

Increasing sample size to reduce variability will also reduce the capacity (i.e., throughput) of the assay to test 
compounds. Further optimization of the assay could reduce variability and maintain or increase its capacity. The 
decision to further optimize or to increase sample size will have to be made for each assay.

Table 3: Sample size necessary to reduce the coefficient of variation (CV) to less than 10 or 20%, given a known CV when the sample 
size is one.

CV for Individual Subjects Number of Subjects so that CV Mean < 10% Number of Subjects so that CV Mean < 20%

<10 1 1

10.1-14.1 2 1

14.2-17.3 3 1

17.4-20.0 4 1

20.1-22.3 5 2

22.4-24.4 6 2

Figure 8: Plot of the vehicle treated animals in an ex vivo binding assay. The ordinate (y-axis) is total specific binding in DPM in each of 
the four tubes used to assess specific binding. Data for 5 animals in each of three studies is represented.
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Table 3: continued from previous page.

24.5-26.4 7 2

26.5-28.2 8 2

28.3-30 9 3

30.1-31.6 10 3

31.7-33.1 11 3

33.2-34.6 12 3

34.7-36.0 13 4

36.1-37.4 14 4

37.5-38.7 15 4

38.8-40.0 16 4

2.5.3. High Variation in Dose-Response Determinations
If in Section 2.2 the assay fails either test (MSR > 3 or Limits of Agreement outside the interval 0.33-3) then the 
variability of the assay is too high for typical purposes. The following options should be considered to reduce the 
assay variability:

1. Optimizing the assay to lower the variability in the raw data values. Check that the dose range is 
appropriate for the compound results. Increasing the number of doses and/or subjects per dose may 
improve the results. A minimum of 6 doses at 2X intervals, and analyzing the data using nonlinear curve-
fitting techniques, is recommended. In general, it is better to have more doses rather than more subjects 
per dose. The doses should cover the expected range of the assay, e.g., 0-100%, as much as possible.

2. Consider increasing sample size as discussed below. Note that the impact of increasing sample size may 
decrease capacity, and so the Replicate-Determination Study, and a detailed analysis of the sources of 
variation, should be used to assess whether increasing the number of subjects per dose will achieve the 
objective.

3. Adopt as part of the standard protocol to re-test compounds. For example, each compound may be tested 
2 or more times in different runs of the assay. Averaging the results from multiple runs will reduce the 
assay variability (NB. In such cases the individual run results may be stored in the database and then the 
data mining/query tools are used to average the results).

To investigate the impact of increasing sample size in the dose-response assay you should conduct the Replicate-
Determination Study with the maximum number of subjects contemplated (e.g., 5 subjects / dose). The data can 
be analyzed first using all available subjects. Then one subject per group can be removed at random and the data 
re-analyzed. This step is repeated until the smallest sample size is found that still meets the acceptance criteria. 
An example below will illustrate this idea.

An in vivo receptor occupancy assay was run using 1 subject per dose and the Replicate-Determination Study 
did not meet the acceptance criteria. To examine if replication (i.e., increasing the number of subjects per dose) 
would help, a new Replicate-Determination Study was conducted using 4 subjects per dose. Table 4 shows the 
results of fitting ED50 curves and re-evaluating the MSR and LsA for 2, 3, or 4 subjects per group:

From Table 4 we can see that it takes all 4 subjects to meet the MSR acceptance criteria, and more than 4 subjects 
would be needed to meet LsA acceptance criterion. It should be noted that the LsA results are close to being 
acceptable with 4 subjects per group.
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Table 4: Results of fitting ED50 curves and re-evaluating the MSR and LsA for 2, 3, or 4 subjects per group.

Subjects MSR LsA

2 3.62 0.35 – 4.59

3 3.32 0.43 – 4.74

4 2.44 0.53 – 3.16

3. Design, Sample Size, Randomization, and Analysis 
Considerations

3.1. Assay (Experimental) Design Considerations
Good experimental design is important in order to answer the research question of interest in a way that is free 
of bias, can be generalized to the desired or targeted population, and is of sufficient size to properly answer the 
question. This includes such things as determining the measurements to make, timing, dosing frequency and 
route, the species to use, etc. It also includes identifying the relevant statistical analyses, determining appropriate 
sample sizes, and determining a randomization scheme.

Several expectations for good experimental design and analysis include:

• An a priori statement of objectives/hypotheses
• Appropriate experimental design methods
• Sufficient, but not excessive, sample size to ensure statistical significance of biologically relevant effects
• A priori determination of appropriate statistical methods

3.1.1. Objectives and/or Hypotheses
State the objectives and/or the hypotheses you wish to accomplish or test with an assay before beginning an 
experiment. If a hypothesis is formed after collecting the data, the results may be biased. The objectives should 
be defined in terms of well defined end-point(s). Examples of objectives include comparison of food 
consumption between a test compound and control, comparison of survival rates between the treated and 
untreated groups, comparison of the effect level or the ED50 between a test compound and control, etc.

