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Proceedings of a Workshop

WORKSHOP OVERVIEW1

Advances in informatics and the diagnostic medical specialties (radiology, 
pathology, and laboratory medicine) could potentially reshape cancer diagnosis 
and enhance precision oncology care. Integrating multiple types of diagnostic 
data, combined with analysis with artificial intelligence (AI) algorithms, could 
help to guide personalized treatment and improve patient outcomes. No uni-
form strategy currently exists, however, to develop, validate, implement, and 
use integrated diagnostics in cancer care.

The National Cancer Policy Forum, in collaboration with the Computer 
Science and Telecommunications Board and the Board on Human–Systems 
Integration of the National Academies of Sciences, Engineering, and Medi-
cine, hosted a public workshop on incorporating integrated diagnostics into 
precision oncology care on March 6 and 7, 2023. Hedvig Hricak, the  Carroll 
and Milton Petrie endowed chair in the Department of Radiology at  the 
Memorial Sloan Kettering Cancer Center (MSK), described the workshop as 
“an opportunity for the cancer community to discuss the current state of the 

1 This workshop was organized by an independent planning committee whose role was 
limited to identification of topics and speakers. This Proceedings of a Workshop was prepared 
by the rapporteurs as a factual summary of the presentations and discussions that took place at 
the workshop. Statements, recommendations, and opinions expressed are those of individual 
presenters and participants and are not endorsed or verified by the National Academies of 
Sciences, Engineering, and Medicine, and they should not be construed as reflecting any 
group consensus.
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2  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

field of integrated diagnostics, including the purpose, goals, and components 
of integrated diagnostics.” It featured presentations and panel discussions on 
a range of topics, including:

• current efforts to develop and implement integrated diagnostics to 
inform treatment decision making in cancer care;

• implications of integrated diagnostics for clinician training, care 
workflows, and the organization of care teams;

• opportunities for evidence generation to inform validation, clinical 
utility, regulatory oversight, and insurance coverage for integrated 
diagnostics;

• strategies for ongoing quality assurance, evaluation, and refinement of 
integrated cancer diagnostics based on new evidence; and

• mechanisms to enable broad patient access to integrated diagnostics, 
particularly in community-based settings of cancer care.

This Proceedings of a Workshop summarizes the presentations and discus-
sions from the workshop. Observations and suggestions from individual par-
ticipants are discussed throughout the proceedings and highlighted in Boxes 1 
and 2. Appendixes A and B provide the Statement of Task and agenda, respec-
tively. Speaker presentations and the workshop webcast are archived online.2

OVERVIEW OF THE CURRENT STATUS OF AND VISION  
FOR INTEGRATED DIAGNOSTICS

An Evolving Integrated Data Science Approach 
to Personalized Oncology Care 

There is currently no consensus definition of integrated diagnostics, said 
Kojo Elenitoba-Johnson, inaugural chair of the department of pathology and 
laboratory medicine and James Ewing Alumni Chair of Pathology at MSK. 
He referred to Hricak’s working definition as “the convergence of imaging, 
pathology, and laboratory testing, supplemented by advanced information 
technology, which has enormous potential for revolutionizing the diagnosis 
and therapeutic management of many diseases, including cancer.”

2 See https://www.nationalacademies.org/event/03-06-2023/incorporating-integrated-
diagnostics-into-precision-oncology-care-a-workshop (accessed May 26, 2023).
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PROCEEDINGS OF A WORKSHOP 3

BOX 1 
Observations on the Development and Use of 

Integrated Diagnostics in Cancer Care  
Made by Individual Workshop Participants

Describing Integrated Diagnostics
• The concept of integrated diagnostics refers to the conver-

gence of imaging, pathology, and laboratory testing data, 
augmented with information technology. (Elenitoba-Johnson, 
Hricak)

• Integrated diagnostics are not a clinical decision support sys-
tem (although they support clinical decision making), and they 
are much more than a data aggregation dashboard. (Hricak)

• Integrated diagnostics are intended to be patient centered. 
(Elenitoba-Johnson, Hirsch, Hricak, Lennerz, Osterman)

Diagnostics Research and Practice
• Diagnostic testing is siloed by discipline, making it challenging 

for oncology clinicians to assimilate patient data to inform a 
patient’s care plan. (Hricak)

• Multidisciplinary teams are essential to develop, implement, 
and use integrated diagnostics. (Hricak, Osterman, Shah, Thai)

• The goal of integrated diagnostics is to create clinical part-
nerships and align workflows to facilitate the integration of 
diagnostic data from across disciplines. (Lennerz, Salto-Tellez, 
Schnall)

• Cultural barriers to implementing integrated diagnostics persist; 
despite growing evidence supporting the use of artificial intelli-
gence (AI) in precision oncology, many clinicians still hesitate to 
do so in practice. (Choudhury, Elenitoba-Johnson, Krestin, Oyer)

• Key factors that affect clinician adoption of AI-based integrated 
diagnostics are trust in the technology and accountability. 
(Choudhury, Dorr)

• Incentives are needed to promote the adoption of integrated 
diagnostics into practice. (Elenitoba-Johnson)

Evidence Generation
• Developing a learning health care system is one option to gen-

erate the evidence needed to evaluate integrated diagnostics. 
(Levy)

• Electronic health record (EHR) data and capabilities can be 
leveraged to support the evaluation of integrated diagnostics. 
(Levy, Meropol)

continued
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4  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

 o  EHR data collected during routine care can be used for pragmatic 
studies. (Sawyers)

 o  Intentional EHR-based data collection can support prospective 
observational studies (i.e., data that may not be needed for a 
patient’s routine care but are collected as part of routine work-
flows). (Meropol, Sawyers)

Design and Use in Clinical Practice

AI Models
• AI models in diagnostics are becoming increasingly computationally 

complex but also less transparent. (Thai)
• AI algorithms can perpetuate and amplify biases in training data-

sets, leading to biased interpretations when applied to broader 
populations. (Dorr, Thai)

• An AI algorithm developed at one institution often does not perform 
as expected or required at different institutions. (Barzilay, Levy, 
Salto-Tellez)

• Machine learning algorithms that are incorporated into clinical work-
flow can nudge clinicians toward testing or treatment options based 
on patient results, new research, or other information. (Robison)

• Self-supervised learning by AI is one approach to handling the 
 massive volumes of health data being generated by medical tech-
nologies and devices. (Comaniciu)

Workflow and Workforce 
• The use of unstructured, text-based clinical notes in the EHR 

 persists, and the lack of uniform, structured, and synoptic reporting 
contributes to diagnostic uncertainty. (Hricak, Osterman)

• Data standards exist, but entry of structured data does not always 
fit well within clinical workflow. (Osterman)

• Patient-centric user interfaces for integrated diagnostics are needed, 
using design principles to prioritize the most important information 
for patient care and actions to consider. (Dorr, Robison, Shah)

• A diagnostic management team approach can improve care 
and reduce medical errors by providing guidance on appropriate 
diagnostic test ordering and use and interpretation of test results. 
(Laposata)

BOX 1 Continued
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PROCEEDINGS OF A WORKSHOP 5

• Investments in data engineering are needed to scale integrated 
diagnostics. (Shah)

Regulatory and Coverage Considerations
• The U.S. Food and Drug Administration evaluates integrated diag-

nostics and AI-based digital technologies according to the traditional 
risk-based review framework for medical devices. (Philip)

• Clinical coverage for a service generally requires a high level of evi-
dence of clinical utility, with clearly defined improvement in outcome 
(which might be an intermediate outcome for diagnostics). (Malin)

• Billing codes are now available for the time laboratory medicine 
experts spend advising clinicians on diagnostic test selection and 
result interpretation. (Laposata)

Access and Equity
• Equity is central to all efforts in developing and using integrated 

diagnostics. (Nilsen)
• Validating AI-based risk prediction algorithms across institutions and 

populations is a challenge. (Barzilay)
• One algorithmic approach to improve equity in AI model design is 

distributional shift detection, in which the algorithm learns to detect 
bias automatically. (Barzilay)

• Because it may not be possible to explain how an algorithm makes 
a prediction, an alternative approach is to design the model to learn 
and report when its prediction cannot be trusted, based on cali-
brated uncertainty. (Barzilay) 

• Most patients with cancer receive their care in community settings, 
and disparities in access to high-quality care and new technolo-
gies persist in many communities outside the catchment area of 
National Cancer Institute–designated cancer centers or other major 
academic centers. (Brawley, Oyer, Shulman)

• Introducing new technologies into clinical practice can create dis-
parities in care (e.g., due to lack of access, uneven implementation, 
and the use of limited resources for unnecessary care). (Brawley)

NOTE: This list is the rapporteurs’ synopsis of observations made by one or more 
individual speakers as identified. These statements have not been endorsed or 
verified by the National Academies of Sciences, Engineering, and Medicine. They 
are not intended to reflect a consensus among workshop participants.
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6  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

BOX 2 
Opportunities to Advance the Development, 

Implementation, and Use of Integrated 
Diagnostics in Precision Cancer Care Suggested 

by Individual Workshop Participants

Implementing Integrated Diagnostics
• Ensure interoperability of data systems across clinical disciplines. 

(Osterman, Trentadue)
• Establish, adopt, and integrate data standards into clinical work-

flows. (Osterman)
• Deploy structured electronic health record fields for standardized 

data elements. (Osterman)
• Adopt synoptic operative reports. (Hricak, Osterman) 
• Develop a lexicon to convey degree of diagnostic certainty. (Hricak)
• Incorporate patient-level longitudinal data. (Levy, Robison)
• Collaborate to advance the process in automating tumor imaging 

annotation and segmentation. (Hricak)
• Develop institutional practices for data governance and facilitating a 

culture of data sharing. (Butte, Hricak)
• Ensure integrated diagnostics have feedback loops to support a 

learning health care system. (Kronander, Levy)
• Recruit more data scientists to cancer research and care to enhance 

efficient translation of scientific and technological advances in 
patient care. (Shah)

Improving Design and Use
• Use training and testing datasets that are representative of the 

population for which the technology is intended. (Barzilay Levy, Thai) 
• Develop a code of conduct for implementing AI-based integrated 

diagnostics. (Dorr)
• Establish shared or distributed accountability based on risk and 

intended use. (Choudhury)
• Promote open data policies, requiring public release of data used in 

algorithm training and testing. (Shah)
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PROCEEDINGS OF A WORKSHOP 7

• Use principles of risk communication to support shared decision 
making (e.g., use numbers; avoid imprecise terms; use data visuali-
zations to convey risk; keep denominators consistent; discuss abso-
lute and not relative risk). (Politi)

• Apply implementation science principles to promote the uptake 
of integrated diagnostics into clinical workflows and prevent 
 unintended consequences. (Dorr)

• Train the next generation of scientists and clinicians to be able to 
communicate across disciplines and apply an integrated approach 
to diagnostics. (Gold, Schnall)

• Embrace regulatory science, and actively engage with regulators 
on issues related to the evaluation and implementation of integrated 
diagnostics. (Lennerz)

• Provide insurance reimbursement for patient diagnosis and care 
rather than conducting specific diagnostic tests and procedures. 
(Kronander)

Facilitating Access and Equity
• Build a national hub-and-spoke system to address gaps in access 

to high-quality cancer care to facilitate the equitable deployment of 
integrated diagnostics. (Oyer)

• Apply implementation science approaches to promote equitable 
uptake and diffusion of new tools and technologies and avoid wors-
ening disparities in resource-poor settings. (Brawley)

• Leverage new digital technologies to increase the capacity and 
effectiveness of the cancer care workforce and improve patient 
experience and outcomes. (Oyer)

• Provide training to increase the ability and skills of the current oncol-
ogy workforce to integrate diagnostic tools into practice. (Oyer)

NOTE: This list is the rapporteurs’ synopsis of suggestions made by one or more 
individual speakers as identified. These statements have not been endorsed or 
verified by the National Academies of Sciences, Engineering, and Medicine. They 
are not intended to reflect a consensus among workshop participants.
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8  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

Elenitoba-Johnson said the core patient-centered goals for integrated 
diagnostics include:

 
• Diagnosis: “What disease does the patient have?” 
• Residual disease: “How much disease is there?” 
• Prognosis: “Who needs treatment?” 
• Therapy: “What is the best treatment for this patient?” 
• Pharmacodynamics/pharmacogenomics: “What dose?” 

He characterized the overall goal of integrated diagnostics as “precision 
diagnostics scaled at a population level for impact at an individual level.”

Integrated diagnostics present a range of opportunities to reduce medical 
errors and improve patient outcomes, noted Hricak. From a clinical per-
spective, she said integrated diagnostics can function as AI-facilitated tumor 
boards.3 For research, large annotated and curated databases can provide 
opportunities for new discoveries. Moreover, continuous feedback from inte-
grated diagnostics supports education. Access to data from integrated diagnos-
tics can facilitate shared decision making among patients and their clinicians 
and promote health equity by enabling personalized precision cancer care, 
she said. 

For personalized treatment, Elenitoba-Johnson said that no single entity 
or clinical domain has all the tools or expertise necessary to measure, abstract, 
and interpret all the necessary data. To address this gap, integrated data science 
is “leveraging platforms that horizontally integrate information from disparate 
sources in a standardized fashion,” he noted (see Figure 1). 

As an example, Elenitoba-Johnson described the interconnected Honest 
Broker for BioInformatics Technology platform to integrate digital pathology 
data from multiple sources and support its use for clinical, research, and edu-
cational purposes at MSK. He noted that MSK has digitally archived more 
than 5 million pathology slides to enable reliable retrieval of imaging data and 
the development of enhanced reporting through detailed digital annotation 
(Roth et al., 2021).

Another example of an integrated information system he described 
is MSK-IMPACT (Integrated Mutation Profiling of Actionable Cancer 

3 A tumor board is “a treatment planning process in which a group of cancer doctors and 
other health care specialists meet regularly to review and discuss new and complex cancer 
cases. The goal of a tumor board review is to decide as a group on the best treatment plan for a 
patient. These meetings can involve specialists from many areas of health care, including med-
ical oncologists, radiation oncologists, surgeons, pathologists, radiologists, genetics experts, 
nurses, physical therapists, and social workers.” See https://www.cancer.gov/ publications/
dictionaries/cancer-terms/def/tumor-board-review (accessed December 27, 2023).
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10  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

Targets),4 a tumor gene sequencing system targeting 505 genes to create a 
molecular tumor tissue profile (Zehir et al., 2017). To support the standard-
ization, interpretation, and dissemination of the clinical and genomic tumor 
data generated,5 a precision oncology knowledge base called “OncoKB” was 
developed (Chakravarty et al., 2017). Elenitoba-Johnson explained that 
MSK provides every patient with a personalized, comprehensive diagnostic 
assessment based on their MSK-IMPACT tumor testing, which includes 
“information about actionable mutations that are prognostically relevant.”

An Expanding Role for AI

Elenitoba-Johnson shared several examples of how AI is being leveraged 
to enhance the capabilities of integrated diagnostics in precision oncology 
care. As noted, MSK has digitized more than 5 million pathology slides, 
which can be used to train machine learning (ML) algorithms to identify 
cancer in tissue samples, often with improved accuracy compared to human 
review. He shared other examples of how AI is being used to improve data 
integration, such as studies using ML to improve risk stratification of patients 
with high-grade serous ovarian cancer (Boehm et al., 2022a) and prediction 
of response to immunotherapy in patients with non-small-cell lung cancer 
(Vanguri et al., 2022). He noted that digital pathology platforms also enable 
remote diagnostics, which can increase capacity, promote health equity, and, 
when implemented at scale, could potentially be used to improve cancer care 
and outcomes at a population level.

But Elenitoba-Johnson also cautioned that “AI is not infallible intelli-
gence.” He explained that AI’s potential is affected by the quality of the data-
sets used to train the algorithms, automated discrimination associated with 
training datasets, human error, and the inability of algorithms to understand 
the context of the data (Chakravorti, 2022). He quoted four lessons learned 
from an analysis of the use of AI in the response to the COVID-19 pandemic 
(Chakravorti, 2022):

• Better ways to assemble comprehensive datasets and merge data from 
multiple sources are needed.

• A diversity of data sources are necessary.
• Aligned incentives can help ensure greater cooperation across teams and 

systems.
• International rules for data sharing are lacking. 

4 See https://www.mskcc.org/msk-impact (accessed August 30, 2023).
5 See https://www.oncokb.org/ (accessed August 30, 2023).
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To address these issues and advance the use of AI in biomedical research, 
the National Institutes of Health (NIH) Common Fund has launched the 
Bridge to Artificial Intelligence (Bridge2AI) program.6 Areas of focus include 
creating “flagship datasets” that are ethically sourced and adhere to the FAIR 
(findable, accessible, interoperable, and reusable) principles.7

Implementation Challenges

Hricak mentioned the exponential growth in diagnostic testing, but 
noted that testing tends to be siloed, which presents significant challenges for 
oncology clinicians in assimilating and interpreting the disparate diagnostic 
data for patient care. She underscored that the overall goal of an integrated 
data science approach to personalized treatment is to integrate all domains 
of measurement. However, challenges to achieving this goal range from data 
extraction and aggregation to integration and analysis. 

Hricak said that data extraction challenges are substantial for pathology, 
radiology, and clinical data domains. Taking radiology data as an example, she 
noted that results reporting has remained essentially unchanged for well over a 
century and is still largely free text. Hricak explained that the lack of uniform, 
structured, and synoptic reporting8 leads to diagnostic uncertainty. Despite 
great interest in AI for tumor segmentation, feature extraction, and classifica-
tion, this process remains largely manual. Manual segmentation, which iden-
tifies the spatial location of a tumor, is “the greatest roadblock to integrated 
diagnostics in both clinical and research workflows,” according to Hricak. She 
emphasized the need for “automated, algorithmic, validated tumor segmenta-
tion for every [body] site and every [imaging] modality.” 

Hricak pointed to data governance and the culture around data sharing 
as additional challenges affecting the fields of radiology and pathology. Pro-
tections are needed to “prevent misuse and misinterpretation of data; protect 
interests of patients, faculty, multidisciplinary tumor boards, departments, and 
institutions; and ensure proper recognition of contributions,” noted Hricak, 
adding that it is also important to “be mindful of both scientific and business 
interests for all parties.” Hricak said that challenges for data integration and 
multimodal analysis include the need to develop new algorithms and identify 
new biomarkers for predictive and prognostic modeling.

6 See https://commonfund.nih.gov/bridge2ai (accessed May 26, 2023).
7 See https://www.go-fair.org/fair-principles/ (accessed December 27, 2023).
8 Synoptic reporting “is a method of clinical documentation that captures and displays 

specific data elements in a specific format.” See https://radiopaedia.org/articles/structured-
reporting (accessed December 27, 2023).
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12  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

Hricak stressed that the concept of integrated diagnostics is much more 
than a data aggregation dashboard; integrated diagnostics are an essential 
element of clinical decision support (Tcheng et al., 2017). Although both 
integrated diagnostics and clinical decision support tools are used with the 
goal of reducing medical errors, integrated diagnostics specifically focus on 
diagnostic errors (NASEM, 2015). 

Until the goal of integrating all domains of measurement can be achieved, 
“every integration helps,” Hricak said. For example, when ruling out bone 
metastasis in patients with multiple myeloma, 18F-Fluorodeoxyglucose (FDG)–
positron emission tomography (PET) results were negative in 11 percent of 
patients who had magnetic resonance imaging (MRI) findings of bony lesions 
in the spine (Rasche et al., 2017). Thus, integrating MRI and FDG-PET 
results can help ensure that patients who have metastatic tumors are not 
missed. Referenc ing another study that examined the use of integrated multi-
platform omics tests and imaging to identify potential mechanisms of therapeu-
tic response and resistance in metastatic cancers (Johnson et al., 2022), Hricak 
pointed out that these data were manually curated by 20 people over nearly 
a year. The study authors noted that further development of methodology for 
integrative analysis would support broad implementation in both research and 
clinical practice. She concluded that making integrated diag nostics a reality 
requires vision, courage, agility, collaboration, and perseverance.

Efforts to Improve Interoperability

Travis Osterman, director of cancer clinical informatics at Vanderbilt-
Ingram Cancer Center, likened integrated diagnostics to a pipeline being filled 
with information from different clinical disciplines. Interoperability, which 
connects all of these multidisciplinary segments of pipe together, requires 
not only establishing data standards but adopting and integrating them into 
clinical workflows, he said. Integrated diagnostics falter when gaps in inter-
operability result in suboptimal data handoffs. Osterman likened this to the 
pipeline ending and pouring data into a bucket that must then be hand carried 
to another pipeline. Text-based clinical notes, explained Osterman, are one 
example of data that end up in a “bucket” for manual transport.

Examples of Progress Toward Interoperability

Development of data standards Osterman explained that some data in 
operative reports are entered as unstructured notes, which creates a gap in the 
integrated diagnostics pipeline. To address this, the American College of 
Surgeons Commission on Cancer requires that operative reports for select 
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oncologic surgeries meet technical and synoptic formatting standards.9 The 
incorporation of standardized data elements in structured fields will better 
enable the collection, retrieval, and sharing of surgical information, which 
Osterman called “a breakthrough for the field.” He added that standards for 
synoptic operative reports for additional oncologic surgeries are expected to 
be forthcoming. He explained that academic cancer centers accredited by the 
Commission on Cancer are now in the process of implementing the format-
ting standards, and such requirements by accreditors are one approach to 
facilitate adoption. Osterman pointed out that it remains to be determined 
how well these standards can be embedded into clinical workflows where 
surgeons often type or dictate their notes.

Alignment with clinical workflow Osterman pointed out that standards for 
capturing cancer staging as structured data exist, although implementation has 
been generally poor. One study found that before launching an implementa-
tion initiative, only 20 percent of patient records contained such information 
(Emamekhoo et al., 2022). Osterman suggested that rates of structured staging 
at many cancer centers are even lower. Clinical staging is often recorded as 
text in the clinical note or assessment plan, even though most electronic health 
records (EHRs) have structured fields for it. The problem is that making the 
structured entry requires the oncologist to take extra time to launch a separate 
form, and Osterman said, “many don’t see the direct benefit to either them or 
their patients.” Thus, the standards exist, but the process to enter structured 
information does not fit into the workflow. He pointed out that the lack of 
such structured data negatively affects research, as it can be extremely challeng-
ing to identify patients with a particular stage of cancer for clinical studies. In 
the study cited, the solution deployed was to “force” oncologists to complete 
the structured staging fields before they can close out the clinical encounter, 
Osterman said. Although this approach increased entry of structured staging 
information to 90 percent, he called for better solutions that align with clinical 
workflows so clinicians can spend their time on patient care. 

Adoption of standards Recalling the early days of genomic testing,  Osterman 
explained that results from outside laboratories were provided by fax and not 
only unstructured but often difficult to interpret. Reports were later provided 
in PDF, and many oncologists now access testing results from an outside vendor 
via an online portal. The challenge, he said, is that the results often stay in that 
portal and are not uploaded to the patient’s EHR. Using the pipeline imagery, 
Osterman pointed out that in these situations, the integrated diagnostics pipe-

9 See https://www.facs.org/media/avukq4nc/coc_standards_5_3_5_6_synoptic_ operative_
report_requirements.pdf (accessed May 26, 2023).
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14  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

line ends, and it is not clear where to even find the bucket of data to carry to 
the next section of pipe.

To address this gap, the health level 7 (HL7) standards for reporting 
structured clinical genomics data (including cancer-based testing, as well as 
somatic, germline, and pharmacogenomic testing) were introduced in 2019.10 
These standards were designed to align with the oncology workflow by making 
it easy to order genomic testing and receive the results. The HL7 reporting 
standards have been widely adopted by genomic testing laboratories, EHR 
vendors, and health care systems, Osterman said, and the number of institu-
tions receiving genomic data from vendors in structured format continues 
to increase. Achieving interoperability means these data also are available for 
other diagnostic uses (e.g., clinical decision support, recommending clinical 
trials, population health). 

Gaps and Opportunities for Improvement 

Despite progress toward interoperability, Osterman said that ongoing 
work is needed to identify and fill gaps in data standards. One area for atten-
tion is disease status. Osterman pointed to the “minimal Common  Oncology 
Data Elements” (mCODE) interoperable data standard. Built on Fast Health-
care Interoperability Resources (FHIR) standards for exchanging health care 
data, mCODE leverages existing data standards.11 Osterman said that it 
enables clinicians and researchers to understand and describe a patient’s trajec-
tory across the cancer care continuum. He noted that the concept of disease 
status in mCODE is defined as a clinician’s qualitative judgment on the cur-
rent trend of a patient’s cancer—whether it is stable, worsening (progressing), 
or improving (responding), based on one or more sources of clinical evidence. 
While criteria exist for assessing disease status, such as the Response Evaluation 
Criteria in Solid Tumors (RECIST),12 it was decided during the development 
of mCODE that no existing data standard for disease status fit all cases, and 
this definition was proposed. Osterman explained that adoption of data stan-
dards has been a persistent challenge, and it remains difficult to extract data 
on disease status from the EHR. He added that this is partly a workflow issue, 
and mCODE is working with EHR vendors to improve the structured capture 
of disease status information. 

Osterman said that clinical trials are another area that requires atten-
tion. He identified a need to structure the inclusion and exclusion criteria in 
ClinicalTrials.gov such that they are interoperable with the patient data in the 

10 See https://build.fhir.org/ig/HL7/genomics-reporting/ (accessed May 26, 2023).
11 See http://hl7.org/fhir/us/mcode/ (accessed May 26, 2023).
12 See https://recist.eortc.org/ (accessed August 31, 2023).
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integrated diagnostics pipeline for clinical trial matching.13 Osterman also 
noted the opportunity to improve the interoperability of clinical proto-
cols so they can readily be launched across multiple institutions, and the 
 Clinical  Trials Rapid Activation Consortium is working to make this a reality 
( Osterman et al., 2023).

Larry Shulman, professor of medicine and director of the Center for 
Global Cancer Medicine at the University of Pennsylvania Abramson Cancer 
Center, emphasized the importance of structuring patient-reported outcomes 
and the clinician’s overall assessment of a patient for inclusion in integrated 
diagnostics. Mia Levy, chief medical officer of Foundation Medicine, pointed 
out that it can take many years for consensus standards to be developed and 
then implemented by vendors, and standards-setting bodies are generally 
volunteer organizations. She inquired how the development of standards 
might be accelerated. Osterman highlighted the differences between the HL7’s 
approach in proposing standards for structured clinical genomics data and the 
approach taken by mCODE. The HL7 process was much slower because it was 
intended to be full scope at implementation and therefore necessarily consid-
ered all use cases during development, Osterman explained, whereas mCODE 
was developed based on two use cases, and it was understood from the start 
that it was a minimum set of common data elements that would not fully cover 
all use cases. He pointed out that the mCODE governance structure allows for 
rapid feedback from users and rapid addition of new data elements. Osterman 
added that mCODE follows the FHIR maturity model,14 and a committee 
of mCODE implementers works to ensure that new additions are compatible 
with current installations.

Several speakers discussed the transition from manual to automated anno-
tation and segmentation of image-based diagnostics. Hricak described the 
extensive and time-consuming manual work needed to annotate images and 
the need to assemble very large datasets of annotated images for training AI 
algorithms. She emphasized the importance of collaboration among  radiology, 
pathology, and AI experts in developing and validating these algorithms. 
Hricak also called for a standard lexicon to convey the degree of diagnostic 
certainty. Elenitoba-Johnson highlighted infrastructure challenges to achiev-
ing automated annotation, such as the U.S. health care system’s lack of any 
standardized mechanism to pay for the expertise and effort spent on manually 
annotating images at the scale required to train AI algorithms. “Somewhere 
in our health care delivery system, we have to account for the individuals who 

13 See https://clinicaltrials.gov/about-site/about-ctg (accessed October 24, 2023).
14 See https://confluence.hl7.org/display/FHIR/FHIR+Maturity+Model (accessed Janu-

ary 25, 2024).
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are going to do that work,” emphasized Elenitoba-Johnson, rather than relying 
on the current patchwork funding. 

Levy agreed that lack of annotated images is a workflow problem, with 
no incentive for annotation to be completed. However, a drawback to incen-
tivizing time spent for annotation could be that clinicians and health systems 
may be reluctant to lose reimbursement in favor of automated annotation. 
Sohrab Shah, chief of computational oncology and Nicholls-Biondi Chair of 
the department of epidemiology and biostatistics at MSK, noted that “manual, 
precise … and thorough segmentation is completely unscalable to the volume 
that is needed to actually train the models.” He raised the possibility that semi-
automated, large-volume datasets, although potentially less accurate, could be 
an option for training algorithms. He wondered if the decisions of radiolo-
gists and pathologists could be captured as they are reviewing images in their 
routine workflow and whether that information could be used for training. 
Hricak pointed to self-supervised algorithm training (discussed further below).

EFFORTS TO DEVELOP, IMPLEMENT, AND 
USE INTEGRATED DIAGNOSTICS

Representatives from academic medical centers, industry, and large health 
care organizations shared their perspectives and lessons learned from efforts to 
develop, implement, and use integrated diagnostics in clinical practice. 

Perspectives from Academic Medical Centers

Overcoming Cultural Barriers to Change

Gabriel Krestin, emeritus professor of radiology at Erasmus Medical 
Center, University Medical Center (MC), Rotterdam, shared lessons learned 
from implementing integrated diagnostics at Erasmus MC. To provide con-
text, Krestin explained that the Netherlands has a highly regulated national 
health care system. Erasmus MC is the largest academic medical center in the 
Netherlands, with patient care organized into seven divisions, one of which is 
Diagnostics and Advice, incorporating the departments of pathology, labora-
tory medicine, medical imaging, and pharmacy. 

Krestin said that the vision for Diagnostics and Advice is to implement 
an integrated approach that encompassed three key steps: requests for diag-
nostic testing are sent to a front office; tests are performed in the appropriate 
department; and a comprehensive, integrated, final report is provided to the 
multidisciplinary care team. He said a survey found that hospital leadership 
and IT vendors supported this approach, but there was unexpected resistance 
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from physicians. Krestin explained that pathologists expressed concerns about 
digitization turning pathology into a commodity and radiologist expressed 
concerns about additional workload and responsibilities. Referring clinicians 
expressed concerns about ceding control of diagnostic decision making for 
their patients.

Krestin explained that Erasmus MC began by implementing integrated 
diagnostics for several complex diseases for which the institution expected 
particular benefit—for patients and the health care system. However, referring 
physicians responded that integrated diagnostics were unnecessary, because 
they could consult clinical practice guidelines for complex diseases. Erasmus 
sought to understand how well guidelines were being followed for these 
types of diseases. Krestin cited a retrospective review of 604 cases in which 
patients had incidental adrenal findings; of these, less than 15 percent followed 
 Erasmus guidelines that called for both imaging and biochemical workups 
(de Haan et al., 2019). Retrospective reviews of guideline adherence for other 
scenarios yielded similar results. Even with this evidence of limited guideline 
adherence, “we couldn’t convince the clinicians that integrated diagnostics 
would be the way to go forward,” said Krestin.

A second attempt at implementing integrated diagnostics was to launch 
a pilot study to demonstrate how integrated diagnostics could improve work-
flow by addressing discrepancies between radiology and pathology findings 
before presenting a patient’s case to the multidisciplinary tumor board. Krestin 
provided an example showing agreement in diagnosis between radiology and 
pathology in approximately 75 percent of 89 patients with suspected lung 
 cancer. An integrated approach led to reconciliation of an additional 20 percent 
of patients (unpublished data). Krestin pointed out that despite these results, 
hesitancy about integrated diagnostics among referring physicians persisted. 

Krestin underscored that the main barrier to implementing integrated 
diagnostics was cultural (i.e., resistance from physicians). He said the neces-
sary elements for successful implementation include: transitioning from a 
process of multiple sequential orders to order sets (combinations of tests that 
support the determination of a comprehensive final diagnosis); development 
of an order management system that generates the order sets and defines the 
materials needed for testing; and structured, integrated reports delivering 
the combined results. Krestin added that Erasmus MC is now looking to 
integrate clinical and omics data for use in predictive analytics. 

Patient-Centric, Functional Alignment of Diagnostic and Administrative 
Components 

“Integrated diagnostics is a functional alignment of the meaningful diag-
nostic and relevant administrative components for a specific patient,” said 
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Jochen Lennerz, medical director of the Center for Integrated Diagnostics 
(CID) and associate chief of pathology at Massachusetts General Hospital. “It 
is not just the integration of multiple modalities.”

Lennerz described the work of CID, which aims to bridge the gap 
between clinical research and clinical practice. CID integrates a research labo-
ratory, a clinical laboratory certified under the Clinical Laboratory Improve-
ment Amendments15 and approved by New York State, faculty in pathology, 
and faculty in pathology informatics. CID runs approximately 14,000 clinical 
tests per year, with a baseline battery of tests and an agile infrastructure that 
facilitates both bringing new tests on board (including adopting payer policies) 
and removing tests. 

Achieving diagnostic quality requires aligning the diagnostic components 
within the health care ecosystem, Lennerz explained. He described diagnostic 
quality as the sum of the quality of the diagnostic test itself, plus the quality 
of the diagnostic procedure (i.e., the execution of the test), and the quality of 
the diagnostic service (Lennerz et al., 2023). The integration process for a 
quality diagnostic test involves assessing the technology, determining financial 
sustainability (i.e., reimbursement by payers), and integrating it at the relevant 
laboratory. 

As an example of implementing integrated diagnostics in practice, 
Lennerz described the testing approach to determine eligibility for targeted 
therapy among patients with lung cancer. The process involves collection 
of a biopsy sample, diagnosis by frozen section and fine needle aspiration, 
next-generation sequencing of extracted DNA, reporting of the genotyping 
results to the specialty pharmacy for dispensing of medication, and initiation 
of targeted therapy, which he said would ideally occur within 48 hours. In the 
example of initiating osimertinib16 therapy for patients who have lung cancer 
with EGRF mutations,17 the median time from the biopsy order to initiating 
therapy in a rapid specialty pharmacy cohort was 5 days compared to around 
40 days in a nonrapid cohort (Dagogo-Jack et al., 2023). The potential of 
integrated diagnostics, he said, is “to work as seamlessly as possible to achieve 
your intended outcome.” 

15 See https://www.cms.gov/medicare/quality/clinical-laboratory-improvement- amendments 
(accessed January 30, 2024).

16 Osimertinib is a kinase inhibitor used to treat or inhibit the formation of non-small-cell 
lung cancer. See https://medlineplus.gov/druginfo/meds/a616005.html (accessed Septem-
ber 1, 2023). 

17 EGRF stands for epidermal grown factor receptor, and a mutation in this protein can 
cause uncontrolled growth, leading to cancer. See https://www.lung.org/lung-health-diseases/
lung-disease-lookup/lung-cancer/symptoms-diagnosis/biomarker-testing/egfr (accessed 
September 1, 2023). 

PREPUBLICATION COPY—Uncorrected Proofs



PROCEEDINGS OF A WORKSHOP 19

Despite frequent discussion about eliminating silos within the data infra-
structure, Lennerz said “in our experience, integrated diagnostics works best 
if you have the siloed infrastructure but align all the components, including 
the administrative components, in a way that [is] harmonized for a specific 
workflow.” 

Lennerz highlighted a variety of integrated diagnostics initiatives at 
 Massachusetts General Hospital, including a cross-discipline and multi modality 
AI initiative in which diagnostic CT scans are used to predict the molecular find-
ings after biopsy and then, in a continuous feedback loop, those findings inform 
a continuously learning radiology model (Lennerz et al., 2023). He noted that 
a primary aim is to expedite authorization procedures. 

Lennerz summarized that integrated diagnostics at CID value “indi-
viduals and interactions over processes and tools, sustainability over quick 
wins, specific journeys rather than general application, payer operations in 
addition to innovation-driven funding streams, [and] patient centricity rather 
than solely a scholarly exercise.”

Integrated Diagnostics as the Fourth Revolution in Pathology

Manuel Salto-Tellez, professor of integrative pathology at the Institute 
for Cancer Research, London (ICR) and director of the Integrated Pathology 
Unit at ICR and the Royal Marsden Hospital, posited that integrated diag-
nostics are the “fourth revolution in pathology,” following the introduction 
of immunohistochemistry in the 1980s, molecular diagnostics in the 2000s, 
and AI pathology solutions in the late 2010s (Salto-Tellez et al., 2019). He 
observed that, even with ideal application of genomic analysis, the number 
of patients with cancer who benefit from genome-targeted therapy remains 
low (Marquart, et al., 2018), and although the performance of AI for digital 
pathology has been shown to improve with algorithm training, it appears to 
have plateaued (Echle et al., 2020). In his view, the next leap in pathology 
will likely not be another disruptive technology but an approach to integrating 
information for diagnostics and discovery of complex biomarkers.

 Salto-Tellez defined integrated diagnostics as an “amalgamation of mul-
tiple analytical modalities, with evolved information technology, applied to 
a defined patient cohort, and resulting in a synergistic effect in the clinical 
value of the diagnostic tools” (Messiou et al., 2023). Current models of multi-
modal integration incorporate three components aligned with this definition: 
data modalities (the “what”), ML and integration analysis (the “how”), and 
opportunities for precision health (the “why”), and he cited five examples 
(Acosta et al., 2022; Cui et al., 2023; He et al., 2022; Lippi and Plebani, 
2020; Lipkova et al., 2022). He suggested that a hierarchy for integration 
exists, considering the relative importance and timing of the information. In 
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20  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

addition to providing opportunities for precision health, these models show 
that multimodal data integration can also support research and develop-
ment,  citing two examples of studies of integrated diagnostic approaches to 
predicting response to therapy (Sammut et al., 2022; Vanguri et al., 2022). 
Salto-Tellez shared that the Royal Marsden Hospital and ICR have jointly 
launched the Integrated Discovery and Diagnostics initiative, which merges 
genomic, histologic, radiologic, and clinical data, health care economics data, 
and research and development data from clinical trials. 

One key challenge for multimodal integration of data across clinical 
silos is the extent to which data need to be curated versus obtained in an 
automated fashion directly from the source, said Salto-Tellez. He noted that 
Royal  Marsden Hospital and ICR approached 20 vendors to help address 
this challenge. Of the nine that responded, six said they could offer a holistic 
approach; they had higher technical capability and cost. Three vendors said 
they could not integrate everything but could offer a piecemeal process that 
could help (they had lower technical capability and cost). 