3.1.2. Design Strategy
In vivo studies should be designed in such a way that all meaningful biological effects are statistically significant. 
In an exploratory study, this “meaningful effect” might correspond to any effect that is pharmacologically 
relevant. For a project/program team, this meaningful effect might correspond to an effect that meets the CSFs 
defined in the flow scheme. Power and sample size analysis is especially relevant for assays that are designed to 
address key endpoints and make decisions as to whether a compound meets the assay’s CSF. Biologically 
meaningful effects are not always well-known in advance, in which case a range of plausible effects could be 
considered.

To a great extent, experimental design is about identifying and determining a strategy to deal with different 
kinds of variables. The types of variables encountered in research include:

• Manipulated variable (independent/explanatory variable)
• Response variable (dependent/outcome variable)
• Extraneous variables (uncontrolled/random)
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The manipulated variable is a purposeful attempt to introduce variability into the experiment by, for example, 
administering different doses of a drug. If the manipulated variable were the only source of variability, then 
research design would be quite simple.

Extraneous variables can encroach upon an experiment and can change the results in ways that we do not want 
or of which we are unaware. Examples of extraneous variables could include inherent animal variation, time of 
day, baseline body weights or glucose levels, operator ability or skill, lab noise or activity, etc. To a great extent, 
experimental design is about having a strategy to deal with extraneous variables. To ignore them can all too 
often lead to biased results and the requirement of larger sample sizes. Fixing (holding them constant) or 
eliminating them, such as by considering only a subgroup of animals, can reduce bias and sample sizes, but can 
also reduce the generalizability of the results to only those conditions considered in the experiment. Another 
approach is to control for them by incorporating them into the experimental design, ideally at the design stage, 
or at the statistical analysis stage if the former is not possible.

Some additional design considerations include:

• Appropriate random allocation of animals to treatment groups.
• Blinding of observers to drug treatment allocation, whenever possible, especially when subjective 

evaluations are to be made by observers.
• Proper selection of dose levels.
• Optimal selection of control groups.
• Optimal time points to collect samples.
• Proper statistical methodology.

Different design strategies should be carefully considered to minimize variability and maximize information 
from the experiment.

The design issues stated above should be addressed in the context of the key endpoints (or summary measures) 
from the study. Examples of such endpoints may include survival rate, glucose normalization, etc. When there 
are several endpoints of interest from an assay, certain design questions such as the power of the study should be 
assessed with respect to the endpoints that are considered to be most important by the scientist and the project 
team.

3.1.3. Endpoints
The key endpoints from the study must be identified first, as all other design choices should be tailored to these 
outcomes. Typical outcomes include:

• Statistical significance from control using Analysis of Variance (ANOVA).
• ED50 (either absolute or relative) from a dose-response model such as the 4-parameter logistic model 

(4PL)

Note that the latter can be determined using a variety of methods, and it is important to define the 
pharmacologically “effective dose,” as well.

3.1.4. Control Groups
Control groups serve three purposes: (i) a comparison to the test groups, (ii) as a quality control marker, and (iii) 
to normalize the response for comparison across studies. A “negative” control is used in all studies and serves as 
the comparison group. An active or “positive” control is a compound that has a different response from the 
negative control, and normally represents the maximal response of a standard treatment. A positive control is 
used when normalization is necessary to stabilize the response across runs of the assay or to illustrate the range 
of signal available in a particular run of the assay. If a positive control fails to separate from the negative control 
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then there is an increased chance of a false negative outcome. Since normalized responses may still lack 
reproducibility across runs, a third control may be employed to monitor the reproducibility of the normalized 
response across runs of the experiment. This control would be a second positive control, but at an activity level 
lower than the first positive control. These are used as a quality control marker to establish that each run of the 
experiment is performing as expected, and hence are often called a “quality control.” The activity of a “quality 
control” should be at a level of activity desired for the advancement of test compounds (see Section 2.3).

3.1.5. Statistical Analysis Plan and Implementation
Before developing and validating an assay to be used on a flow scheme, appropriate statistical methods including 
data transformations and software for analyzing the data from these experiments should be determined.

There are several statistical methods available to analyze any given experiment/data set, and the choice of these 
methods and the way a certain class of methods is implemented can significantly impact the conclusions from 
the experiment. For example, there are certain statistical considerations one should take into account when 
using the analysis of variance (ANOVA) method, including the distribution of the data, equality of variances, 
baseline variables, methods for comparing different groups, etc. Also, a two-sample t-test might often seem 
appropriate for several types of experiments, but upon careful examination of the study design, the t-test might 
turn out to be less appropriate than some of the other statistical analysis methods for such experiments.