Salto-Tellez also described work by a consortium of the Precision Medi-
cine Centre of Excellence at Queen’s University Belfast, Roche, and Sonrai to 
improve early detection of colorectal cancer. The consortium has developed 
an integrated diagnostics workflow connecting the pathology and genomics 
workflows to support the research and development process. The informatics 
partner, Sonrai, has developed the data analytics algorithms that link the two 
workflows together at multiple junctures, such as one designed to optimize the 
selection of tumor material for molecular testing based on histologic staining 
and digital pathology and to automatically macrodissect the tumor material. 
Salto-Tellez noted that validation studies of the integrated algorithms are 
underway. 

Improving Diagnostics Through Close Partnership of Radiology and Pathology 

Mitchell Schnall, Eugene P. Pendergrass professor of radiology and chair 
of the department of radiology at the University of Pennsylvania Perelman 
School of Medicine, observed that diagnostics has long been part of the art of 
medicine, often requiring the clinician to gather information from multiple 
sources to reach a diagnosis. However, the exponentially expanding volume of 
diagnostic data makes it impractical for one individual to integrate all of these 
inputs. Schnall said that data science can be leveraged to integrate a patient’s 
diagnostic information and present it to the clinician to review and act on, 
similar to how the cockpit of a plane presents all the necessary information to 
a pilot (Schnall et al., 2023). 

 Schnall discussed using partnerships to address silos, emphasizing that a 
closer partnership is needed between the two largest diagnostic disciplines—

PREPUBLICATION COPY—Uncorrected Proofs



PROCEEDINGS OF A WORKSHOP 21

radiology and pathology. He described this as a “natural partnership” because 
they have complementary expertise and approaches and face similar clinical 
and operational challenges. For example, pathology brings expertise in  biology, 
informatics, and quality systems to the partnership, Schnall explained, and 
radiology brings expertise in anatomy and physiology, data science and IT, 
and workflow. 

Schnall outlined the University of Pennsylvania’s approach to establishing 
a closer partnership between radiology and pathology, highlighting strategies 
in five tactical areas:

• Joint research includes building a joint data science program focusing 
on image analytics and overall diagnostic analytics to improve 
efficiency, defining the value of diagnostic outcomes, and developing 
novel combined modality diagnostics.

• Harmonization of systems includes using a single medical record 
system, the same picture archiving and communication system, and 
developing diagnostic decision support.

• Education includes cross-department house staff rotations, combined 
modality fellowship training, and a joint informatics/innovation 
fellowship.

• Joint clinical activities include codevelopment of diagnostic pathways, 
joint diagnostic consultation services, and promoting interaction 
through colocation of select pathology and radiology services. 

• Integrated activities include the management and communication of 
results; decision support; and IT, billing, and marketing activities. 

Schnall also said that the University of Pennsylvania recently launched the 
Center for AI and Data Science for Integrated DiagnosticsAI2D. Codirected 
by faculty in radiology and pathology, AI2D focuses on addressing the chal-
lenges of integrated diagnostics. “Diagnostics is critical to precision medicine,” 
Schnall concluded, and “closer integration of radiology and pathology will 
improve the diagnostic process.” 

Integrated Diagnostics for Earlier Detection of Cancer

Garry Gold, Stanford Medicine Professor of Radiology and Biomedical 
Imaging and chair of the Department of Radiology at Stanford University, 
discussed the wide-ranging applications of integrated diagnostic approaches 
to early detection of cancer, when treatment is more likely to be successful.

Gold first described several studies by the late Sam Gambhir, a founder 
of the Canary Center at Stanford for Cancer Early Detection and pioneer in 
the integration of radiation and pathology. In one example, Gambhir assessed 
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whether integrating FDG-PET imaging with assessment of circulating tumor 
cells (Nair et al., 2013) or circulating tumor microemboli (Carlsson et al., 
2014)18 in patients with non-small-cell lung cancer could improve diagnostic 
accuracy over using radiology or pathology markers alone. Ghambir also ini-
tiated the Baseline Study,19 a longitudinal study collecting baseline clinical, 
imaging, molecular, and other data from 10,000 participants to characterize 
what “normal” values are and changes that occur in association with disease. 

Gold highlighted a novel approach known as “theragnostics,” which com-
bines diagnostic testing with therapy, such as the integration of diagnostic 
radiology and targeted molecular radiotherapy. The Canary Center is also 
developing new in vitro diagnostic (IVD) tests for early cancer detection, 
including the Exosome Total Isolation Chip, which can detect extracellular 
vesicles in clinical fluid samples (Liu et al., 2014); a magnetic wire inserted 
into a vein to capture circulating tumor cells that have been immunolabeled 
with magnetic particles (Vermesh et al., 2018); and an approach that correlates 
detection of volatile organic compounds in breath with PET-CT (Vermesh et 
al., 2022).

Gold highlighted wearable and in-home monitoring technologies as 
another opportunity for integrated diagnostics. One example of a wearable 
technology is a microneedle patch on the arm that integrates sampling and 
molecular testing to continuously monitor for proteins in interstitial fluid. 
Gold also noted that integrated diagnostics are being developed in other fields, 
such as combining neuroimaging and histopathology data to assess traumatic 
brain injury.

Achieving the Vision of Integrated Diagnostics

Several panelists discussed potential actions that could help realize the 
vision of integrated diagnostics in precision cancer care. “It’s early days in inte-
grated diagnostics,” Salto-Tellez said, with a need for “significant and specific 
investment in this area.” Lennerz encouraged an increased focus on regulatory 
science and actively engaging with regulators on issues related to practical 
implementation (e.g., the data and performance metrics needed for radiolo-
gists to fully integrate AI) (Lennerz et al., 2022). Schnall stressed that broad 
collaboration among academia, industry, regulators, and payers is necessary 

18 Circulating tumor cells are cells that have separated from primary or metastatic tumors. 
Circulating tumor microemboli are multicellular aggregates that include circulating tumor 
cells, and both of these can seed metastatic cancer in disparate sites in the body (Tao et al., 
2022). 

19 See https://medicine.stanford.edu/annual-report-2018/the-project-baseline-study.html 
(accessed September 1, 2023). 
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to achieve effective integrated diagnostics. Gold said the next generation of 
scientists and clinicians need to be able to communicate across disciplines and 
implement an integrated approach to diagnostics. “We won’t be able to truly 
integrate until we have people who understand the entire landscape,” he said. 

Several participants discussed the challenges of integrating the vast vol-
umes of data generated by consumer wearables and in-home monitoring 
technologies. Shah raised the issue of access to these data by hospital systems 
or clinicians, noting that wearables are often commercially developed, and the 
developers often have their own interests in the data collected. Gold agreed 
and noted the regulatory, payer, and patient privacy concerns to be addressed. 

Perspectives from Industry

Opportunities to Leverage AI in Diagnosis

Dorin Comaniciu, senior vice president of Artificial Intelligence and 
Digital Innovation at Siemens Healthineers, discussed several opportunities 
to leverage AI for integration and use of the massive volumes of health data 
generated by medical technologies and devices. He said that computational 
power and bandwidth for information exchange are increasing exponentially, 
including low-cost supercomputing power available at the point of care. 

Comaniciu said that one approach to handling the ever-increasing volume 
of data is AI self-supervised learning.20 He cited a study of self-supervised 
learning using 100 million medical images, which found that it resulted in 
improved accuracy, more robust results, accelerated training, and improved 
scalability (Ghesu et al., 2022). Comaniciu noted that it would take 35 years 
for one person to look at each of the 100 million images for 10 seconds. 

 The results of self-supervised learning would need to feed into a harmo-
nized user interface, which Comaniciu referred to as a “diagnostic cockpit,” 
with access to clinical information, the results of AI analyses, advanced data 
visualization, actionable reporting, and research and innovation. Comaniciu 
pointed out that structuring data has been the general approach to managing 
complex clinical data so it can be integrated. However, AI has the capability to 
shift the model from one in which the clinicians sort through structured data 
to one in which clinicians ask questions (comparable to Internet searching). 
He said large language models will support connectivity and access, provide 
interpretation support, and aid in synthesizing information. In addition, 

20 Self-supervised learning is an ML technique that teaches a model to predict hidden 
parts of an input using other parts of the input that are visible to the model. It can be used 
to perform tasks, such as image comprehension and object detection (Rani et al., 2023). 
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this workspace could incorporate virtual assistants capable of responding to 
questions about the patient. To illustrate this, Comaniciu shared a video of 
a conversation with an AI radiologist assistant that responded to successive 
questions about the patient’s testing and findings.

Comaniciu presented several examples of AI-powered diagnostics for 
oncology, such as cancer risk prediction, brain tumor analysis and metastasis 
digitation and tracking, lung cancer screening via chest CT, assessment of 
pulmonary lesions via chest X-ray, breast cancer screening, prostate MRI, and 
analysis of cardiotoxicity. He also highlighted AI tumor fingerprinting, an 
approach under development to create a digital biopsy of molecular changes 
in tumors by integrating digital pathology, proteomic, metabolomics, and 
genomic profiling. Another fingerprinting approach is using an image-based 
deep neural network to optimize radiation therapy by stratifying patients as 
responders or nonresponders to guide individualized dosing (Lou et al., 2019; 
Randall et al., 2023). 

Looking to the future, Comaniciu anticipated patients would have a 
“health digital twin,” which he characterized as a “lifelong, personalized, 
physiological model that is updated with each scan exam.” Simulations with 
a digital twin could inform treatment decisions, for example, or guide indi-
vidualized preventive actions, he noted.

Building in Feedback Loops to Improve Quality of Care

Torbjörn Kronander, president and chief executive officer of Sectra AB, 
compared diagnostics to telecommunications in that both must detect signals 
in noise. Diagnostic testing detects signals of disease. 

Kronander outlined some of the key features of IT systems for health 
environments. All relevant data should be available in the same place at the 
same time because clinicians do not have time to go back and forth among 
systems to find patient information, he said. Deep integration with AI is 
needed, and “AI should be applied both to radiology and pathology at the 
same time,” he said. The challenge, however, is that these data often reside in 
different systems. Uniform user interfaces can increase patient throughput, 
he noted, because moving to a user interface with a different format requires 
time to “reconfigure your brain” and adds “mouse miles” (computer mouse 
movements needed to engage with interfaces). Kronander added that unified 
tumor boards would help ensure that patient treatment is not delayed while 
discordant conclusions from pathologists and radiologists are resolved. Early 
identification and resolution of discordance among specialties can help the 
tumor board to work more efficiently, he noted. 

Kronander explained that Sectra is working to integrate “radiology, 
pathology, and AI in one single IT system.” There is close integration with 
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information in the patient’s EHR, and Sectra is developing prototype struc-
tured reports that combine radiology, pathology, and concordance activities 
in one report sent to the EHR (he noted that the Sectra system currently only 
interfaces with the Epic EHR system). He added that Sectra is also collaborat-
ing with Penn Medicine to develop a single user interface that incorporates 
pathology, radiology, and genomics. 

Sectra’s approach to integrated diagnostics includes radiology, pathology, 
and omics data combined with current population health and probability data, 
Kronander said. He noted that probability data are often overlooked but are 
important for establishing a diagnosis. He explained that a key element of the 
Sectra integrated diagnostics model is feedback loops to support a learning 
system. Data from the structured diagnostic report in the EHR (where the final 
interpretation/outcome is entered) are also fed back to radiology, pathology, and 
omics functions and used to update population health and probability data. 

The vision for integrated diagnostics, Kronander said, is “faster and  better 
diagnosis, improved patient care, built in feedback loops [for] improving 
quality of health care, and at lower cost and less complexity.” He referred 
to Gambhir’s prediction that “Today’s radiologists and pathologists will be 
replaced by diagnosticians plus AI,” (Gambhir, 2018). Achieving this vision, 
Kronander said, will require “common basic training in decision theory for 
radiologists and pathologists.” 

Kronander said that changes in reimbursement are also needed to achieve 
the vision of integrated diagnostics. He suggested that payers should reimburse 
clinicians for making the diagnosis rather than conducting specific diagnostic 
procedures. He acknowledged that such changes take time and observed that 
the U.S. system of reimbursement can be a barrier to the timely advancement 
of health care practice. Elenitoba-Johnson added that one challenge is coming 
to an agreement regarding “who is going to do the work and who is going to 
pay for it.” He emphasized that incentives need to be aligned to promote the 
adoption of integrated diagnostics into clinical practice. 

Harnessing the Power of Data for Diagnosticians, Clinicians, and Patients 

Nick Trentadue, director of laboratory and diagnostics informatics at 
Epic, identified some settings in which patient health care data are generated 
(see Figure 2). Traditionally, test results would be reported to the patient’s cli-
nician, who would share them with the patient and discuss treatment options. 
Today, the results are also provided immediately to patients. Trentadue shared 
a screenshot of an actual report received by a patient awaiting cancer screening 
results. These reports, written by and for medical professionals, can be confus-
ing and frightening to patients, he cautioned. Trentadue highlighted the need 
for tools that can better convey test results to patients.
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Trentadue said integrated diagnostics need to be considered from three 
primary perspectives: diagnosticians, treating clinicians, and patients. For diag-
nosticians, a key element supporting the diagnostic process is the  bidirectional 
exchange of interoperable data across systems. Interoperability requires that 
health data vendors adhere to industry standards for exchanging health 
information across systems (e.g., the HL7 standards for structured clinical 
 genomics data discussed by Osterman). For treating clinicians, combining 
the results from the diagnosticians with AI and ML creates models that can 
support clinical decision making and the development of care plans that meet 
individual patient needs. For patients, Trentadue said that timely updates 
via the patient portal should leverage integrated data to provide results (e.g., 
laboratory, pathology, radiology), easily understood interpretations, and next 
steps for patient care. 

Trentadue emphasized that for integrated diagnostics to optimize the 
power of data, the information should be discrete and actionable and follow 
standards that enable interoperability and support bidirectional flow among 
the care team, regardless of data system: this ensures that “the right person, 
at the right time, has all the appropriate information for diagnosis as well 
as for treatment.” Trentadue also emphasized the importance of ontology21 
when developing ML models, because a lack of clear ontology could lead to 
unexpected outcomes from the models, and actionable decision support, in 
which diagnosticians, treating clinicians, and patients have the information 
they need, readily available, to support decision making. 

Integrating Patient Goals and Treatment Outcomes Data 

Aanand Naik, professor and the Nancy & Vincent Guinee Chair of 
 Geriatrics at the University of Texas Health Science Center, Houston, School 
of Public Health and Consortium on Aging, highlighted the need to incor-
porate patient goals and health outcomes (including the potential for adverse 
effects) into integrated diagnostics. Kronander added that continuous, inten-
sive monitoring of treatment outcomes is needed because of the increasing 
number of treatment options. If one therapy is not achieving an expected out-
come, then a change may be necessary. This type of monitoring will also drive 
the use of diagnostics, he said. Comaniciu noted that it is often not possible to 
determine the best treatment approach for a given patient based on available 
guidelines. He anticipated that computer simulations could eventually be able 
rank the top treatment choices for a patient to consider.

21 An ontology, in the context of computer science, describes the relevant concepts, rela-
tionships, and specifications that are important for modeling a particular domain (Gruber, 
2016).
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Transparency of AI Models

Osterman said clinicians are reluctant to base their decision making 
on recommendations from closed-box AI models. Trentadue responded that 
transparency is essential when presenting information gleaned from AI, ML, 
or algorithms. Kronander noted the ongoing research on explainable AI,22 
emphasizing that AI should not be fully independent; humans need to be in 
the loop to identify instances when AI does not work. 

Perspectives from Large Health Care Organizations 

Precision Oncology in VA Medical Centers

Gil Alterovitz, director of the National AI Institute (NAII) of the U.S. 
Department of Veterans Affairs (VA), said the vision of NAII is “to lead the 
way in trustworthy AI” with the goal of “ensuring the health and well-being 
of our veterans.” NAII is building an organization focusing on AI research, 
development, and training through a network of AI sites to “pilot, iterate, and 
scale” AI initiatives within the VA, Alterovitz said; it has four sites and several 
pilot programs. 

The VA is well situated to take the lead in advancing AI in health care, 
Alterovitz said. The VA is the largest U.S. integrated health care system, serving 
more than 9 million patients. The VA has a repository of more than 10 billion 
medical images and a database of more than 800,000 genomes linked to medical 
records. In addition, the VA has a broad reach, with more than 1,200 facilities 
across all U.S. states and territories. He added that most clinicians in the United 
States have undertaken part of their training at a VA facility.

Alterovtiz said the “VA is the largest provider of oncology services in the 
country, making oncology care a priority.” He shared several examples of how 
the VA is bringing advances in technology and precision care to veterans. 
As part of the federal Cancer Moonshot initiative, the VA has established a 
 public–private partnership with IBM to enable precision care for patients with 
stage 4 cancer who have exhausted available treatment options. Researchers 
use IBM Watson AI to analyze a patient’s tumor for mutations to identify 
potential options for targeted therapy. Alterovitz said that this approach has 
expanded patient access to precision oncology therapy; more than one-third 
of the tumor samples are from patients who live in rural areas, where access to 
such therapies may be limited. 

22 See https://en.wikipedia.org/wiki/Explainable_artificial_intelligence (accessed January 25, 
2024).
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Another example is the VA’s Lung Precision Oncology Program,23 a net-
work of 23 hub locations working to “increase access to screening and improve 
early detection” using data analytics to evaluate access and quality. Alterovitz 
noted that more than 5,000 veterans received molecular testing through this 
program as of May 2021.

For VA research programs, such as the Lung Precision Oncology Program, 
Alterovitz said participants undergo a consent process to share their data and a 
terms and conditions process by which veterans agree that their data can be used 
for operational purposes. Depending on who will be using the data and how, 
data use agreements and contracts may also ensure patient privacy and data 
security in accordance with patient preferences. He noted that it is better to 
consider potential data uses and secure patient consent at the beginning rather 
than having to reconsent patients later for additional uses.

 Alterovitz also discussed the use of AI-assisted screening to detect pre-
cancerous polyps during routine colonoscopy. Alterovitz noted that “every 
1 percent increase in the precancerous polyp detection rate reduces future risk 
of death by 5 percent.” Studies of this AI-assisted colorectal cancer screening 
tool have demonstrated a 14 percent increase in the rate precancerous polyp 
detection. 

Alterovitz noted that the VA has an app store with a range of apps to 
help veterans access their medical information, receive care (e.g., testing, 
medications), or find appropriate clinical trials based on information in their 
medical record.24 In closing, he said that the VA is looking for opportuni-
ties to leverage its data gathering and analysis capacity in collaborations that 
advance the development and use of AI in precision cancer care. 

Precision Oncology at University of California Health

Atul Butte, the Priscilla Chan and Mark Zuckerberg Distinguished Pro-
fessor and director of the Baker Computational Health Sciences Institute 
at the University of California, San Francisco, and chief data scientist for 
University of California Health (UCH), provided an overview of UCH. The 
University of California (UC) system has more than 227,000 employees and 
280,000 students per year across its 10 campuses. UCH incorporates UC’s 
6 medical schools and 14 other health professional schools (nursing, phar-
macy, veterinary, dental, and public health) and includes five National Cancer 
Institute (NCI)-designated comprehensive cancer centers and five institutes 
funded by the NIH National Center for Advancing Translational Sciences 
(NCATS) Clinical and Translational Science Award program. UCH employs 

23 See https://www.research.va.gov/programs/pop/lpop.cfm (accessed September 1, 2023). 
24 See https://mobile.va.gov/appstore (accessed May 26, 2023).
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approximately 5,000 faculty physicians and 12,000 nurses and trains half the 
medical students and residents in California. It receives $2 billion in funding 
from NIH and brings in more than $16.5 billion in clinical operating revenue. 

Butte said one original goal was to transform UCH into a single account-
able care organization, facilitated by the UC’s approach to data warehousing. 
The UCH-wide central data warehouse facilitates broad access to deidenti-
fied, structured clinical data from across all six academic health centers. A 
warehouse is still maintained at each of the six academic medical centers, 
which facilitates access to “deidentified, limited, and identified structured and 
unstructured clinical data” and additional information (e.g., images, genomes, 
notes). The central database has longitudinal, structured data going back to 
2012. This includes data from 437 million patient encounters, 1.17 billion 
procedures, 1.5 billion medication orders, 48 million device uses, and 5.2 bil-
lion laboratory tests and vital signs, from nearly 9.2 million people. Data are 
merged with California state data and the California death index, Butte noted.

More than 100,000 patients with cancer receive care at a UCH com-
prehensive cancer center each year, noted Butte. The same UC-wide data 
warehouse contains demographic, information, including information on a 
patient’s cancer diagnosis, insurance coverage and social risk, and more than 
32,000 cancer genomic reports. Butte said these data can be queried to address 
a wide range of questions, such as whether patients who have a particular type 
of cancer with a specific gene mutation are receiving appropriate and equitable 
cancer treatment. 

Butte explained that the UCH academic medical centers use the Obser-
vational Medical Outcomes Partnership Common Data Model. He noted that 
a systemwide committee meets every 2–4 weeks to harmonize data elements. 
Certain analyses require curation of unstructured clinical notes and data in the 
warehouses. Not having thousands of curators available, Butte described how 
UCH is looking at using an AI chatbot to curate deidentified clinical notes. 
He described one situation in which ChatGPT25 was asked to summarize all 
cancer biomarkers in a complicated deidentified clinical note. The AI system 
was able to find and summarize data for all of the biomarkers, including one 
that the UCH oncology curators had missed. 

UC researchers (including graduate students) who want access to UCH-
wide data first write and optimize their queries in their campus system and 
then use a cloud-based tool to run the queries in the central UCH-wide ware-
house. The goal is to facilitate “safe, respectful, regulated, responsible use of 
clinical data,” explained Butte. He said that data in the UCH-wide central 

25 ChatGPT stands for Chat Generative Pre-trained Transformer and was created by 
OpenAI. It is a large language model–based chatbot. See https://openai.com/blog/chatgpt 
(accessed September 1, 2023). 
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data warehouse are deidentified and can therefore be shared in compliance 
with the Privacy Rule26 promulgated under the Health Insurance Portability 
and Accountability Act (HIPAA), and no IRB approval is needed to conduct 
s tudies with these data. UCH has also determined that tumor mutation data are 
nonidentifiable and can be shared. He also noted that every patient is required 
to sign a terms and conditions of service document, which outlines how the 
university may, in compliance with HIPAA, use their data. A governance process 
in also place to review external requests for the use of UCH data.

Training AI requires vast amounts of data, but competition among health 
systems is a barrier to data sharing across the country, Butte noted. While 
acknowledging the challenges, Butte contended that the goal is achievable, 
offering the NCATS/NIH National COVID Cohort Collaborative27 as an 
example. Butte described how NCATS successfully motivated more than 100 
health institutions to contribute deidentified data for all of their patients with 
COVID-19 to a central, third-party repository to support research on the dis-
ease. Data are publicly accessible through dashboards. Butte emphasized that 
this collaborative has led to nearly 500 data projects and 53 publications thus 
far. Butte pointed out that NCI does not require similar data sharing among 
their funded comprehensive cancer centers, and he advocated for the creation 
of a common data warehouse that could enable the development of precision 
medicine tools for patients with cancer.

Butte said that interoperability of health data is achievable, and a business 
need might drive the implementation of data sharing, but a culture that supports 
data sharing is also needed. Converting unstructured to structured data remains 
a challenge, but there is potential role for AI.  Other challenges noted by Butte 
include ongoing resistance to cross-campus clinical trials despite incentives and 
central IRBs and a lack of precision cancer care options for patients. 

 IMPROVING EVIDENCE GENERATION 
FOR INTEGRATED DIAGNOSTICS

Many speakers discussed approaches to generating evidence to inform and 
support evaluating, implementing, and scaling integrated diagnostics. 

26 The Privacy Rule, promulgated under the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA), establishes national standards to protect individuals’ medical 
records and other individually identifiable health information (collectively defined as “pro-
tected health information”) and applies to health plans, health care clearinghouses, and those 
health care providers that who conduct certain health care transactions electronically (see 
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html).

27 The National COVID Cohort Collaborative is also known as N3C. See https://ncats.
nih.gov/n3c (accessed September 1, 2023). 
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A Cancer Risk Management Learning System for Evidence Generation

Mia Levy shared opportunities to leverage a learning health care system to 
evaluate integrated diagnostics. In such a system, she explained, local clinical 
guidance is developed based on national guidelines and scientific literature 
and implemented in the health care delivery system. Outcomes data gener-
ated as part of routine care are analyzed and used to inform updates to the 
local guidelines. Information also feeds back to research and publication in 
the scientific literature. This cycle results in iterative improvement to the care 
delivery system. 

Levy described Rush University’s experience implementing a learning 
health care system for breast cancer risk management to address the challenges 
of evidence generation for breast cancer screening. Levy noted that the patient 
population eligible for breast cancer screening is large and diverse. While there 
are conflicting clinical practice guidelines for breast cancer screening, all guide-
lines recommend that screening begin with mammography. Mammography is 
highly regulated and the use of structured mammography and other screening 
data documentation in the EHR has been increasing, Levy noted. There are 
also well-defined outcome measures for screening that can be extracted from 
the EHR. Although these could be used to evaluate new screening methods 
in prospective randomized trials, Levy pointed out the many challenges, from 
ensuring adequate patient accrual to the rapid evolution of screening technolo-
gies, and suggested a learning health care system could help generate evidence 
to evaluate integrated diagnostics.

In support of this model, Levy said the Rush system has structured data 
based on the Breast Imaging Reporting and Data System from more than 
500,000 screening and diagnostic breast imaging studies dating from 2008. 
These data are from a diverse patient population (less than 50 percent White) 
and span a wide range of ages (from under 30 to more than 90, with most 
data from individuals aged 40–70). The amount and types of structured data 
available continue to increase, including breast density data (available since 
2015) and cancer risk assessment information (from 2020 onward). “As our 
structured data has grown, so have our efforts to leverage this data to learn 
more and more from the experiences of every patient,” Levy said.

 Levy outlined the elements of Rush’s breast cancer risk management 
learning health care system: implementing new clinical guidelines for risk 
assessment, risk-based supplemental screening, and risk management; imple-
menting risk assessment tools, reporting, and patient navigation; and analyz-
ing guideline uptake, distribution of risk, and automated calculation of cancer 
detection rates from EHR data (see Figure 3). 

Levy noted that “breast screening is not a moment in time.” Integrated 
diagnostics need to account for the patient’s longitudinal screening experi-
ence (e.g., comparing new images to prior images). Furthermore, integrated 
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diagnostics need to extend beyond test interpretation to include informing the 
next steps in patient management, she emphasized.

Levy explained that the risk management system is supported by clini-
cal and diagnostic systems integrated into the EHR. She highlighted the 
use of screening test order sets that a clinician selects based on patient char-
acteristics, including breast cancer risk factors, such as breast density and 
genetics. The next steps in the diagnostic pathway are driven by the breast 
imaging center, she said. Other integrated clinical systems include cancer 
staging documentation, high-risk clinic documentation, and risk assessment 
calculators. Diag nostics systems include documentation systems for radiology, 
structured  genetics and pathology results, and patient outreach documenta-
tion and worklist management. Levy noted that most of the analytics needed 
for the learning health care system are not yet available from vendors and are 
being developed in house. These include analytics dashboards, quality measure 
analytics, and population analytics. 

Over the first 3 years of the program, Levy said that about 7 percent 
of the total population had a personal history of breast cancer, and about 
two-thirds of those were eligible for supplemental breast MRI according to 
practice guidelines. They now are assessing what percentage of eligible patients 
underwent the supplemental breast MRI, she said.

Levy explained that most patients (84 percent) were eligible to undergo a 
cancer risk assessment. About 10 percent of those who did so were identified 
as high risk and therefore eligible for a supplemental MRI. The majority of 
patients were at average risk or declined the risk assessment. Those with dense 
breasts were eligible for supplemental automated breast ultrasound in addition 
to standard mammography screening. Levy said uptake was approximately 
40 percent among patients for whom supplemental ultrasound was recom-
mended, noting that this is less than ideal. She added that payer coverage of 
the supplemental testing significantly influences uptake.

Levy emphasized the need for training datasets to be representative of the 
population in which the technology is intended to be used. She said that 
the risk classification system was found to underestimate the risk of breast 
cancer among Black women (compared to White and Hispanic women) as 
a result of how the algorithm was initially trained. Levy also cautioned that 
an algorithm developed in one context can perform quite differently when 
applied in a different population, which underscores the importance of ensur-
ing that training algorithms are drawn from diverse, representative datasets. 
Levy acknowledged the significant challenge of training AI algorithms to per-
form consistently when moving from local to regional or broader use, given 
the great population diversity across this country and the world. 

In closing, Levy said, “Integrated diagnostics evaluation can be enabled 
by learning health care systems implemented in health care delivery systems,” 
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adding that the Rush experience demonstrated “the feasibility of this approach 
for evidence dissemination and evidence generation for cancer screening.” 

Building the Evidence Generation Infrastructure 
to Scale Precision Diagnostics

One challenge of precision diagnostics is advancing a technology born of 
“great science” to a product that can actually be used at scale, said Bradford 
Hirsch, head of Product and Implementation at Verily/Alphabet. He described 
two examples of taking precision diagnostics to scale from outside the field 
of oncology. 

The first example was real-time screening for diabetic retinopathy using a 
deep learning system (Ruamviboonsuk et al., 2022). To bring it to scale, Verily 
first had to build a camera that could be used by clinicians globally to reliably 
capture images of the retina. Hirsch said that the camera was built by a multi-
disciplinary team that understood the relevant regulatory and reimbursement 
pathways. The camera can autonomously identify the retina in approximately 
98.5 percent of patients, capture an image, and transmit it to the cloud for 
AI image assessment. 

In a second example, he said that Verily designed a “study watch” for the 
collection of digital biomarker data from patients with Parkinson’s disease 
(Burq et al., 2022). Hirsch explained that despite many consumer wearables 
already available, it is generally not possible to access primary data from other 
devices—sensors and algorithms are frequently changed, for example—or 
customize the user experience. The watch developed by Verily takes remote 
measurements of motor function of individuals with Parkinson’s by alerting 
the wearer to complete a timed motor task and report the outcome through 
a survey on the device. 

Hirsch explained that after product approval, there is a “data void,” so 
phase 4 postmarketing studies may be needed to gather additional data. This 
data void presents a challenge for precision diagnostics developers looking to 
take products to scale in clinical care. Verily is working to develop an evidence 
generation infrastructure with better continuous data collection after approval, 
closing the data gap between data collected during clinical research and data 
collected as part of clinical care. 

Hirsch explained that Verily has restructured, bringing its research and 
care teams together under the same leadership team. Merging product devel-
opment and implementation datasets can facilitate the creation of “products 
that can actually be used in practice,” Hirsch said. 

Hirsch outlined five key elements of Verily’s approach to improve evi-
dence generation:
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• Data-driven identification, recruitment, and enrollment of target 
populations in Verily research and care projects (e.g., using social 
media, information from payers).

• Informed participant consent and permission processes, which help to 
automate research activities such as recruitment or data aggregation. 
Hirsch explained that participants consent to specific elements of the 
project, for a specific time period, and also provide permission to be 
contacted again. 

• Participant voice at the center. Participants are engaged “in a tactical, 
tangible way” through regular patient-reported outcome measures and 
other approaches to data collection, Hirsch said. Verily has a 75-person 
user experience team focused on motivating participants to take part in 
longitudinal data sharing.

• Augmentation with novel passive tools. Hirsch noted that replicating 
elements of surveys, such as the Eastern Cooperative Oncology 
Group or Karnofsky performance status scales,28 in consumer-facing 
technologies might be straightforward, but much effort is required 
for validation. For example, the watch’s virtual motor exam in 
the Parkinson’s disease study was compared to office-based motor 
assessments.

• Merging data generated with secondary datasets (e.g., clinical trials, 
EHRs, administrative claims data, or biology research) can enable 
“truly differentiated, actionable, regulatory-grade insights,” Hirsch said. 

Hirsch stressed that the infrastructure for precision devices requires pro-
active monitoring of the real-world performance of AI-based tools that is 
intentional and considered in advance of implementation. Data collection 
can occur as part of routine clinical care, with the potential to aggregate data 
across devices and share data. Moreover, real-world performance data also 
enables continuous learning. 

Opportunities to Leverage EHRs for Clinical Evidence Generation

Diagnostic testing affects all aspects of medical care, from screening and 
diagnosis to selection of treatment, follow-up, and surveillance, explained Neal 
Meropol, vice president of Research Oncology at Flatiron Health and chair of 

28 The Eastern Cooperative Oncology Group performance status scale helps define a 
patient’s overall ability to function after treatment. The Karnofsky Performance Status 
scale seeks to determine a patient’s impairment after treatment. See https://ecog-acrin.
org/resources/ecog-performance-status/ and http://www.npcrc.org/files/news/karnofsky_ 
performance_scale.pdf (accessed September 1, 2023).
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the NCI Director’s Clinical Trials and Translational Research Advisory Com-
mittee. In using diagnostics, clinicians need to understand test performance 
characteristics, including the test’s sensitivity, specificity, positive predictive 
value, and negative predictive value;29 the interpretability and actionability of 
the results; and the cost and convenience for the patient.

Meropol reviewed a few of the challenges to evidence generation for inte-
grated diagnostics. Generally, the level of investment in evidence generation 
for diagnostics is lower than for drugs. In addition, technological advances are 
driving the development of numerous, increasingly complex diagnostic tools. 
As a result, clinicians are often faced with numerous testing options, many 
with inadequate clinical guidance, leaving them uncertain about what test to 
order or how to interpret the results. 

He said that EHRs provide opportunities to gather evidence for inte-
grated diagnostics, although they were not designed for research. EHRs are 
“a rich source of patient-level data” from multiple data sources, said Meropol. 
Much of the information in EHRs is digitized and available in real time. EHRs 
are embedded in the point-of-care workflow, which affords opportunities to 
provide clinical decision support in association with EHR data. Furthermore, 
data from EHRs tend to be more representative of the general population 
than data from clinical trials, which are from enrolled cohorts that trend 
toward “younger, healthier, Whiter, richer patients than the typical patient 
with cancer nationwide or worldwide,” he said. Meropol added that the U.S. 
Food and Drug Administration (FDA) has issued guidance addressing key 
considerations for using real-world data for clinical research and regulatory 
decision making (e.g., data quality, analytic approaches, fitness for purpose).30

EHRs can be a platform for integrating evidence both from within and 
outside the EHR system, observed Meropol. This includes diagnostic testing 
reports, pathology and radiology images, genomic data, patient-reported data 
and data from wearables, insurance claims data, information on social determi-
nants of health, and mortality data. He explained that mortality data are often 
missing or inaccurate in EHRs, but it is now possible to link to population 
registries to provide more accurate mortality data.

Meropol said the key capabilities for the use of EHRs to generate evidence 
include a “privacy framework that respects patients”; linkages with outside data 
sources, which might require tokenization of data; curation of both structured 

29 Sensitivity is the ability to identify a true positive, and positive predictive value is prob-
ability that a patient does have the disease if tested positive. Specificity is the ability to identify 
a true negative, and the negative predictive value is the probability that a patient does not 
have the disease if tested negative (Parikh et al., 2008).

30 See https://www.fda.gov/science-research/science-and-research-special-topics/real-
world-evidence (accessed May 26, 2023).
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and unstructured data; “careful application of ML and natural language pro-
cessing to avoid misleading, inaccurate, or biased conclusions;” real-time data; 
and “context-specific characterization of data quality and fitness for purpose.” 

Meropol emphasized the need for use cases and pointed out that not all 
data in the EHR are fit for purpose to address evidence gaps for integrated 
diagnostics, and information routinely collected in the course of clinical 
practice may be insufficient to address research questions. Passively collected 
data in EHRs may be characterized by missingness, confounding biases, selec-
tion biases, exposure variability, and variability in documented outcomes. 
One approach is to augment routinely-collected data with prespecified 
 intentionally-collected data in the EHR to support prospective observational 
research studies (e.g., nonroutine tests, testing at specific times or intervals, 
patient-reported outcomes). 

Meropol described a case study in which Flatiron Health and collabora-
tors used centralized, intentional EHR-based data collection and processing 
to support a prospective, observational study among patients with non-small-
cell lung cancer.31 Circulating tumor DNA was obtained at prespecified time 
points to generate a dataset of integrated evidence that included genomic data, 
clinical data, and digital pathology, he said. One analysis, for example, com-
pared the sensitivity of tissue-based genomic profiling to blood-based genomic 
profiling (Schwartzberg et al., 2022).

Meropol described the operational model implemented by Flatiron Health 
for gathering data from the EHR for prospective evidence generation. Data 
for research in the EHR may consist of routinely collected structured data 
(e.g., vital signs, laboratory tests, drugs), intentionally-collected structured 
data (not part of routine care but part of the routine workflow for research), 
and unstructured data (e.g., pathology reports, clinician notes). These data are 
transmitted from the EHR to a data warehouse through automated processes, 
with unstructured data first being processed by both humans and trained AI 
models. Data may then be linked to external sources of data, and data ana-
lytics are applied. These elements can come together in a platform approach 
to real-world evidence generation that Meropol said provides sites with the 
technology to integrate routinely and intentionally collected data to answer 
research questions with significantly less site burden than traditional prospec-
tive clinical studies (Bourla and Meropol, 2021) (see Figure 4). 

Meropol said that many tools to support evidence generation for inte-
grated diagnostics exist and increasing adoption of these tools is occurring. 
ML tools are available to support automated patient ascertainment. EHR 
systems have the capability to embed data collection forms for research in 

31 See https://flatiron.com/resources/case-study-prospective-clinicogenomic and https://
clinicaltrials.gov/ct2/show/NCT04180176 (both accessed May 26, 2023). 
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routine clinical workflows. And methods exist for the processing of struc-
tured and unstructured data; automated data transfer from the EHR to data 
warehouses; and tokenization and linkage of data in the EHR with data from 
external sources. The next step is to implement these tools on a broader scale 
to support evidence generation for integrated diagnostics.