If the study design is changed at any time during a series of experiments, appropriate analysis methods and 
implementation strategy should once again be examined in light of these changes.

The basic types of experimental designs are:

• Parallel group
• Randomized block
• Repeated measures
• Cross-over design

3.1.5.1. Parallel Groups Design

In a parallel groups design, subjects are randomly assigned to groups and each group receives one level of a 
treatment, for example, one dose of a drug, so each group is independent of every other group. This basic design 
assumes that there are no important extraneous variables that we can identify which will influence or bias the 
results.

Features of a parallel groups design:

• Simplest design.
• Subjects are randomly assigned to groups, and groups are typically, but not necessarily, of equal size.
• Each group receives one level of a treatment, e.g., one dose of a drug
• Use when randomization is possible.
• Does not account for extraneous variables that influence or bias the results. The variation caused by 

extraneous variables is attributed to the overall assay variability.

3.1.5.2. Randomized Block Design

A second basic design type is called a Randomized Block Design. Randomized block designs are used when an 
extraneous variable can be identified prior to randomization and subjects can be divided into subgroups based 
on values of the extraneous variable. Like a parallel groups design, each treatment group is an independent 
group of subjects. However, subjects are not assigned to treatment groups in an entirely random manner. Rather, 
subjects are first placed into one of several subgroups based on a blocking or matching factor (such as baseline 
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values, time of day, gender, baseline body weight, etc.) and then subjects in each block are randomized to the 
treatment groups.

It is necessary for each subgroup (or “block”) to contribute equally to each treatment. Each subgroup must 
contribute an equal number of subjects to each treatment. Thus, there must be at least as many subjects in each 
subgroup as there are treatments. For example, if there are 4 treatments, there must be at least 4 or ideally a 
multiple of 4 subjects in each subgroup.

It is important that a separate randomization be performed on each block so that high or low values of each 
subgroup are not always placed into one treatment. This strategy forces the extraneous variable to be balanced 
across treatment groups.

One disadvantage of the randomized block design is that it is not always logistically feasible. For example, the 
investigator may be aware of an extraneous variable, but not be able to measure it before the randomization 
process, such as the size of a cardiac or cerebral infarct.

Features of a randomized block design:

• An extraneous variable can be identified and measured before starting the experiment.
• Subjects can be divided into subgroups based on values of the extraneous variable.
• Each subgroup (“block”) has as many subjects as there are treatment levels.
• Within each block, treatments are randomly allocated to subjects.
• A separate randomization is performed in each block.
• Forces the extraneous variable to be balanced across treatment groups.
• Not always logistically feasible.

Note: we refer to a factor as a “blocking” factor when it is a continuous measure, for example baseline blood 
glucose levels, that we can divide into different levels, such as high, medium and low. We refer to a factor as a 
“stratification” factor when it is not continuous, such as gender and we can stratify the groups on the basis of that 
parameter.

In a randomized block design, it is necessary for all subjects within a block to be as similar as possible. There are 
several ways in which blocking can be accomplished:

One of the most common ways to “match” subjects is to rank all of the subjects (e.g., 1 through 20) according to 
each subject’s value of the blocking factor. Subgroups of subjects are then grouped into individual blocks (e.g., 
subjects 1 – 4 as block 1, subjects 5 – 8 as block 2, etc.). So, within a block, there are similar values of the 
blocking factor. This minimizes the variance due to the blocking factor (“extraneous variable”).

3.1.5.3. Analysis of Covariance (ANCOVA)

Sometimes it is not possible to identify or account for an extraneous variable at the beginning of a study or 
design phase. In these instances, it may be still be possible to remove the effect of an extraneous variable during 
the analysis. One technique is to employ an Analysis of Covariance or ANCOVA. Note that if the treatment 
affects both the response and the covariate then ANCOVA must not be used, because any observed effect may be 
due to actions of the treatment on the covariate rather than on the response variable.

An ANCOVA model is most useful when there is a linear relationship between the response and the covariate 
within each group, and when these slopes are similar. If there is sufficient sample size, it is relatively 
straightforward to test for these conditions. If the slopes aren’t different from zero then there is little to no benefit 
in the ANCOVA model. If the slopes aren’t parallel then the interpretation of the treatment comparisons 
depends on the level of the covariate.
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It is also very important that the values of the covariate overlap among the treatments. If the values for the 
covariate don’t overlap, then you are extrapolating into regions where you have no data and the results could be 
incorrect. Use of proper randomization techniques will usually prevent this situation.

If the experiment was designed as a randomized block design, it is generally best to analyze it as a randomized 
block design and avoid using ANCOVA.

You may be able to avoid an ANCOVA model by using the baseline to normalize the response (i.e., change from 
baseline, ratio, etc.; Figure 9).