Lessons from AACR Project GENIE to Inform Evidence Generation

Charles Sawyers, founding chairperson of Project GENIE (Genomics 
Evidence Neoplasia Information Exchange), Howard Hughes Medical Insti-
tute investigator and Marie-Josée and Henry R. Kravis Chair in the Human 
Oncology and Pathogenesis Program at MSK, discussed lessons for evidence 
generation from his experience with AACR’s Project GENIE.32 The project 
was launched in 2015, following an agreement among eight cancer centers to 
aggregate their genomic and clinical data in a public registry. “GENIE was 
founded on the principle that this knowledge is precompetitive, much like 
basic science, and should be freely accessible for drug development and drug 
discovery research,” Sawyers said. A challenge at the start was the need to 
harmonize data from eight different custom sequencing panels, which Sawyers 
said was achieved through Sage BioNetworks. OncoTree was selected as the 
cancer classification platform. He emphasized the importance of stewardship 
of clinico-genomic registries “to ensure responsible use of the data and protec-
tion of patient privacy.”

Project GENIE has 18 contributing cancer centers and will soon be 
expanding to 22, Sawyers explained. Data are available through cBioPortal,33 
and the registry contains nearly 150,000 sequenced tumors (Pugh et al., 
2022), with more than 12,000 registered users of GENIE data and more than 
800 citations of Project GENIE in publications and abstracts.34

Longitudinal clinical data collection is a focus of Project GENIE, and 
Sawyers discussed how the GENIE Biopharma Collaborative is curating data-
sets containing both genomic and clinical data for a range of cancers. The 
PRISSMM35 framework is used for curation and incorporates clinical data 

32 See https://www.aacr.org/professionals/research/aacr-project-genie/ (accessed September 5, 
2023).

33 See https://www.cbioportal.org/ (accessed February 2, 2024).
34 See https://www.aacr.org/professionals/research/aacr-project-genie/news-updates/ 

(accessed October 26, 2023).
35 PRISSMM is a cancer data modeling system; it stands for pathology, radiology, imag-

ing, signs and symptoms, tumor markers; and medical oncologist assessments. See https://
www.mskcc.org/research-advantage/support/digital-health-projects/prissmm-cancer-data-
modeling-system (accessed September 5, 2023). 
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such as prior treatment history, current therapy, progression-free survival 
(PFS), and overall survival (Lavery et al., 2022). This work is being funded by 
the 10 biopharmaceutical partners, and genomic and clinical data for 16,000 
patients have been curated so far. Sawyers showed data on checkpoint inhibi-
tor treatment for patients with lung cancer, which demonstrated that deter-
mining PFS using PRISSMM is comparable to doing so with the RECIST 
criteria, which assess disease status based on imaging data.

Sawyers shared several examples of how Project GENIE data are being 
used, such as to generate external control cohorts for rare disease research 
(Scharpf et al., 2022; Smyth et al., 2020). In one case, GENIE data were 
combined with other datasets to create a control cohort that was submitted 
along with the data from single arm studies of sotarasib36 to support FDA 
regulatory review and approval of the treatment for a rare type of lung cancer 
(Scharpf et al., 2022). 

Project GENIE data are also being used to explore race and ethnicity 
differences across cancer genotypes, Sawyers said. One example he mentioned 
was a study of the frequencies of BRCA237 mutations among Black versus 
White men with prostate cancer. In another example, Project GENIE data are 
being used to better understand population-specific miscalling of somatic38 
variants, which can inflate somatic mutation estimates among those with non-
European ancestry. Studies are also underway to determine genetic ancestry 
using sequence panels in the registry, compare that with self-reported race, and 
conduct admixture analysis. Robert Winn, director of the Virginia Common-
wealth University Massey Comprehensive Cancer Center, asked about the 
study of genetic ancestry. For example, triple negative breast cancer is known 
to disproportionately affect Black women, and Winn referenced a genetic 
ancestry study that found differences based on Eastern African versus Western 
African ancestry. Sawyers responded that the intent is to delve into these types 
of differences with the sequencing panels available. He said that in the absence 
of whole-genome sequencing of germline DNA, sequencing panels of around 
500 genes can provide a remarkable amount of accurate information. Levy 

36 Sotarasib is a KRAS inhibitor approved by FDA as a lung cancer treatment in 2021. 
The KRAS gene regulates proliferation signals, and mutations can cause unregulated growth, 
leading to cancer. See https://www.cancer.gov/news-events/cancer-currents-blog/2021/fda-
sotorasib-lung-cancer-kras (accessed September 5, 2023). 

37 BRCA2, or BReast CAncer gene 2, mutations are associated with increased cancer 
risk. See https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet 
(accessed September 5, 2023). 

38 Somatic refers to cells that are not part of the germ line and therefore not passed to 
future generations. See https://www.genome.gov/genetics-glossary/Somatic-Cells (accessed 
September 5, 2023). 
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added that Foundation Medicine has also developed an algorithm based on 
geographic ancestries. Lennerz noted the lack of consensus on genetic mark-
ers based on geographic ancestry data that could be used for validation. Levy 
noted that even though there are data gaps, genetic geographic ancestry can 
be useful for increasing diversity among clinical trial populations. Sawyers 
acknowledged the challenges and added that the human genetics community 
has achieved “a broader representation of different parts of the world in terms 
of genome databases” than the cancer community. 

A challenge going forward, Sawyers said, is ensuring that data in clinico-
genomic registries are generalizable. Project GENIE currently includes four 
institutions in Europe, and one in Asia will be joining soon. It is also work-
ing to increase representation of people of non-European backgrounds in the 
registry by adding new contributing sites and collaborating with organizations 
that have genomic data from diverse populations. Sawyers noted that there are 
barriers to inclusion of persons of non-European ancestry in clinic-genomic 
registries that need to be overcome, such as meeting the infrastructure require-
ments for centers to contribute to registries (e.g., ability to deliver the type 
and quantity of data needed, full informed consent processes, and appropriate 
data stewardship) and building the trust needed to increase participation of 
diverse communities in research. Levy added that there are specific challenges 
for including data from non-U.S. institutions, including different approaches 
to regulation and ensuring patient privacy. The diversity of the data in Project 
GENIE is based on the diversity of the patient populations of the contributing 
institutions, and institutions that serve more diverse populations are also those 
that often do not yet have the infrastructure needed to participate. Sawyers 
said that Project GENIE generally does not have the resources to support this 
infrastructure but can sometimes assist with start-up costs. He also noted that 
some centers that do have the infrastructure but prefer not to participate. 

Mark Stewart, vice president of science policy at Friends of Cancer 
Research, raised the issue of variability in the performance of different diag-
nostic assays with the same intended use and how that might affect harmoni-
zation and interpretability of data from different institutions. Levy responded 
that Project GENIE datasets include data from different assays, and the ability 
to ask a particular question will be limited by whether a gene was included 
in particular assays.   Another issue, discussed by Trentadue, is the need for 
a clear ontology for diagnostic procedures. Levy said, for example, that test-
ing menus from different institutions might call the same diagnostic test “a 
right-sided mammogram, a right-side diagnostic mammogram, right-sided 
mammo, or R mammo.”
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The Role of Equitable Access in the Diversity of Registry Data

Many workshop speakers discussed the role of patient access in ensuring 
the diversity of the populations in clinic-genomic registries. Meropol said a key 
impediment to representation of diverse patient populations in clinical trials is 
whether individuals actually have access to a clinical trial, including awareness 
that it exists and the ability to participate. He advocated for increasing clini-
cal research sites in community settings of cancer care. This would improve 
patient access to clinical trials, and the data from these trials will better reflect 
the diversity of the people receiving cancer care in the community. 

 Hirsch added that another element of improving access is having a user 
experience team that understands nuanced differences across geographies, 
among those with different socioeconomic status, and other community fac-
tors to improve engagement with diverse participants. 

Winn highlighted the need to engage not only institutions that have high 
tech but also those that have “high touch.” Specifically, he suggested leverag-
ing existing national infrastructures such as the NCI Community Oncology 
Research Program (NCORP)39 and Federally Qualified Health Centers.40 
Hirsch pointed out that many oncology clinical trials are commercially spon-
sored and often conducted by large cancer networks that have a single EHR 
system and single research infrastructure. He suggested that institutions par-
ticipating in NCORP might be less attractive from a study sponsor’s perspec-
tive and encouraged discussion of incentives to facilitate participation. 

DESIGN AND USE OF INTEGRATED DIAGNOSTICS

To realize the potential of integrated diagnostics for precision oncology 
care, many speakers noted that institutions will need to consider implemen-
tation of appropriate tools and technologies to ensure clinician adoption. A 
range of design and use challenges were discussed, and many speakers high-
lighted potential solutions to promote acceptance and uptake of integrated 
diagnostics.

Ethical AI by Design

As the data science continuum moves from traditional statistical analyses 
toward ML, models become increasingly more accurate, but interpretability 
decreases, said My Thai, associate director of the Nelms Institute for the 
Connected World and the Research Foundation Professor of Computer and 

39 See https://ncorp.cancer.gov/ (accessed September 5, 2023). 
40 See https://www.fqhc.org/what-is-an-fqhc/ (accessed January 27, 2024).
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Informational Science and Engineering at the University of Florida. AI models 
in diagnostics are increasingly computationally complex, with an emphasis on 
prediction speed and quality but with less transparency. These models can lead 
to unintended consequences, including shortcut learning (unintended learning 
from the training materials), which may contribute to unexpected failure of 
algorithms in broader clinical practice. 

Thai said another concern is the potential for bias. Training datasets are 
collected and annotated by humans, making them subject to human biases. 
Encoded biases in the dataset are amplified during training, leading to biased 
outputs. “In some cases, the output data becomes the training data for the next 
model,” she said, leading to an ongoing cycle of bias amplification.

Thai noted the patient privacy and data security concerns associated 
with ML and described several types of adversarial attacks that can occur in 
AI design. The training phase can have “poisoning” of the training data with 
data intended to alter model performance. In the inference phase, when the 
predictive model is deployed, adversarial attacks can include “membership 
inference,” an attempt to reverse engineer the model to predict what data 
were included in the training set; “model extraction,” in which the outcome 
is used to steal the functionality of the model; and “adversarial examples,” 
which are noisy data added to the input with the intent to cause the model 
to mis classify outcomes. 

To address these concerns, Thai listed six key elements to design ethical 
AI models: they should be transparent and understandable, inclusive, respon-
sible, impartial and unbiased, trustworthy and reliable, and able to ensure data 
security and user privacy. Thai also emphasized the need to ensure that training 
datasets are appropriately balanced with respect to population diversity and 
assess whether the model, as designed, applies equally to everyone—a key 
aspect of the “inclusion” element of ethical AI.

Thai also said that designing ethical AI is not just the domain of computer 
science but requires multidisciplinary collaboration. This approach focuses on 
data security and patient privacy, explainable AI, and fairness in the development 
of an AI model with high predictive accuracy (Phan et al., 2019, 2020). She 
noted that there is little value to developing a secure, fair, explainable model that 
is inaccurate and explained that these elements are overlapping. For example, 
data security and patient privacy are important to explainable AI (e.g., blocking 
new avenues of adversarial attacks) and fairness (e.g., minimizing risk of expo-
sure of sensitive information, such as age, sex, and race). It is also important to 
be alert to the creation of new problems and address them in the development 
process. For example, adversaries can query the model to receive an explanation 
of how the AI derived the prediction and then exploit that information to devise 
an attack. The challenge, Thai said, is how to provide useful explanations to users 
without enabling adversarial attacks (Nguyen et al., 2022).
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A Diagnostic Management Team Approach 
to Reducing Diagnostic Errors

The volume of knowledge about disease has increased vastly over the past 
70 years, and it is simply not possible for any clinician to know everything 
about a specific area of disease, said Michael Laposata, professor and chair 
of the Department of Pathology at the University of Texas Medical Branch 
(UTMB). Diagnostics such as imaging studies and biopsies are routinely inter-
preted by highly trained, specialized diagnostic physicians—radiologists and 
anatomic pathologists, respectively. However, for laboratory testing, Laposata 
said that a patient’s clinician has to “select all the correct tests and interpret the 
results with little or no assistance.” This can lead to diagnostic errors, which 
are a significant contributor to patient harms (NASEM, 2015).

Laposata discussed the challenges clinicians face when interpreting 
 coagulation test results as a case example of the need to optimize diagnostic 
medicine. Laposata has been advancing the concept of the diagnostic man-
agement team (DMT), which includes “experts who can recommend when 
to use which diagnostic tests and then interpret diagnostic testing results in 
highly specific disease categories,” he explained. The goals of a DMT are to 
“shorten the time to diagnosis, increase the accuracy of diagnosis, and opti-
mize the utilization of laboratory tests.” A barrier to this approach, however, is 
that payers often do not cover the time spent by expert physicians consulting 
on diagnostic test ordering and interpretation. To address this, Laposata and 
 others worked to develop and implement billing codes for the time labora-
tory medicine experts spend advising on test selection and interpreting results. 
Through the DMT approach, physicians with expertise in clinical pathology, 
genetics, radiology, anatomic pathology, and history and physical exam are 
able to integrate all relevant diagnostic and clinical data to provide the order-
ing clinician with a diagnostic testing strategy and provide an interpretation 
of the test results. 

Laposata said the DMT approach has been implemented at UTMB 
for testing associated with coagulation, toxicology, autoimmunity, complex 
transfusions, pharmacogenomics, anemia, liver disease, COVID-19 infection, 
and others. Implementing DMT support for coagulation testing at UTMB in 
2014, for example, has resulted in a steady decline in hospital length of stay for 
patients with coagulation disorders and was correlated with reaching a faster 
diagnostic conclusion that led to a path for care, said Laposata. In another 
example, he said DMT interpretation of testing for COVID-19 at UTMB 
was associated with decreased length of stay compared to other U.S. aca-
demic medical centers and a lower rate of early deaths (unpublished results). 
Laposata explained that providing an actionable interpretation of COVID-19 
test results to patients through the EHR patient portal may have contributed 
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to those improved outcomes. He added that the work of the DMTs has dem-
onstrated significant value for the hospital system. 

Having implemented a DMT approach at UTMB and other institutions, 
Laposata is working on efforts to create a national DMT, in which a patient’s 
clinician would reach out to a local diagnostic physician with questions, who 
would provide answers based on their knowledge and consult with national-
level DMTs for further assistance as needed. The local physician would pro-
vide the information from the national DMT to the patient’s clinician, who 
can then act on the experts’ recommendations. If done well, Laposata said, 
a national DMT model could facilitate rapid and accurate diagnoses that 
improve patient outcomes.

Multimodal Data Integration for Research and Clinical Practice

Sohrab Shah of MSK explained that computational research can facilitate 
insights from real-world data, multimodal data integration, cohort derivation 
and comparison, and patient stratification and predictive models (Boehm et 
al., 2022a, 2022b). MSK has long invested in developing platforms for cancer 
data science, Shah said, including the following:

 
• cBioPortal for cancer genomics datasets41 
• MSK MIND (Multimodal Integration of Data)42 
• OncoKB (a precision oncology knowledge base)43

• Warren Alpert Center for Digital and Computational Pathology44

Shah said that the understanding of cancer biology is informed by experi-
mental data on cancer progression and drug resistance, the tumor micro-
environment, cellular phenotypes, interactions among tumor cells and immune 
cells, and multiomics data. He said that applying computational oncology 
approaches to these data can facilitate the development of new cancer treat-
ments and integrated diagnostics.

As proof of principle for clinical application, Shah described an example 
of multimodal real-world data integration to predict response to immuno-
therapy in patients with non-small-cell lung cancer. The lung tumor experts 
at MSK were facing challenges predicting who would respond to an immune 

41 See https://docs.cbioportal.org/about-us/ (accessed September 5, 2023). 
42 See https://www.mskcc.org/research-programs/msk-mind-multi-modal-integration-data 

(accessed September 5, 2023). 
43 See https://www.oncokb.org/ (accessed January 25, 2024).
44 See https://www.mskcc.org/departments/pathology-laboratory-medicine/warren-alpert-

center-digital-and-computational-pathology (accessed September, 5, 2023). 
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checkpoint blockade therapy. Shah and colleagues developed a computational 
workflow and ML approach to extract and integrate genomic, histology, 
and radiology data to provide a prediction of a patient’s response to therapy 
( Vanguri et al., 2022). The development process was labor intensive, said 
Shah; a thoracic pathologist reviewed and labeled all tumor regions in digitized 
immunohistochemistry images. “We then started to compute the topological 
features of the staining properties within each of the tumor regions that she 
labeled,” he explained. This took approximately 1.5 years, with a comparable 
process for the radiology images. Shah said that the integrated multimodal 
data approach provided superior predictive performance compared to several 
predictive approaches that involved only one modality (Boehm et al., 2022a; 
Vanguri et al., 2022; Vázquez-García et al., 2022).

Shah also described a study integrating multiomic data to elucidate the 
natural history of disease for ovarian cancers, particularly the relationship 
between genomic DNA damage and the immune response (Vázquez-García 
et al., 2022). This was also a labor-intensive, multidisciplinary process involv-
ing surgical collection of tumor tissue, whole genome sequencing, single-cell 
RNA sequencing, digital pathology, and phenotypic profiling of immune cells. 

“Multimodal data integration is a very powerful approach for both real-
world and experimental data interpretation,” Shah summarized, and he shared 
several lessons. It requires both clinical expertise and computational rigor, and 
he emphasized the need for multidisciplinary collaboration. He suggested that 
large-scale retrospective multimodal studies are needed to inform integrated 
diagnostics but also noted that obtaining data for these can be challenging. He 
explained that multimodal data integration at scale requires data engineering, 
because diverse types of data need to be drawn from disparate sources into a 
centralized repository that can be queried and used for ML models. Reproduc-
ibility in ML is essential, but Shah noted that can be difficult and different 
institutions need to validate the models. Finally, Shah noted that the field faces 
a talent “bottleneck,” and more data scientists need to be recruited to the field 
of cancer research and care. 

Implementing Integrated Diagnostics into Precision Oncology Care

David Dorr, chief research information officer and vice chair of Medical 
Informatics and Clinical Epidemiology at Oregon Health & Science Univer-
sity (OHSU) School of Medicine, defined health informatics as the science 
of the use of data, information, and knowledge to improve health.45 Dorr 
discussed ways in which the multidisciplinary field of health informatics 

45 See https://amia.org/about-amia/why-informatics/informatics-research-and-practice 
(accessed January 25, 2024).
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seeks to understand how users interact with data and to mitigate cognitive 
and data biases in the use of these data. From a cognitive perspective, several 
key elements determine whether and how people act on computer-aided 
decision support recommendations for patient care, and Dorr referenced the 
affect-integration-motivation and attention-context-translation framework 
(Nahum-Shani et al., 2022).46 Key issues that affect clinician uptake of find-
ings from digital interventions such as integrated diagnostics include trust, 
understanding, timing, options, prioritization, adjudication and annotation, 
and actionability. Given the many things that compete for a clinician’s time 
and attention, Dorr emphasized that a synthesis of findings from an integrated 
diagnostics tool needs to make clear what the most important information 
is, why it is important for their patient at that time, and what actions can be 
taken.

Dorr described a study comparing algorithmic risk scoring to clinical 
intuition in predicting which patients were most likely to be hospitalized 
within the coming year (Dorr et al., 2021). The study found that algorithms 
were more accurate than clinical intuition for risk prediction and that clinician 
adjudication of algorithmic risk scores improved performance further, which 
he said was associated with confidence and trust in the risk scoring process. 