3.1.5.4. Repeated Measures and Cross-over Designs

Another popular design is to use each subject as a block and test each subject at each of several time points 
(repeated measures design) or under each treatment condition (cross-over design). With this approach there is 
only one subject within a block and this minimizes the variance by using each subject as its own control. 
Repeated measures and crossover designs are just special cases of a randomized block design.

Some examples:

• When a subject receives a dose of drug and is tested at multiple time points.
• When a subject receives all doses of drug. This type of design is also a repeated measures design, but it is a 

special case of repeated measures and is referred to as a crossover design because each subject is “crossed 
over” to each treatment or treatment level.

• In a crossover design, different sequences of treatments are identified, and each subject is randomized to 
one sequence.

• Cross-over designs assume that the effects of each treatment dissipate or don’t interfere with the response 
of the next treatment (i.e., no carryover). If this is not the case, then the cross-over is not an appropriate 
design.

Repeated measures designs allow us to separate out the variability due to individual differences (that is, to use 
each individual as their own control) and therefore better evaluate the effects of the manipulated, or independent 
variable. This increases the power of the analysis and means that fewer subjects are needed to have adequate 
statistical power.

3.2. Statistical Analysis Considerations
Once the experimental design has been selected, the appropriate statistical analysis then follows:

Parallel groups

• One factor with only two levels: t-test or ANCOVA
• One factor with more than two levels: one-way ANOVA or ANCOVA
• Two factors: two-way ANOVA or ANCOVA

Randomized blocks

• One factor: two-way ANOVA
⚬ Block as the second factor

• Two factors: three-way ANOVA
⚬ Block as the third factor

• Crossover & repeated measures: two-way and repeated-measures ANOVA
• Stratified designs: two-way ANOVA

The main analysis issues deal with how well the response data match the probability model assumed by the 
statistical analysis.
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For ANOVA to identify statistically significant treatments or doses, the main issues are to verify the following.

• The residuals of the response or dependant variable are normally distributed with constant variability 
across groups

• Techniques to handle outliers are appropriate (see below)
• Appropriate multiple comparison techniques are employed for the study objectives
• If concomitant variables such as baseline measures are used, the analysis should appropriately adjust for 

these variables

For dose-response studies to estimate an ED50, the main issues to be examined are the following:

• Whether the variability is constant or varies with the magnitude of the mean response
• Suitability of the dose range for the dose-response model
• Suitability of the dose-response model for the biological effects being examined.

For example, to fit a 4 parameter logistic model successfully, a wide dose-range allowing for well-defined tops 
and bottoms is required. In practice that is difficult to achieve, and often the top or the bottom is fixed at some 
pre-specified value. This imposes additional biological assumptions that should be assessed.

3.2.1. Outliers
The occurrence of an occasional outlier is not uncommon with in vivo experiments, and their presence can 
sometimes have a large impact on calculated means and, in particular, standard deviations. An observation 
isolated far above (or below) the bulk of the rest of data can “pull” the calculated mean toward it and result in an 
overestimate (or underestimate) of the true mean. Since the standard deviation involves a squared term, the 
impact of an outlier can be even more dramatic, making the standard deviation larger.

Figure 9: Examples of Analysis of Covariance (ANCOVA).
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In addition to negatively affecting the calculation of summary statistics, outliers can also affect the accuracy of 
the p-values generated by statistical tests, such as the paired and two-sample t-tests, and the ANOVA. One 
possible remedy is to perform the statistical test on transformed data (typically the square root or log transform). 
Transformation is indicated when variability is not constant (e.g., across treatment groups in a one-way 
ANOVA) and/or when the data are skewed (i.e., longer tail) to the right, but a transformation can also eliminate 
apparent outliers in some cases (Figure 10).

Another remedial approach is to employ a non-parametric or rank-based statistical test, in which raw data are 
replaced by their ranks. These are indicated when the data at hand are not adequately modeled by the normal 
(symmetric, bell-shaped) distribution. Statistical tests based on ranks also down-weight any outliers present in 
the data. Non-parametric analogs of the paired and two-sample t-tests, and the ANOVA are respectively the 
Wilcoxon signed rank test, the Mann-Whitney U test, and the Kruskal-Wallis test.

It is acceptable to report the usual summary statistics when presenting data from an in vivo experiment for 
which a transformation or nonparametric test was used for the statistical analysis. However, as mentioned above, 
outliers can distort the mean and standard deviation, so a better approach is to report summary statistics 
consistent with the chosen remedial measure (e.g., use the antilog of the mean for log-transformed data; use the 
median for rank-based tests). Consult a statistician for the appropriate method of reporting summary statistics 
when outliers are present.