Dorr pointed out that most algorithms rely on EHRs and other real-
world data sources, which may contain errors or conflicting information. For 
example, diagnoses appear in multiple EHR locations and can be inaccurate or 
missing, impacting predictions (Martin et al., 2017). Dorr added that missing 
data are not necessarily random and can be associated with inequities. 

Data may also contain biases that reflect societal biases, Dorr continued, 
and algorithms can perpetuate biases depending on how they are designed. 
Dorr cited an example in which an algorithm predicted that Black and White 
patients have the same level of risk for future health care use (Obermeyer et 
al., 2019). However, Black patients experienced more health problems that 
would likely necessitate higher future health care utilization. In this case, the 
underlying bias was inequitable access to health care: the algorithm predicted 
future risk based on spending data, which was more reflective of a patient’s 
access to care and not on their health status.

Integrating advanced algorithms into the clinical workflow also presents 
challenges. Dorr discussed the role of implementation science in promoting 
the uptake of integrated diagnostics and preventing unintended consequences. 
He mentioned the Consolidated Framework for Implementation Research as 
an example of one effective approach (Damschroder et al., 2022). 

46 The affect-integration-motivation and attention-context-translation framework is 
intended to “provide recommendations for designing strategies to promote engagement in 
digital interventions and highlight directions for future research” (Nahum-Shani et al., 2022).
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At OHSU, the Care Management Plus team is focused on “improv[ing] 
systems and outcomes for vulnerable populations through research, technol-
ogy, and collaboration,” Dorr explained. Researchers are working to identify 
vulnerable populations through risk stratification and tailor care to meet their 
needs. OHSU is “eager to implement advanced algorithms,” he said, “but also 
cautious” given the pros, cons, and challenges for deploying deep learning 
methods in clinical care (Egger et al., 2022; NASEM, 2022). In closing, Dorr 
shared the code of conduct for implementation of AI at OHSU: 

• Demonstrated clinical utility;
• A clear and evidence-based risk–benefit calculation;
• Consideration of the ethics of the model, especially when vulnerable 

patient populations are involved;
• Local validation and evaluation;
• An implementation plan that includes monitoring for benefits and 

harms;
• A training and support plan to help all persons at OHSU, including 

patients, understand and use the tools effectively and safely; and
• Appropriate integration with the EHR to support clinician needs.

Taking a Holistic Approach to Health Care

“From my first day as a nurse, I knew that the EHR system had to 
change,” said C. J. Robison, now a health innovation scientist with the Oracle 
Health Global Business Unit. Robison posited that the EHR should be con-
ceptualized less as a digitized patient record and more as a system of tools that 
“work together seamlessly to optimize … care delivery for the patient.” For 
patients with cancer and their caregivers, a holistic approach can make it easier 
for them to navigate through a complicated care system. Robison said this 
means not simply returning results to the patient but helping them understand 
what to do with that information. 

For clinicians, a holistic approach makes it “easy to do the right thing,” 
Robison said. All health care staff are increasingly pressed for time, and systems 
need to make the “right” options the easiest, she said. From an operations 
perspective, Robison said that a holistic approach provides opportunities to 
improve patient and staff experiences (e.g., optimizing staffing schedules based 
on infusion time). 

Robison highlighted three areas to better align EHR functionality with 
clinician needs:

• Data visualization platforms to help the clinician quickly understand 
their patient’s situation. Clinicians are spending their limited time 
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clicking through EHR pages to hunt for images or laboratory results, 
and they are eager for an easier way to get the most important 
information about their patient, Robison said, including correlation 
with data elements from longitudinal records.

• ML for testing and workflow to help clinicians understand what to 
do next. In a survey of oncologists, 79 percent discussed genetic testing 
with their patients, Robison said, but only 12 percent reported that at 
least one of their patients had undergone genetic testing (Culver et al., 
2011). ML can nudge clinicians toward potentially relevant testing 
or treatment options based on patient results, new research about a 
treatment, or other information. 

• A multilevel modeling system to help avoid silos and create “a 
holistic system in which all of our models work together, generat[ing] 
a seamless ability for the clinician to make the right decision for their 
patient at any moment.” 

Robison said that a holistic approach to research drives progress by incor-
porating data from a range of sources (e.g., clinical, patient-reported out-
comes, remote patient monitoring) but also noted the challenges of building 
structures for big data that can help facilitate patient care today and retrieval 
and use in the future, as tools and technologies advance. When working 
to create integrated systems, Robison concluded, it is important to “deeply 
understand the needs of the clinician” and structure systems that eliminate 
silos and “work with the cognitive flows that happen at that point of care.” 

Trust and Acceptance of AI in Clinical Settings

Despite the growing evidence supporting the use of AI in precision oncol-
ogy to streamline the workflow, accelerate diagnosis, and improve the quality 
of patient care, many clinicians still hesitate to use it in practice, said Avishek 
Choudhury, assistant professor of Industrial and Management Systems Engi-
neering at West Virginia University’s Benjamin M. Statler College of Engineer-
ing and Mineral Resources. 

Choudhury noted that a key factor in adoption is trust in the technology. 
A clinician who trusts AI is willing to make or change their decision based 
on its recommendation, Choudhury said. He added that it is important to 
distinguish between trust and confirmation bias (when the user only trusts AI 
when it confirms their beliefs) because the latter case sacrifices the potential 
for AI to fill gaps in human performance. He said protocols or guidelines are 
needed for situations with discordance between the algorithm and clinician 
conclusion. These would guide the clinician in reconsidering or changing their 
diagnosis or updating the algorithm accordingly.
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Choudhury also described a parallel integration approach under inves-
tigation in which the clinician is not aware that an algorithm is running 
simultaneously. The final decisions are compared, and the AI learns from the 
clinician decision and patient outcomes. Upon completion, the clinician is 
notified and thanked for helping to train the algorithm. He suggested that 
this approach helps to change perceptions of AI and gathers use case data for 
full implementation in the future.

The willingness to trust involves both initial trust, which is based on 
assumptions and perceptions, and trust evolution, which stems from expe-
rience and consequences, Choudhury explained (Choudhury and Elkefi, 
2022). Accordingly, a clinician’s willingness to try AI when presented with 
the option depends on their initial trust. A challenge is that AI is often 
perceived negatively (e.g., as a threat, because it may be “better” or more 
efficient than the clinician or disregards their expertise), and Choudhury 
emphasized the importance of improving health professionals’ understand-
ing and  perception of AI. Given initial uptake in routine clinical care, 
feedback on patient outcomes and AI performance (e.g., ethics, privacy, 
 generalizability) affect the evolution of trust. Approaches to optimizing trust 
in AI include increasing transparency, ensuring robustness, and encour-
aging fairness (Asan et al., 2020).  Choudhury emphasized that the goal 
is optimizing and not maximizing trust and  cautioned that maximized 
trust is blind trust, which can lead to biased outputs that adversely impact 
health outcomes. 

Choudhury described an example of a hospital that used an AI-based 
application to predict how many units of blood a patient is likely to use in 
order to reduce unnecessary blood transfusion. Although it had been shown 
that the algorithm performed better than the clinicians at this task, clinicians 
only looked at the AI recommendation 46 percent of the time (Choudhury et 
al., 2022). He added that junior clinicians faced with an AI recommendation 
that differs from their own conclusion tend to confer with and follow the 
advice of the attending physician instead. 

Accountability is another element that affects clinician trust in the system 
and AI uptake. If a clinician relies on an AI recommendation and the patient 
experiences harm, it can be challenging to establish the source of the harm 
and raises questions about where accountability lies (Habli et al., 2020). In a 
recent survey, clinicians expressed concerns about accountability, for example, 
that using AI could affect their career or lead to losing their medical license 
(Choudhury and Asan, 2022). 

Trust in the system is also affected by clinician perceptions of how AI 
affects their workload, Choudhury said. Some clinicians surveyed felt that 
AI added to their workload (e.g., additional trainings, another module in the 
EHR to navigate, time needed to explain to patients the role of AI in treat-
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ment decisions). He offered three strategies to enhance trust in the technology 
and improve acceptance and adoption (Choudhury, 2022):

• Establish shared or distributed accountability based on risk and 
intended use.

• Take human factors into consideration (e.g., trust, perceptions, 
workload). 

• Implement need-based integration to help end users to understand 
how AI is a tool that can help them improve effectiveness and efficiency. 

Risk Communication and Decision Support

Patient perception and understanding of health risks vary, said Mary 
Politi, professor in the Department of Surgery at Washington University 
School of Medicine. Clinician abilities to explain clinical uncertainty to their 
patients and manage patient care in the context of uncertainty can also vary. 
She referenced an interview-based study that identified four categories of 
strategies clinicians use for uncertainty management, focused on ignorance, 
uncertainty, response, and relationships (Han et al., 2021). The first two 
approaches seek to reduce the uncertainty, and the last two seek to cope with 
its effects. Politi centered her remarks on the relationship-focused tactic of 
sharing information about clinical uncertainty with patients. She quoted a 
clinician in the study who discussed the science versus the art of medicine and 
the need to embrace the uncertainty and share information with the patient 
to help them make personalized choices about their care. 

Politi described the three-talk model of shared decision making: a “team 
talk” to establish the clinician–patient partnership in treatment decisions; an 
“option talk” using risk communication strategies to inform patients about 
their care options; and a “decision talk” to incorporate patient needs and pref-
erences in the care decision (Elwyn et al., 2017). The option talk includes risk 
prediction models incorporating the results of diagnostic testing. Politi sum-
marized some central tactics of communicating risks, benefits, and uncertainty 
to patients during the option talk:

• Using numbers. Avoid imprecise terms, such as “low,” “moderate,” 
or “high,” when discussing risk. “Without numbers, people will 
underestimate their risk and overestimate their benefit,” Politi said.

• Using frequencies and keeping the denominator consistent. Make 
it easy for patients to make comparisons (e.g., do not present the 
likelihood of one outcome as 1 in 10 and another as 1 in 12). 

• Using visuals. Pictures can help to convey risk information more clearly. 
Many risk communication studies have suggested the use of icon arrays.
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• Providing a reference group and time period, and using absolute (vs. 
relative) risk. When discussing population-level risk data, patients often 
need help to understand how the population and time period studied 
relate to their situation; it is clearer to be told the absolute risk (e.g., that 
a treatment reduces their risk from 2 in 1,000 to 1 in 1,000) than the 
relative risk (e.g., that it reduces their risk by 50 percent), Politi said. 

Politi shared several examples of clinical decision support tools that 
employ these risk communication principles. One tool, to predict the risk of 
sentinel node metastasis in melanoma, is designed for the patient encounter. 
The results report helps to guide discussion of the patient’s personal risk and 
informs shared decision making about the need for central node biopsy.47 

The second example described by Politi was BREASTChoice, a tool 
designed for patients who have had a mastectomy to help them understand 
their personal risks in breast reconstruction surgery (Politi et al., 2020; Lee 
et al., 2022; Foraker et al., 2023).48 Politi mentioned there can be risks for 
serious post-surgical complications of reconstruction, depending on a patient’s 
risk factors. The tool uses data from the patient’s EHR to automatically popu-
late the risk prediction model to provide a comparison to a reference group 
of individuals who have no risk factors (including a visual aid). A summary 
of the assessment is also sent to the clinician to discuss during a patient visit. 
Politi said that this approach of interfacing the algorithm with the EHR is 
still evolving and preferences for how to enter patient data vary. “Most of the 
literature suggests that people don’t want to enter this data on their own,” she 
said. However, she noted that the challenges with automatically retrieving the 
necessary data from the EHR (e.g., data missing from fields, nonstandardized 
or free-text elements), and lack of interoperability of EHR systems would 
present challenges for scalability. 

Politi provided a nononcology example to demonstrate the value of clini-
cally relevant reference groups for patients to compare out-of-range laboratory 
results in the patient portal: a patient with diabetes sees their hemoglobin 
A1C results relative to the goal range for a people with Type 2 diabetes (not 
the standard reference range).49 Studies have found that this approach helps 
patients to better interpret their out-of-range results and take action accord-
ingly (Scherer et al., 2018).

47 This tool is publicly available from the Melanoma Institute Australia at https://www.
melanomarisk.org.au/SNLForm (accessed May 26, 2023).

48 See https://breastchoice.wustl.edu/ (accessed September 5, 2023). 
49 The A1C test is used to measure a patient’s average blood sugar levels and can be used to 

diagnose or monitor prediabetes and diabetes. See https://www.cdc.gov/diabetes/managing/
managing-blood-sugar/a1c.html (accessed September 5, 2023). 
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A study by Politi and colleagues found that clinicians have different pref-
erences for risk communication tools, such as conversation aids (e.g., paper or 
digital; before, during, or after the visit), and that choice often depends on the 
context of use (Politi et al., 2015). These tools can provide clear language for 
clinicians to use in difficult discussions about the potential for serious risks of 
an intervention (Hasak et al., 2017).

Gwen Darien, executive vice president of patient advocacy and engage-
ment at the National Patient Advocate Foundation and a three-time cancer 
survivor, agreed that clear risk communication, including discussion of abso-
lute risk, is essential for patients making care decisions. She shared a personal 
story of the negative impact of not being told about potential adverse effects 
of a treatment. When she asked why, her oncologist told her he did not want 
to cause her any worry. Darien stressed that “patients can understand so much 
more than they are given credit for” and want to be equipped with the avail-
able information to make informed decisions about their care. 

Reproducibility of ML Models for Integrated Diagnostics 

Salto-Tellez pointed out that an AI algorithm developed by one insti-
tution, using training data from it, often does not perform as expected or 
required at a different institution. He asked what factors might be contributing 
to this lack of reproducibility for integrated diagnostics (e.g., quality of the 
algorithm or the clinical information). Shah said that overfitting, or the inabil-
ity of a model to generalize due to limitations of its training, is challenging to 
address. He shared that the reviewers of his manuscript on the algorithm to 
predict response to an immune checkpoint blockade therapy asked whether 
it could be validated in an external cohort, and efforts to find an appropri-
ate external dataset were unsuccessful. Shah said that the data behind the 
predictive algorithm have been publicly released and can be used by others to 
train their models (Vanguri et al., 2022), and he advocated for the concept 
of open data. Although some institutions are releasing genomic sequencing 
data through collaborations (e.g., Project GENIE, discussed by Sawyers), he 
explained that researchers often cannot access clinical sequencing data even 
from within their own institution. “This field will not move forward until we 
embrace open data,” he said. Elenitoba-Johnson agreed that it is essential to 
make algorithms available for testing by others.

Dorr said that federated datasets can be used to study the reproducibility 
of an algorithm in other settings. The Observational Health Data Sciences and 
Informatics (OHDSI)50 federated dataset, for example, includes data from 

50 See https://www.ohdsi.org/ (accessed September 5, 2023). 
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810 million patients. Dorr explained that variation in algorithm performance 
is to be expected and provides opportunities for learning. Shah agreed that fed-
erated learning could be an option for algorithm validation and reproducibility 
studies, in which the algorithm is trained on datasets at multiple institutions 
and then the models are integrated. Shah cited a recent report of federated 
learning for predicting response to a treatment for breast cancer (Ogier du 
Terrail et al., 2023). 

Regina Barzilay, MacArthur Fellow and School of Engineering Distin-
guished Professor for AI and Health in the Department of Electrical Engineering 
and Computer Science at Massachusetts Institute of Technology’s Computer 
Science & Artificial Intelligence Laboratory, suggested that another reason for 
lack of reproducibility is that algorithms in health care are not as robust as those 
in other contexts. Existing software is often adapted for use with medical data 
without “the same degree of mathematical sophistication and engineering.” 
As an example of a robust algorithm, she noted that “it is really hard to find a 
place where your face will not be recognized” by an iPhone’s facial recognition 
software. 

Barzilay also noted the role for publishing standards that foster reproduc-
ibility and that some journals expect demonstration of reproducibility across 
institutions as a requirement for publication. 

Overcoming Design and Use Challenges 

Many speakers suggested potential opportunities for overcoming the 
challenges related to designing and using integrated diagnostics in preci-
sion cancer care. Robison, referencing the challenge of EHR organization of 
information by type (e.g., laboratory data are in one location, images are in 
another) suggested that the data visualization platforms should be contextually 
aware, presenting the data that are needed in that moment for the decision. 
Shah agreed that organization should be patient centric rather than by data 
type. He recalled Comaniciu’s discussion of digital twinning and said MSK 
is exploring the concept of a user interface built around a digital patient, but 
implementation challenges remain, such as how data are weighted and selected 
for context-relevant inclusion in the presentation. Dorr said that some type of 
“annotation or adjudication of what is most important” is needed to determine 
“what data should be prioritized at what time.” 

Dorr highlighted the need for research on understandability and action-
ability of information. How do clinicians interact with the volumes of data 
related to their patients, especially those with complex conditions, and what is 
it that they actually look at? He said health care algorithms need to be adapted 
to include data elements that clinicians use. “There is real harm that’s done 
when data are missed,” he cautioned. He suggested looking to the field of 
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industrial engineering to understand how to insert information into different 
workflows. 

Politi observed that graphics on decision aids can be very complicated 
and include animations and other features. While visually appealing, she 
explained that some more complex presentations can be distracting for the 
patient receiving the information. She advocated for clear, simple diagrams 
that can be personalized as needed. 

Choudhury suggested developing AI algorithms to assess whether a 
patient is at risk for severe depression or suicidal ideation when a clinician 
is delivering a diagnosis. This could inform how care is delivered, including 
provision of additional mental health support.

REGULATORY OVERSIGHT AND INSURANCE COVERAGE  
OF INTEGRATED DIAGNOSTICS

Several speakers discussed the importance of achieving regulatory clear-
ance or approval for clinical use and establishing coverage and reimbursement 
mechanisms for the adoption of integrated diagnostics. 

Pathways for Regulatory Review of Integrated Diagnostics

Reena Philip, associate director for Biomarkers and Precision Oncology at 
the FDA Oncology Center of Excellence, provided an overview of the current 
FDA review framework for IVDs, radiological devices, and AI-based digital 
pathology and radiological devices. 

Philip explained that the regulatory pathway for all medical devices begins 
with the submission of an application for premarket review of safety and 
effectiveness by FDA’s Center for Devices and Radiological Health (CDRH). 
Applications are processed differently according to the device’s risk classifica-
tion (Box 3). Upon clearance or approval, the device may enter the market for 
clinical use. Safety and effectiveness monitoring continues through post market 
surveillance activities including required reporting of serious and adverse 
events associated with device use. The FDA Total Product Life Cycle database 
integrates premarket and postmarket data about medical devices, including 
about adverse events and recalls.51 

51 See https://www.fda.gov/about-fda/cdrh-transparency/cdrh-transparency-total-product-
life-cycle-tplc (accessed May 26, 2023).
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BOX 3 
FDA Risk Classification–Based Review Pathways

Class I 
Devices with a low risk of illness or injury. Most are exempt 

from FDA review.

Class II
Devices with a moderate risk of illness or injury. Some are 

exempt from review. Most will require submission of a 510(K) pre-
market notification to receive FDA clearance to market.

Class III
Devices that present a high risk of illness or injury. If a predicate 

device exists, the new device may be able to a submit a 510(K) pre-
market notification to receive FDA clearance to market. If no predi-
cate device exists, it must undergo the full FDA premarket approval 
process, which includes submission of valid scientific evidence of 
safety and efficacy.

SOURCES: Reena Philip presentation, March 6, 2023. See also https://www.
fda.gov/patients/device-development-process/step-3-pathway-approval 
(accessed May 26, 2023).

In Vitro Diagnostics 

Philip said FDA defines IVD devices to include “those reagents, instru-
ments, and systems intended for use in the diagnosis of disease or other 
conditions, including a determination of the state of health, in order to cure, 
 mitigate, treat, or prevent disease or its sequelae” (21 CFR 809.3). She pro-
vided examples of IVDs in each class: a test for serum prealbumin or a nucleic 
acid extraction kit would be Class I; an autosomal recessive carrier screen-
ing gene mutation detection system would be Class II exempt, but a next- 
generation sequencing-based tumor profiling test would be Class II requiring 
510(k) clearance; and a colon cancer screening test or a companion diagnostic 
test52 would be Class III requiring premarket approval. 

52 A companion diagnostic, usually an in vitro diagnostic, is a medical device that provides 
necessary information on how to use a drug or biologic product safely and effectively. See 
https://www.fda.gov/medical-devices/in-vitro-diagnostics/companion-diagnostics (accessed 
January 28, 2024).
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Radiological Devices

Philip also gave examples of radiological devices in each risk class: ultra-
sound gel or gloves are Class I and most are exempt; MRI scanners or catheters 
would be Class II requiring 510(k) clearance; and radioactive microspheres or 
stents would be Class III requiring premarket approval. She pointed out that 
FDA is charged with regulating the manufacturers of the equipment and the 
equipment itself, while the use of these devices is regulated by other Federal 
agencies, including the Nuclear Regulatory Commission, the Occupational 
Safety and Health Administration, and the Environmental Protection Agency, 
as well as state and local agencies. The quality of care provided by the health 
care organizations where the devices are used is overseen by accrediting bodies, 
including the Centers for Medicare & Medicaid Services (CMS), American 
College of Radiology, and The Joint Commission. 

AI-Based Digital Pathology and Radiological Devices

FDA defines AI as a device or product that can imitate intelligent behav-
ior or mimics human learning and reasoning. AI includes ML, neural net-
works, and natural language processing. Philip said that terms used to describe 
AI include computer-aided detection/diagnosis, statistical learning, deep learn-
ing, or smart algorithms. Philip said an example of an AI-based device would 
be “an imaging system that uses algorithms to provide diagnostic information 
for malignant melanoma or skin cancer in patients.”53

Regulation of AI applications also follows the risk-based approach. In 
digital pathology, Philip explained that the intended use is considered, includ-
ing whether it is to be added to or replace the standard of care. She noted 
that most such devices are currently image based and that “differences in AI 
device performance based on differences in digital images should be assessed.” 
AI applications in radiology spans the imaging continuum: from acquisition 
to reconstruction, filtering, denoising, interpretation, and reporting. Philip 
noted that a listing of the AI and ML devices FDA has reviewed is available 
on the agency’s website.54 

Providing an example of an FDA-cleared AI-based device, Philip pointed 
to an AI-based software for the detection of areas that are suspicious for 
prostate cancer developed by MSK and Paige.AI.55 This Class II device is a 

53 See https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-
terms (accessed May 26, 2023).

54 See https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-enabled-medical-devices (accessed May 26, 2023).

55 See https://paige.ai/ (accessed September 5, 2023). 
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locked algorithm, with its performance dependent on the training dataset. 
She said that product sponsors needed to ensure sufficient data to support the 
intended uses and that the intended patient population is represented in 
the validation dataset.

In response to a question, Philip said that, to her knowledge, all AI-based 
devices reviewed by FDA thus far have been locked algorithms. In reviewing 
adaptive algorithms, she said it would be necessary for FDA to understand up 
front how performance of one deemed safe and effective could be monitored 
after clearance or approval to ensure ongoing safety and effectiveness in the 
marketplace. She added that research is needed to determine how to perform 
this monitoring.

Opportunities and Challenges

AI-based medical devices can use real-world data to continuously learn 
and improve and have the potential to “transform the delivery of health 
care,” Philip said. But challenges remain, including creating the “large, high-
quality, well-curated datasets” needed to train models; explaining AI algorithm 
 decision making (i.e., “black box”56 approaches); identifying and eliminating 
biases in models; and ensuring transparency for users.

Philip highlighted several FDA activities to address these challenges. The 
FDA–NIH Joint Leadership Council Working Group on Next Generation 
Sequencing and Radiomics explored the development of reference materials 
to support the validation of next-generation sequencing tests and the use of 
AI and ML to interpret next-generation sequencing and radiomics data. She 
referred participants to the highlights of a workshop in September 2021.57 
Related initiatives with AI-focused activities include the following: 

• Medical Device Innovation Consortium Somatic Reference Sample 
Initiative,58 

• Digital Health Center of Excellence-AI and Machine Learning 
Software as a Medical Device Action Plan,59

56 See https://www.scientificamerican.com/article/why-we-need-to-see-inside-ais-black-
box/ (accessed November 1, 2023).

57 See https://dctd.cancer.gov/NewsEvents/20211122_NCI_Hosts_FDA_NIH_ Workshop.
htm (accessed May 26, 2023).

58 See https://mdic.org/wp-content/uploads/2022/10/MDIC-Initiative-SRS_CS_FINAL-
Web.pdf (accessed January 25, 2024).

59 See https://www.fda.gov/news-events/press-announcements/fda-releases-artificial-
intelligencemachine-learning-action-plan (accessed January 25, 2024).
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• The CDRH 2022–2025 Strategic Priority to Advance Health Care 
Equity,60 and 

• NCI Cancer Research Data Commons Repositories.61

Finally, Philip called attention to precisionFDA,62 “a secure, collaborative, 
high-performance computing platform that builds a community of experts 
around the analysis of biological datasets in order to advance precision medi-
cine.” Crowdsourcing challenges hosted by precisionFDA include advancing 
regulatory standards for the use of real-world data and AI.63

Coverage Considerations for Integrated Diagnostics 

Jennifer Malin, senior vice president and chief medical officer at Optum 
Health Solutions, reviewed four key elements for establishing coverage and 
reimbursement of a health care technology in a fee-for-service environment: 

• Benefits. The first question is whether the diagnostic technology is 
included in a covered category of benefits. Although standard benefits 
generally include diagnostic testing and pathology imaging, diagnostics 
that incorporate AI might not be covered, and creating a new category 
for certain integrated diagnostics might be needed.

• Coding. Billing a fee for a service requires a Current Procedural 
Terminology (CPT) code. If no code can be used to bill for an 
integrated diagnostic, a process64 needs to be followed to assign a new 
code. 

• Clinical coverage. Having a CPT code does not guarantee 
reimbursement. A favorable clinical coverage determination generally 
requires a high level of evidence of clinical utility, and population-
based screening tests for risk prediction “require a very high level of 
evidence,” Malin pointed out, adding that Medicare and private payers 
generally follow the recommendations of the U.S. Preventive Services 
Task Force. Although most private payers will mirror CMS coverage 
determinations, she noted that “reimbursement for genetic testing 
varies dramatically across state Medicaid plans.” 

60 See https://www.fda.gov/media/171713/download (accessed January 25, 2024).
61 See https://datascience.cancer.gov/data-commons/repositories (accessed January 25, 

2024).
62 See https://precision.fda.gov/ (accessed March 6, 2024).
63 See https://precision.fda.gov (accessed May 26, 2023).
64 See https://www.ama-assn.org/about/cpt-editorial-panel/cpt-code-process (accessed 

January 28, 2024).
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• Reimbursement. Once a determination had been made to cover a 
service, a reimbursement rate is set. 

Malin discussed genetic testing as an example of demonstrating clinical 
utility for a coverage determination. “To have clinical utility, a genetic test 
must lead to an action that has been shown to improve patient outcomes,” 
she said. For example, the test might identify a mutation that could guide 
the choice of a targeted therapy, thereby improving patient outcomes. It 
might also lead to a diagnosis or prediction that results in a change in clini-
cal management that produces an improved patient outcome. For integrated 
diagnostics, overall survival is a key outcome measure; however, intermediate 
outcomes are also important (e.g., timeliness of initiation of therapy, reduction 
in the amount of testing needed). She emphasized the need to clearly define 
the improvement in outcome that integrated diagnostics provide and added 
that demonstrating population-level improvements in health outcomes can 
take decades.

As health care financing strategies evolve from fee-for-service to value-
based payments, health systems have increasing flexibility in structuring how 
care is delivered, and Malin said this could provide greater opportunities for 
incorporating integrated diagnostic approaches. Value is defined as the out-
comes relative to cost (Porter, 2010), and a value-based care model provides 
reimbursement based on indicators of value (e.g., outcomes, efficiency, quality). 
“If integrated diagnostics deliver greater value in cancer care, then adoption 
may be accelerated through value-based care models,” Malin observed. She 
said that bundled payments are one option for value-based payment, but she 
added that decisions then need to be made internally regarding how payments 
will be allocated.

Elenitoba-Johnson noted that lack of insurance coverage discourages the 
use of new technologies and that even when coverage exists, the reimburse-
ment amount might not cover the costs. Malin highlighted the need to dem-
onstrate the value of these technologies for patient care and outcomes and 
emphasized the importance of “being very clear about when are you providing 
value to the patient versus when is there some other value associated with [the 
technology].”

In response to a question about continued coverage of an evolving tech-
nology, Malin said that once a threshold of benefit has been realized and it 
has been established that the technology warrants coverage, it is generally not 
withdrawn, except in situations where there has been patient harm. Additional 
studies are needed when seeking coverage for additional use cases or popula-
tions, she said. Sawyers and Malin discussed how additional studies of diag-
nostic tests that have evolved over time might be paid for. Sawyers suggested 
that payers have a vested interest in generating evidence and might contribute 

PREPUBLICATION COPY—Uncorrected Proofs



62  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

funding to support this research. Malin responded that payers contribute to 
the funding for the Patient-Centered Outcomes Research Institute.65 

ENSURING PATIENT ACCESS AND 
PROMOTING HEALTH EQUITY

Many speakers discussed mechanisms to enable broad, equitable patient 
access to safe and effective integrated diagnostics, particularly in community-
based settings of cancer care. The focus needs to be on “making sure that there 
is health equity in every one of our novel innovations, including integrated 
diagnostics” emphasized Beth Karlan, the Nancy Marks Endowed Chair in 
Women’s Health Research, and director of Cancer Population Genetics at the 
University of California, Los Angeles, Jonsson Comprehensive Cancer Center. 

Developing Equitable AI Algorithms

Barzilay discussed challenges and solutions for developing safe and equita-
ble AI algorithms. She pointed out that while there have long been disparities 
in health and biases in standard prediction models, there are several reasons to 
pay particular attention to the potential for bias in deep learning models. First, 
these models are “data hungry,” requiring a training set of 50,000–100,000 
images, she said. For many clinical specialties, this volume of training data will 
not be available. Deep neural networks are also poor at handling distributional 
shifts in data. As an example, she showed how the performance of a model 
trained to recognize white numbers on black backgrounds declines when it is 
presented with colored numbers on different backgrounds. In addition, deep 
learning models can learn and perpetuate biases in the training dataset. She 
described how an image recognition model predicted that a monkey with a 
guitar was a human because the guitars it saw in the training data were always 
associated with humans. 

“Most diagnostic tasks are beyond human prediction capacity,” Barzilay 
said. A human cannot look at an image and predict when someone will get 
cancer or have a recurrence, for example. She explained that this presents a 
problem for validating ML risk prediction models. She described three novel 
algorithmic solutions used to develop two validated risk prediction models, 
Mirai and Sybil, to ensure the models are robust. Mirai uses a patient’s screen-
ing mammogram to predict their risk of breast cancer within 5 years (Yala et 
al., 2021, 2022a, 2022b), and Sybil uses low-dose CT chest scans to predict a 
patient’s risk of developing lung cancer within 6 years (Mikhael et al., 2023). 

65 See https://www.pcori.org/ (accessed January 28, 2024).
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Anti-Bias Training Solution: Learning Invariant Representations

As discussed earlier, a model trained and validated in one population can 
perform very differently in another. Training with diverse data can help an 
algorithm like Mirai perform as intended across populations. However, if a 
training dataset contains a minority population, the algorithm will attempt to 
optimize for the majority dataset, leading to underperformance on the minor-
ity dataset, Barzilay said. The solution, she said, was “forcing the algorithm to 
see the majority and minority … in the same way, learning the representation 
directly, so it eliminates unnecessary differences between them and focuses on 
improving accuracy across this population.”

Distributional Shift Detection Solution: Learning to Split for Automatic Bias 
Detection

Barzilay said that another challenge is that the existence of bias in a train-
ing dataset is often unknown. This can result in the algorithm learning from 
the wrong information (Zech et al., 2018). Approaches to splitting datasets for 
training and testing vary and accuracy can vary depending on approach. Barzilay 
and colleagues developed an algorithm that learns to split the data for automatic 
bias detection, identifying outliers and out-of-distribution samples.66 

Uncertainty Quantification Calibration Solution: Out of Domain Calibration

Barzilay expressed concern about popular misconceptions around trans-
parent models and explainable AI and referred participants to a publication on 
the danger of believing “that we can use this interpretable model to improve 
the adoption in clinical systems” (Ghassemi et al., 2021). If a pathologist or 
radiologist is unable to make predictions about the location of future cancer 
recurrence, she asked, “how can [they] validate what the machine is doing?” 

Barzilay explained that she and her colleagues developed new ML algo-
rithms that use calibrated selective classification. In this approach, the model 
learns to abstain from making a prediction in the face of calibrated uncer-
tainty.67 In essence, it is learning to say, “I don’t know,” she said. Instead of 
attempting to understand exactly how the algorithmic prediction is made, the 
algorithm reports when its prediction should not be trusted. 

66 See Bao, Y., and R. Barzilay. 2022. Learning to Split for Automatic Bias Detection. 
https://arxiv.org/pdf/2204.13749.pdf (open access/pre-print repository document) (accessed 
May 26, 2023). 

67 See Fisch et al. 2022. Calibrated Selective Classification. https://arxiv.org/
pdf/2208.12084.pdf (open access/pre-print repository document) (accessed May 26, 2023). 
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“There are algorithmic solutions for safe and equitable AI deployment,” 
Barzilay concluded. More so than in other fields, ML models for clinical care 
need to be safe, work in different populations, and determine the certainty 
with which predictions can be trusted, she said. 

Barzilay said the important indicator is how the algorithm performs 
compared to the current standard of care predictive models. “If you can better 
identify a population at risk, there is absolutely no reason not to use them,” 
she said. She noted that clinical trials in breast and lung cancer are underway 
to assess the extent to which an increase in predictive accuracy impacts long-
term patient outcomes.

Integrated Diagnostics in Community-Based Settings of Care

Eighty-five percent of people in the United States receive their cancer care 
in community settings, said Randall Oyer, clinical professor of medicine at the 
Perelman School of Medicine and executive medical director of the Ann B. 
Barshinger Cancer Institute and Cancer Services at Penn Medicine  Lancaster 
General Health. Oyer noted the uneven distribution of NCI-designated com-
prehensive cancer centers across the country,68 resulting in certain areas having 
more limited access to the technological advances available in these cancer 
centers. 

Oyer noted that cancer care in the United States is generally provided in 
four settings: academic and research institutions (including comprehensive 
 cancer centers), community practice, small private practices, and government 
settings (see Table 1). Oyer contrasted some of the main characteristics of 
 academic research institutions and community practices, highlighting the 
differences while acknowledging the many overlaps. Academic research institu-
tions “relentlessly pursue cure through research, teaching, and patient care,” 
he said, and the care workforce comprises heavily basic and clinical research-
ers focused on advancing research and providing highly specialized, cutting-
edge care. The mission of community practice is population health and patient 
care, and the care workforce is generally oncology clinicians who provide the 
continuum of care in the community. Each has limitations, he said, such as 
the distance many patients must travel to reach an academic center and the 
varying depth of clinical specialization and availability of clinical trials in 
community practices. 

Progress in oncology care is driven by innovation in technology, Oyer 
said. He outlined some of the technology milestones over the last 85 years 
that have contributed to advancing cancer care, including radiation  therapy, 

68 See https://www.cancer.gov/research/infrastructure/cancer-centers/find (accessed 
May 26, 2023).
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TABLE 1 Settings of Cancer Care in the United States

Academic/
Research

Community 
Practice

Small/Private Government

Mission Care research
Teaching
Patient care

Population 
health
Patient care

Patient care
Financial 
stability

Total care for 
beneficiaries 

Services
(Majority)

Clinical trials
Cancer care
Technology

Cancer care 
spectrum
Clinical trials

Medical 
oncology

Basic cancer care

Workforce Basic & 
clinical 
researchers

Oncology 
clinicians

Medical 
oncologists

Oncology 
clinicians

Patients Ability to 
travel
Activated

Entire 
spectrum

Privately 
insured

Government 
benefit/insurance

Highlights Super 
specialized 
cutting-edge 
care

Continuum of 
care close to 
home

Familiar 
doctor-
patient 
relationship

Defined benefits

Limitations Distance
Capacity
Timelines

Depth of 
specialization
Availability of 
clinical trials

Specialties 
beyond 
medical 
oncology
Availability of 
clinical trials

Timelines
Availability of 
services

SOURCE: Randall Oyer presentation, March 7, 2023.

chemo therapy, infusion pumps, genetics, telemedicine, and AI. He also 
acknowledged key organizations and structures that have helped to advance 
the field, including the NCI in 1937, National Cancer Act in 1971, medi-
cal oncology as a specialty (in the 1970s and 1980s), Community Clinical 
 Oncology Program in 1983, Medicare Modernization Act, NCORP in 2011, 
and now integrated diagnostics.

Oyer emphasized the potential of integrated diagnostics to advance cancer 
care but said that “less than 15 percent of research is translated into practice,” 
and translation can take 17 years on average (Jørgensen, 2022). Some of the 
adoption challenges include cultural resistance to change, resource limitations, 
clinician education and training needs, and the operationalization of new prac-
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tices within organizations. He suggested that that a new program or institute 
might be needed to drive progress by organizing the many laboratories and 
people around “a shared mission, a shared language, shared resources, [and] 
shared time lines.” 

Oyer referred to a previous National Cancer Policy Forum workshop 
in which participants discussed the growing challenges facing the cancer 
careforce and potential solutions focused on improving patient experience 
and outcomes, the capacity and effectiveness of caregivers, and the efficiency, 
effectiveness, and resilience of clinicians (NASEM, 2019; Takvorian et al., 
2020). Oyer said these solutions include “leveraging technology to share and 
integrate information to improve outcomes, efficiency, and reach,” and this 
includes digital technology and AI. 

Patients receive care from different teams of clinicians, at different loca-
tions, using different tools, as they traverse the care continuum from diagnosis 
to treatment to surveillance and recovery, Oyer noted. He stressed the impor-
tance of precise, accurate, and timely bidirectional communication about 
integrated diagnostics across this continuum.

Oyer offered several suggestions to activate integrated diagnostics in com-
munity settings, such as: 

• Establishing networks of care that share competence and collaboration 
across locations.