Another approach to dealing with outliers is to simply remove them, but this of course requires one to be able to 
discern which observations are truly erroneous and which simply represent the underlying variability in the 
assay. The outlier boxplot is a commonly employed and effective tool for identifying outliers. However, 
detection of an outlier by this (or other methods) does not automatically mean the observation can be 
removed. It simply identifies observations that have the potential to disrupt the statistical analysis and that 
should be investigated.

If a valid, assignable cause can be identified for an outlying result, or if the result is simply inconsistent with what 
is being measured and suggests an error was made, the observation can be removed. Otherwise, the analysis 
should be performed with and without the outlier(s), with both results reported. If an observation is removed 
for cause, it should be documented that the data point existed along with the reason for removing it. Ad hoc 
rules based on distance in standard deviations units from the mean should not be used.

Outlier box-plots are shown above the histograms in Figure 10. The box is formed by the first and third quartiles 
and represents the middle 50% of the data. The length of the box (i.e., third quartile minus first quartile) is the 
inter-quartile range (IQR). The vertical line within the box is the median, and the horizontal lines connected to 
the box extend to the extremes of the data that fall within 1.5 times the IQR. Any observations falling outside 1.5 
times the IQR from the first or third quartiles appear as points on the box-plot and are potential outliers.

A minimum of 10 observations are recommended to generate a box-plot, but in the context of an experiment 
comparing several compound activities, each individual compound may be tested in fewer than 10 animals. In 
that case, the desired statistical model (e.g., a one-way ANOVA) can be fit and the outlier box-plot generated on 
the residuals from the model fit.

Residuals are automatically calculated in most statistical software, and in some cases are very simple to calculate. 
For example, the residuals from a one-way ANOVA of compound activities are simply the data “centered” by 
subtracting the respective compound mean. Consult a statistician for help with generating residuals from 
statistical models.

Figure 10 is an example of dog plasma exposures for 8 formulations of a single compound (4 dogs per 
formulation). The residuals from a one-way ANOVA fit to the raw AUCs appear in the box-plot and histogram 
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in Figure 10A. Note that the histogram suggests right skew for the AUCs, and there are potential outliers in the 
box-plot, particularly on the upper end of the distribution.

Right skew with outliers (along with increasing variability with increasing mean) are telltale signs that a log 
transform may be needed. The residuals from a one-way ANOVA fit to log-transformed AUCs appear in Figure 
10B. Note that the distribution is much more symmetric, and the box-plot does not identify any outliers on the 
log scale. The bell-shaped normal distribution (superimposed on the histogram) appears to more adequately 
model the log-transformed AUCs.

In summary:

• Outlier box-plots can be used to identify potential outliers. Other methods, such as number of standard 
deviations from the mean, are not recommended.

• An outlier can be removed from an analysis if it has an assignable cause or is clearly erroneous, but this 
should be documented.

• When there are outliers that do not have a known cause and are not clearly erroneous, analyze the data 
with and with the suspected outliers and report all results.

• Transforming the response variable can sometimes make outliers become non-outliers and satisfy 
standard analysis assumptions better than non-transformed data.

• Non-parametric analysis methods can be used to minimize the impact of outliers on analysis results 
without removing them from the analysis.

3.3. Randomization
There are a number of randomization techniques that are available. Certain study designs require specific 
randomization techniques, (e.g. randomized block designs, stratified designs, etc.). Random numbers should be 
obtained from an acceptable random number generator, (e.g., Excel, JMP, SAS, random number table, 
randomization web tool, etc.).

It is also very important to appropriately randomize subjects to treatment groups, as this reduces opportunities 
for bias. Randomization requires extra time and effort, but it can be more costly to not use it. Non-random 
strategies for assigning animals to treatment groups, when applied consistently across studies, will tend to 
introduce flaws, or bias, into the study results. By looking at the performance of a strategy across a series of 
studies we can then examine how well or poor a particular strategy is working. A truly random selection process 
is one where each subject is equally likely to be selected for any treatment group. The word “random” has a 
specific meaning that implies a formal random process such as a random number table or a computer generated 
random list has been used to make animal selections. Using a computer-generated random list or method is 
the preferred method. 

Intentionally assigning subjects to different groups in order to balance one or more baseline variables is not an 
acceptable randomization method. While it might appear that the goals of randomization have been achieved, 
other unknown biases could be introduced.

• Randomization:
• Prevents implicit/explicit bias in treatment assignment

⚬ Approximately balances groups with respect to all extraneous variables affecting response
⚬ Does add to logistical complexity
⚬ Is the primary technique for assigning animals to groups

• Work with a statistician to
⚬ Design a workable randomization
⚬ Incorporate known covariate information
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3.4. Power
The study should be planned so that the minimum pharmacologically relevant change or the flow scheme CSF 
has a high probability (usually 80%) of being statistically significant. The probability that a relevant change will 
be statistically significant is referred to as statistical power.

Note that since the total number of animals available for an assay run may be constrained by practical 
considerations such as a processing capacity, etc., the power analysis often determines how many dose groups 
may be examined within a single study.

The statistical power is a function of the following key elements.

• Assay variability (the lower the assay variability the higher the statistical power for a given sample size and 
effect size)

• Effect size (the larger the effect size the larger the statistical power for a given sample size and level of assay 
variability)

• Total number of animals in the test group
• Total number of groups and the number of animals per group in the study (in both cases the more animals 

the higher the statistical power).

Standard convention is to use 80% power to detect the minimum biologically significant effect with a false 
positive rate of 5% when evaluating or setting sample size. Declaring statistical significance when p-values are 
less than 0.05, along with appropriate multiplicity corrections, ensures the false positive rate is 5%. In general, a 
minimum of three runs of an assay with the format to be used in production should be used to estimate the 
experimental error. The power calculation should account for multiplicity corrections. The number of animals 
used should be sufficient so that all relevant drug effects are statistically significant.

When setting CSFs for an in vivo study, the CSF should be set above the minimum detectable difference if the 
CSF is defined on the response scale (e.g. percent inhibition > x% at y dose, body weight change > x grams, etc.). 
For potency CSFs, the study should be powered to exceed the minimum biologically significant effect. Following 
this paradigm, it is unlikely that you will have sufficient sample size to declare statistical significance at the 

Figure 10: Results of a transformation eliminating outliers. (A) The residuals from a one-way ANOVA fit to the raw AUCs. (B) The 
residuals from a one-way ANOVA fit to log-transformed AUCs.

In Vivo Assay Guidelines 33



minimum biologically significant effect, but you should power the study to be able to detect statistical 
significance at some dose.

In a dose-response study to estimate an ED50, two compounds will have statistically different ED50s if the ratio 
of the ED50s (larger::smaller) exceeds the minimum significant ratio (MSR) of the assay (see Section 2.2). Thus, 
the latter should be small enough to discriminate all pharmacologically relevant differences. The MSR depends 
upon the number of animals, the number of concentrations used, and the spacing of the doses with respect to 
the ED50. The number of doses should either be large enough to estimate an ED50 over a reasonably wide range 
and/or adjusted for each compound based on the efficacy demonstrated in a single dose screen. If a large number 
of doses are used, the number of animals per dose may be quite small.

3.5. Analysis of Dose-Response Curves: Principles and Practice
In considering how to statistically evaluate dose-response curves, it is informative to review some of the 
historical context of how dose-response curves have been analyzed. When pharmacologists were first 
determining dose-response curves, in the very early days of pharmacology, they often plotted the data on an 
arithmetic scale (Figure 11A), that being the simplest and, perhaps, most familiar, to them.

In order to summarize and compare different dose-response curves, scientists attempted to describe these curves 
mathematically. However, the curves, a type of parabola, require rather complicated equations to describe. Prior 
to the invention of calculators and computers, it was too laborious and time-consuming to solve these equations. 
Scientists therefore searched for other ways of plotting and summarizing their data which might be readily 
described by equations. One way of doing this was to plot the dose-response curve on a semi-logarithmic plot, as 
shown for the same data in Figure 11B.

The semi-log plot of the data is the familiar sigmoidal (S-shaped) plot of many dose-response curves. This type 
of plot had the important advantage that the middle part of the curve was approximately linear (Figure 12). 
The portion of the curve from 16% efficacy to 84% efficacy can be described by a linear equation (y = mx +b) 
which can be solved without the aid of calculators or computers. However, data outside of this range (below 16% 
and above 84%) was off the linear portion of the curve and therefore was excluded from the analysis since the 
inclusion of such data would alter the slope of the line.

Pharmacologists wanted to have a single number to describe the dose-response plots of their data. For this 
purpose, the dose which produced a 50% effect (ED50) seemed ideal since it was in the middle of the linear 
portion of the curve and could be calculated from the linear regression. These types of considerations led 
pharmacologists to design experiments which emphasized the middle, linear portion of the curve. 
Pharmacologists therefore primarily designed studies to have three groups (the minimum number of points 
needed to describe a line), and to have large numbers of animals in each group (to have a robust estimate of each 
mean).

A problem with this approach was that if the means of any groups fell outside of the 16 to 84% range, they 
were of little use in solving the linear equation. Many text books taught that data outside of the 16 – 84% range 
should be excluded, particularly the results of any groups where the mean was 0% or 100%. However, data at the 
extremes, or asymptotes, were very important data as they defined the top and bottom of dose-response curves. 
Moreover, it was difficult to calculate confidence limits on the slope and ED50. Thus, using only linear regression 
and the linear portion of the curve had substantial limitations.

Since sigmoidal curves are nonlinear, a non-linear regression algorithm should be used to fit the data. Today, 
with computers to solve complex equations very rapidly, we can use non-linear curve fitting techniques to 
model, or mathematically describe sigmoidal-shaped dose-response curves. From the non-linear curve-fit, 
specific parameters are estimated which describe the dose-response curve. The parameter estimates can then be 
used to compare dose-response curves for different compounds.
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Sigmoidal dose-response curves can be described using four different parameters:

• The top, or maximum effect
• The bottom, or minimum effect
• The ED50, or mid-point on the curve
• The slope of the curve

Using four parameters to describe a non-linear curve is called a 4 parameter logistic model, as illustrated in 
Figure 13.

The 4-Parameter Logistic (4PL) Model generates a family of curves using the four parameters of top, bottom, 
middle and slope. With these parameters, and using nonlinear regression, we can describe most sigmoidal 
curves. On occasion, there may be a practical or theoretical reason to define what the bottom and/or the top of a 
curve will be; for example, it may be known from the experimental methods or pharmacological theory that the 
bottom will be 0% or the top will be 100%. In such cases, only three parameters may be needed to describe the 
data. In such a case, a 3-parameter logistic model may be used to describe the data. Three parameter models are 
used most commonly when the dose range is imperfect (too high or too low) with respect to the potency of the 
compound, and we do not have doses which yield data near the top or bottom.

One also could fix both the top and bottom at constant values (a 2-parameter logistic model). However this 
approach makes some strong assumptions and one should let the data estimate the top and bottom whenever 
possible.

3.5.1. Analyzing Dose-Response Data
One way of analyzing data from dose-response determinations is to use ANOVA with a Dunnett’s test to 
determine if there is an overall effect of the drug, and which doses produced an effect was statistically different 
from the control group. However, this analysis doesn’t allow one to estimate a dose producing a 50% effect nor 
estimate the minimal and maximal effects or the slope. The dose producing a 50% effect will typically lie between 
two of the doses tested, and therefore requires interpolation to estimate. Interpolation requires some type of 
regression analysis.

In certain situations, for example with a limited number of dose groups, linear regression may be the best 
approach. However, the linear regression approach has several limitations:

1. Interpolating between two doses does not use all the data and hence can be inefficient. If one uses more 
than two doses, a straight-line fit may not be appropriate and the result will be a distorted (biased) 
estimate of the ED50.

2. It is not trivial to quantify the precision (i.e. calculate a standard error) of the estimate of the ED50 from 
linear regression. Thus, it is not trivial to determine if two ED50 values are statistically significantly 
different.

3. There is no ability to identify the minimum and maximum effect, nor the precision of the estimates, with 
linear regression.

By using a nonlinear regression model, one can get a better fit to all of the data, as well as calculate estimates and 
95% confidence limits for the ED50, slope, maximum effect and minimum effect.

In the process of assay validation, methods for analyzing dose-response data must be selected and the method 
should remain constant for a validated assay. However, there may be situations where deviations are appropriate. 
Consult with a statistician for how to most appropriately deal with specific situations, or datasets, where 
deviations from pre-determined data analysis approaches may be appropriate.
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3.5.2. Experimental design requirements for linear vs. nonlinear analysis
For analysis by linear regression or ANOVA followed by a Dunnett’s test, 3 or 4 groups of usually 5 to 10 animals 
per group traditionally has been required to provide precise estimates of the mean and variation for each 
treatment group and thus, sufficient power to identify all important treatment effects. To estimate potency 
results, such as ED50, the requirements are quite different; having data over the entire range of the dose-response 
curve is required, and estimates of the mean at each individual dose do not need to be as precise. That is, with 

Figure 11: (A) Linear versus (B) semi-logarithmic plots of the same set of theoretical data.

Figure 12: (A) Illustration of the linear portion of a sigmoidal dose-response curve and (B) the influence of data points which lie 
outside of the 16 – 84% region of the dose-response curve on the calculation of the slope of the line and potentially on the dose 
producing a 50% effect (ED50).
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nonlinear regression, one is not estimating a given point (or mean), but rather the parameters of the entire 
curve; modest deviations in a single point are less likely to substantially impact the parameters of the overall 
curve. On the other hand, not having data points at, for example, the top or bottom, can substantially impact the 
analysis. Therefore, it is necessary to have a larger number of groups with fewer animals per group. With 
experimental designs for nonlinear analysis, it may even be possible to reduce the total number of animals 
needed. Diagnostic checking of the resulting curve fit is essential; the ED50 and asymptotes must make sense. 
Further, the confidence limits should be sufficiently precise to meet research objectives. Therefore, it is critically 
important to carefully consider the selection of doses in an experimental design with nonlinear regression 
analysis. For example, using 6 dose levels with 4 animals per group would be far more appropriate than using 3 
dose levels with 8 animals per group. Also for nonlinear regression analysis, it is best to have doses that are 
equally-spaced on the log scale. When an assay is statistically validated, the number of groups and animals per 
group needed should be verified with a statistician.

As an illustration, the effects of a drug on decreasing ethanol consumption in a behavioral assay were compared 
under two different experimental designs. For these experiments, animals were trained to drink an ethanol 
solution over a period of several weeks. Animals were then randomized to treatment groups which receive either 
vehicle or a dose of the test drug. The drug produced a dose-related decrease in ethanol consumption (Figure 
14). In the more traditional experimental design (Figure 14A), vehicle and 4 doses of drug were administered to 
groups of 6 animals each, for a total of 30 animals. When the data were analyzed by ANOVA and a Dunnett’s 
test, doses of 3, 10 and 30 were significantly different from vehicle. There were only 2 doses on the linear portion 
of the dose-response curve (16 – 84%), an insufficient number to properly use linear regression, and therefore an 
ED50 and confidence limits could not be calculated with any degree of robustness. If nonlinear regression 
analysis is applied to the data in the left panel, an ED50 value of 0.6 mg/kg is obtained (a value which appears to 
be too low based on visual inspection of the data) and confidence limits can be obtained only for the parameter 
Top. The bottom could be fixed at zero, which provides a better estimate of the ED50, but its lower confidence 
limit could not be calculated using JMP software. When a nonlinear-compatible design was used (Figure 14B), 6 
doses of drug were administered to groups of 3 animals each for a total of 18 animals. A low, inactive dose of 
drug was used in place of vehicle, allowing for a better estimate of Bottom in this experiment. A vehicle group 
could also have been included. (Note: results from a vehicle treated group can, if appropriate, be incorporated 
into the nonlinear analysis; however, since there is no “zero” point on a log scale, vehicle is typically assigned a 
dose-value two to three orders of magnitude below the lowest dose tested; consult with a statistician for ways to 
incorporate a vehicle group into a nonlinear analysis). From nonlinear regression, an ED50 value of 1.5 mg/kg is 
obtained (which appears reasonable based on visual inspection of the data) as well as 95% confidence limits 
(0.91 to 2.4 mg/kg). In addition, estimates of the Top, Bottom and Slope, along with their respective confidence 

Figure 13: Illustration of the parameters of a 4-parameter logistic model of sigmoidal-shaped curves.
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limits, are obtained. Thus, if the primary goal is to obtain an ED50 value together with confidence limits, a 
nonlinear-compatible design yields more results with far greater precision, and may also require fewer animals.

3.5.3. Key points in the analysis of dose-response curves
Analysis Key Points:

• Regression is needed for interpolation
• 4 parameter logistic model is primary model for dose-response work
• Diagnostic checking is essential

⚬ Reasonable asymptotes
⚬ Numerically complete answer
⚬ Try fixing top or bottom as necessary

Design Key Points:

• Doses need to be spaced across a broad dose range
⚬ Doses may need to be in 2X steps rather than 3X (i.e., half-log)

• Preferable to use more groups but may need fewer animals per group
⚬ Nonlinear approaches can provide more information with fewer animals

4. Abbreviations
3PL, 3-parameter logistic

4PL, 4-parameter logistic

AMV, Assay method version

CSF, Critical success factor

DLs, Difference Limits

DRC, Dose-response curve

ED50, Dose which produces 50% effect (Effective Dose 50%)

Relative ED50: Dose which produces 50% of the maximal response produced by that drug in the test system; 
considered to be relative measure of affinity

Absolute ED50: Dose which produces 50% of the maximal response which can be observed in the test system by 
a positive control; theoretically a drug could produce an effect greater than the maximum that can be measured

GM, Geometric Mean

LsA, Limits of Agreement

LsAd, Limits of Agreement on differences

MD, Mean Difference

MR, Mean Ratio

MSD, Minimum Significant Difference

MSR, Minimum Significant Ratio

RLs, Ratio Limits
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SAR, Structure-activity relationship

SDS, Single-dose screen

5. Suggested Reading
Landis SC, Amara SG, Asadullah K.et al. A call for transparent reporting to optimize the predictive value of 

preclinical research. Nature. 2012;490(7419):187–91. PubMed PMID: 23060188.

License
All Assay Guidance Manual content, except where otherwise noted, is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported license (CC BY-NC-SA 3.0), which permits copying, distribution, transmission, 
and adaptation of the work, provided the original work is properly cited and not used for commercial purposes. Any 
altered, transformed, or adapted form of the work may only be distributed under the same or similar license to this one.

Figure 14: Comparison of (A) results with a more traditional experimental design using vehicle plus 4 doses of drug and 6 animals per 
dose and (B) results from a nonlinear-compatible design with 6 doses of drug and 3 animals per dose.
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