• Building infrastructure for cancer imaging networks to share expertise.
• Providing reports to clinicians that are timely, understandable, and 

usable in the clinic and at the bedside.
• Seamlessly incorporating integrated diagnostic reports into the EHR, 

and automatically interface them with widely available and widely used 
cancer care guidelines.

Oyer added that in order to ensure equity and representation, members 
of the cancer research community need to collaborate and build knowledge 
by collecting and sharing patient data, including the creation of a data bank, 
similar to the collection of tissue for a tissue bank.

Oyer also offered several suggestions to facilitate equitable access to preci-
sion diagnosis and clinical trials that improve outcomes for every patient with 
cancer in every community, such as expanding the capacity and representa-
tiveness of the oncology workforce, including diagnosticians. He added that 
digital tools can be used to augment capacity and that training is needed to 
ensure that caregivers can integrate these tools. Oyer also called on NCI and 
Congress to establish a “hub-and-spoke” system for the delivery of cancer care 
and to mandate EHR interoperability using mCODE.
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Promoting Health Equity Through  
Patient Access to Integrated Diagnostics

“Whenever we introduce a new technology into medicine, we actually 
create disparities,” observed Otis Brawley, Bloomberg Distinguished Professor 
of Oncology and Epidemiology at the Johns Hopkins Bloomberg School of 
Public Health, and associate director of community outreach and engagement 
at the Johns Hopkins University Sydney Kimmel Comprehensive Cancer 
Center. Some people will have access to this technology, and others will not.

As background, Brawley said that U.S. spending on health care in 2019 
was $3.8 trillion, which is 17.7 percent of the U.S. economy (Martin et al., 
2021). For 2019, the United States ranked first in health care spending as 
a percentage of gross domestic product globally, followed by Germany at 
11.7 percent. Despite high levels of health care spending, disparities in health 
persist and tend to be worse than those in other countries, he said, especially 
for mortality.

A disparity in health, Brawley said, is when a population fares worse than 
others in some measure (e.g., incidence, survival, quality of life,  mortality). 
Characteristics used to define a population include sex, gender, race,  ethnicity, 
culture, geographic origin, family or tribe, area of residence, and socio-
economic status. He noted the need for caution when defining a population 
by race. The U.S. Office of Management and Budget updates its definition of 
race every 10 years based on sociopolitical, not biological, characteristics. As 
such, race has changed over time. 

Many Americans receive “less than optimal cancer care,” Brawley said, but 
this is more likely for racial minorities and people with low socioeconomic 
status. Subpar care can be a result of inaccessible, inadequate, or inappropri-
ate screening, diagnostics, treatment, or therapy. These populations are also 
unlikely to have access to the newest tools and technologies in cancer care. 
Brawley pointed out, for example, that “Black Americans and poor Americans 
who need radiation therapy are more likely to be radiated by older, lower-
energy, lower-quality radiation therapy machines compared to middle- and 
upper-middle-class Americans” (Mattes et al., 2021). In another example, 
he showed that disparities in colorectal cancer mortality between White and 
Black people emerged following implementation of screening and improve-
ments in treatment in the 1970s (Siegel et al., 2018). Brawley said disparities 
in benefit from advances in screening and treatment are also seen in other 
cancers (e.g., breast cancer) and other diseases (e.g., cardiovascular disease and 
coronary artery bypass surgery). He also observed that “When we talk about 
health disparities, we have a substantial number of people who already get the 
diagnostics and then don’t get the treatment.”

PREPUBLICATION COPY—Uncorrected Proofs



68  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

There can also be disparities in the quality of pathological examination. 
For example, Brawley said that Black patients with colon cancer “are more 
likely to be treated in hospitals where the pathologist has multiple cases per 
day to process.” On average, minority patients with colon cancer have fewer 
lymph nodes assessed, which is associated with increased mortality (Rhoades 
et al., 2012). Inadequate examination of lymph nodes is associated with socio-
economic status (i.e., the hospital where a patient receives care). He said that 
because of this disparity in lymph node assessment, some Black patients are 
inaccurately diagnosed with stage 2 when they have stage 3 cancer, which has a 
higher risk of mortality. Because of this higher mortality rate, colon cancer has 
long been thought to be more aggressive in Black people than White people, 
but these errors in staging due to inadequate lymph node assessment could 
explain the disparities in outcomes.

The challenge, Brawley emphasized, is determining how to “provide ade-
quate, high-quality care to populations who so often do not receive it.” Many 
health care settings in the United States are operating with limited resources, 
which are further consumed by unnecessary care. He said it is important to 
consider how new technologies can be implemented in resource-poor settings 
without further worsening disparities in care and outcomes. This is where 
implementation science can be applied to promote equitable uptake of new 
technologies, Brawley noted (Eccles and Mittman, 2006). 

Drawing from his experience as director of a cancer center in a community 
safety net hospital, Brawley said that implementing lung cancer screening in a 
resource-poor setting, for example, can result in increased wait times for CT 
scans, thereby worsening overall quality of care for all patients. There can also 
be uneven implementation of new treatments and technologies. As examples, 
Brawley said the uptake of docetaxel69 for prostate cancer treatment was slower 
for older, poorer, and Black patients (Unger et al., 2014), and genetic testing 
for breast cancer gene mutations is underutilized among minority populations 
(Levy et al., 2011). A study of genetic testing for hereditary breast and ovar-
ian cancers found that Asian and non-Hispanic Black patients were also more 
likely to have variants of unknown significance identified (Chapman-Davis et 
al., 2021). Brawley associated this inability to interpret genetic variants with 
the current lack of diversity in genome-wide association studies. 

In addition to applying implementation science to advance the uptake 
and diffusion of new tools and technologies, Brawley said it is also important 
to deimplement (reduce or eliminate the use of ) “inappropriate, ineffective, 
or potentially harmful health care services” (Walsh Bailey et al., 2021). For 
patients with breast cancer, for example, he said the advent of estrogen recep-

69 See https://www.cancer.gov/about-cancer/treatment/drugs/docetaxel (accessed Septem-
ber 5, 2023). 
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tor testing made it possible to stop treatment with tamoxifen70 for those who 
would not benefit from it. Brawley also emphasized the need for large clinical 
studies with subset analysis to elucidate the distribution of various markers 
among different types of populations (i.e., not only by race). Integrated diag-
nostics supports evidence-based care and prevention and “the rational practice 
of medicine,” he concluded. 

Understanding and Addressing Disparities in Access and Use

Panelists were asked what could done to reduce disparities in access to 
diagnostics. Brawley and Oyer both said that the medical system cannot 
solve this problem alone. Many health disparities are rooted in “the fabric of 
 society,” Brawley explained, and both agreed that political action is needed, 
but political will is lacking. Oyer said clinicians can work to bring new tools 
and technologies to their communities and “provide [care] to the patient in 
front of us, without bias, each and every day.” He advocated for a national 
universal health care system to help achieve this goal. Barzilay reiterated the 
need for diverse datasets that are representative of the whole population and 
stressed the importance of transparency when publishing studies based on 
biased historical datasets. She also said that the National Science Foundation 
(NSF) and NIH should dedicate sufficient resources to algorithm development 
to ensure that forthcoming AI systems perform well across different popula-
tions, especially minority populations.

Winn asked what infrastructure and workforce are needed to address 
the “data deserts” and how a “two-tiered AI system” might be avoided so that 
everyone receives the full benefit of the technology, not just those with access 
to an academic medical center. Brawley said that for many clinical settings, 
especially safety net hospitals, incorporating new technology and services can 
make it even harder to meet current needs of the community. He reiterated 
his example of how implementing lung cancer screening in safety net hospi-
tals would benefit some people but would make the wait time for any type of 
CT scan longer for everyone, reducing quality of care. Brawley stressed that 
resources need to be provided for screening so that current services are not 
undermined.

Shulman pointed out that most smaller hospitals in rural areas are not part 
of a hub-and-spoke or other network, and these hospitals often have the largest 
disparities in care. Drawing on Winn’s comment about data deserts, Oyer and 
Shulman noted that said these rural areas are “deserts” outside of the catch-
ment areas of NCI-designated cancer centers and called for a national effort to 

70 See https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tamoxifen-
citrate (accessed September 5, 2023). 
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address these gaps. Shulman suggested that large academic medical centers have 
a responsibility to partner with these hospitals to improve care. Oyer suggested 
a role for NCI-designated cancer centers in expanding access to programs and 
digital resources at these hospitals. He called for bold and transformative solu-
tions to ensure that these parts of the country have access to care.

Barzilay said there is a role for AI in taking a “more algorithmic approach 
of assessing risk and acting upon it.” Oyer said that health-related social needs 
should also be considered in patient risk assessment. They discussed the role 
of risk assessment in managing utilization of integrated diagnostics, ensuring 
access for patients who need a diagnostic test while reducing unnecessary test-
ing of those who do not, especially in the face of limited resources for testing. 
Malin noted the importance of taking the intended use of the diagnostic test 
results into consideration. She agreed that not everyone needs to have every 
test done and added that unnecessary testing is costly for both the health 
system and the individual patient, emphasizing that the costs for patients 
include time spent on testing. Malin added that patient preferences need to 
be taken into consideration when deciding how comprehensive testing needs 
to be. For example, certain tests might not be necessary if a patient does not 
want to pursue a particular therapy. 

CURRENT FEDERAL INITIATIVES IN 
PRECISION CANCER CARE 

Two keynote speakers discussed current initiatives at NCI and the 
Advanced Research Project Agency for Health (ARPA-H) to advance preci-
sion oncology care.

NCI Precision Medicine Cancer Trials

Lyndsay Harris, associate director of the Cancer Diagnosis Program in 
the NCI Division of Cancer Treatment and Diagnosis, described the NCI 
 Molecular Analysis for Therapy Choice (NCI-MATCH) clinical trial (Box 4).71 
NCI-MATCH is a precision medicine trial that examines patient treatment 
approaches based on the molecular profiles of their tumors, said Harris. Data 
from the NCI-MATCH trial are being used to identify and evaluate potential 
diagnostic biomarkers.

NCI is also interested in studying how socioeconomic and environmental 
factors correlated with health disparities are associated with tumor and clinical 

71 See https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-
match (accessed May 26, 2023).
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BOX 4 
Overview of the NCI-MATCH Precision 

Cancer Medicine Trial 

• Trial population: Adults with advanced solid tumors, lym-
phoma, or myeloma who are not responding to standard treat-
ment or for whom there is no standard treatment. 

• Integrated workflow:
 o  Biopsy sample sequencing. Initially, standardized biopsy 

collection kits were sent to physician’s offices. Samples 
were sent to a central pathology laboratory for processing 
and then to one of four central laboratories for targeted 
panel sequencing. Later, to address low patient accrual for 
several arms, a designated laboratory network was set up 
to leverage next-generation sequencing of biopsy samples 
already being done as standard of care testing in many 
places. Laboratories then alerted physicians that their 
patients might be eligible for NCI-MATCH. 

 o  AI-driven MATCHBox. Sequencing results were evaluated 
by MATCHBox, an AI-driven system that integrated informa-
tion about the patient’s tumor gene abnormalities and other 
clinical information (e.g., histology) and determined if they 
had a mutation that matched one of the 38 trial arms. 

 o  Assignment to treatment. MATCHBox results were evalu-
ated by a central review committee to confirm mutations of 
interest and treatment arm assignment for potential enroll-
ment in the trial.

SOURCE: Lyndsay Harris presentation, March 7, 2023.

characteristics, Harris said. Data drawn from NCI-MATCH are being used 
to study, for example:

 
• The distribution of correlates of health disparities across the NCI-

MATCH cohort; 
• The association of a patient’s clinical status, diagnosis, and treatment 

history with correlates of health disparities; 
• Whether potentially modifiable risk factors, such as excess body weight 

or smoking, differ by correlates of health disparities; and 
• Whether there are any associations of correlates of health disparities 

with tumor molecular characteristics.
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NCI is launching several large new precision medicine trials, including 
ComboMATCH,72 which is testing combinations of therapies selected on 
the basis of genomic testing results; MyeloMATCH,73 a multitiered study 
applying the NCI-MATCH strategy to acute myeloid leukemia and myelo-
dysplastic syndromes; and iMATCH,73 studying targeted immunotherapy 
based on tumor molecular features. Harris said a new Precision Medicine 
Analysis and Coordination Center74 is responsible for an AI-driven treat-
ment arm assignment and a range of other tasks (e.g., sequencing pipeline 
configuration; multiassay integration; integration with laboratory and clinical 
systems; biospecimen tracking; parsing, annotating, and molecular reporting; 
automated patient management workflows; treatment protocol management 
and tracking; data analytics, visualization, and reporting; support for protocol 
development and actionable alteration, identification, review, and curation; 
and support for the NCI-designated laboratory network). 

ARPA-H and Cancer Moonshot

Susan Coller Monarez, deputy director of ARPA-H, provided a brief 
overview of the agency (see Box 5) and discussed its role in Cancer Moonshot. 
President Biden announced the creation of ARPA-H in 2022, stating that the 
agency “will pursue ideas that break the mold on how we normally support 
fundamental research and commercial products in this country.”75 The mission 
of ARPA-H is to “accelerate better health outcomes for everyone,” Monarez 
said, and the agency is focused on growing a portfolio of programs that will 
create transformational—rather than incremental—improvements in health 
through the development and commercialization of solutions. 

Monarez underscored the pivotal role of ARPA-H program managers in 
driving the agency’s funded research portfolio.76 She said they aim to fund 
programs that use new approaches to solve a problem, with consideration of 

72 See https://ecog-acrin.org/clinical-trials/eay191-combomatch/ (accessed February 2, 
2024).

73 See https://www.cancer.gov/about-cancer/treatment/nci-supported/combomatch 
(accessed February 2, 2024),

74 See https://deainfo.nci.nih.gov/advisory/fac/1019/Doroshow.pdf (accessed February 2, 
2024). 

75 See https://www.whitehouse.gov/briefing-room/speeches-remarks/2022/03/18/
remarks-by-president-biden-before-a-discussion-with-researchers-and-patients-on-advanced-
research-project-agency-for-health-arpa-h/ (accessed May 26, 2023).

76 Monarez said that ARPA-H is actively seeking people to be program managers and fill 
other agency positions, and she encouraged workshop attendees to visit https://arpa-h.gov/
careers/work-with-us/ for more information (accessed May 26, 2023).
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BOX 5 
Overview of ARPA-H

Features of ARPA-H
• Independent federal research and development funding 

agency reporting to the Secretary of the U.S. Department of 
Health and Human Services and situated within the National 
Institutes of Health.

• A $2.5 billion operating budget with a flexible funding structure 
to support high-risk, high-impact external research through 
cooperative agreements, other transactions authorities, and 
contracts (i.e., the agency is not grants based).

• Lean and nimble management structure that is capped at 210 
federal employees.

• Research portfolio driven by program managers (appointed 
for a 3-year term with one renewal allowed) who identify 
high-impact health-related problems to be addressed; solicit 
proposals and enter into agreements to fund the development 
of solutions; and define metrics and monitor progress toward 
milestones. 

• Program managers developing proposals for program funding 
around a set of questions for evaluating proposed programs 
(see below)

ARPA-H Program Life Cycle
• Design. Identify challenging and well-defined problems and 

develop programs using the ARPA-(H)eilmeier questions 
and incorporating relevant input.

• Build. Broadly solicit proposals and build best-in-class per-
former teams to solve the problem.

• Perform. Program managers oversee program execution and 
performance against metrics, engaging experts throughout, 
and redirecting resources as needed.

• Learn. Continuously harness and apply knowledge across the 
program life cycle to enable transformational change.

• Transition. Build commercialization planning into a program at 
the start. Support licensing of solutions or company formation, 
mentor performers and create connections to investors and 
consumers, and derisk investment in solutions. 

continued
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The ARPA-H Questions
1. What are you trying to do? What health problem are you trying 

to solve?
2. What are the current approaches to this problem? Who is 

involved? What are the limitations of present approaches?
3. What is new about the approach to this problem? Why can it be 

successful at this time? 
4. Who cares? If successful, what difference will it make?
5. What are the risks that may prevent achievement of the objec-

tives? Any risks the program itself may present? 
6. How long will it take? 
7. How much will it cost? 
8. What are the mid-term and final exams to check for success? 
9. To ensure equitable access for all people, how will cost, acces-

sibility, and user experience be addressed?
10. How might this program be misperceived or misused (and how 

can that be prevented from happening)? 

SOURCE: Susan Coller Monarez presentation, March 6, 2023.

BOX 5 Continued

why an effort to address this problem could be successful now and how the 
solution will ensure equitable access. 

ARPA-H has four focus areas in which to build out its initial portfolio:

• Health Science Futures is focused on “accelerating advances across 
research areas and removing limitations that stymie progress,” Monarez 
said. Projects might involve broadly applicable tools and platforms, for 
example. 

• Scalable Solutions will develop equitable solutions for overcoming 
challenges presented by geography, distribution, manufacturing, or 
data and information. 

• Proactive Health will focus on prevention and wellness, including 
new approaches to disease detection and risk characterization and 
preventative interventions for a range of health threats. 

• Resilient Systems is focused on creating the capabilities and business 
models needed to support integrated, resilient, sustainable health care 
systems that can also step up to meet the challenges of emerging crises, such 
as pandemics, social disruption, climate change, or economic instability. 
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Cancer Moonshot

ARPA-H is committed to supporting the Cancer Moonshot initiative, 
Monarez said. The agency is appointing a Cancer Moonshot Champion who 
will identify internal efforts across ARPA-H that are aligned with the initiative, 
engage members of the cancer research and care communities on behalf of 
ARPA-H, and collaborate with Cancer Moonshot leaders across government. 
Program managers who are pursuing solutions to cancer-related problems pri-
oritized in the Moonshot can bring the resources of ARPA-H and its partners 
to bear (e.g., infrastructure, implementation pathways) and “translate ongoing 
research efforts into capabilities for researchers or patients,” she said. 

Monarez said some of the areas in which ARPA-H programs could address 
Moonshot strategic priorities include “closing the screening gaps, addressing 
environmental exposures, decreasing the impact of preventable cancers, sup-
porting patients and caregivers, bringing cutting-edge research advances to 
patients, and addressing inequities.” She cited advancing digital histo pathology 
capabilities as a specific example of a potential ARPA-H program that would 
be aligned with the Moonshot strategic priority to bring cutting-edge research 
advances to patients. ARPA-H supported research might also explore the 
development of novel multiomic histopathology assays; the use of AI and 
ML to expand automation in histopathology practice; and integrating histo-
pathology data into clinical care pathways. 

Arunan Skandarajah, presidential innovation fellow at ARPA-H, encour-
aged workshop participants to propose projects to ARPA-H and said that 
agency staff also welcome conversations with individuals or teams about poten-
tial integrated diagnostics concepts that might be suitable for an ARPA-H 
program.

Promoting a Culture of Data Sharing 

Several speakers asked about the extent to which the NCI and ARPA-H 
initiatives would be making data publicly available. Harris noted that NIH 
recently updated its data sharing policy77 and under the new policy, “all 
molecular data and clinical data must be shared at the end of the study.” 
Data from NCI grantees and other NCI programs are accessible through the 
Cancer Research Data Commons.78 Monarez said ARPA-H is developing its 
data sharing policies, which will be in alignment with the Public Access Policy 

77 See https://sharing.nih.gov/data-management-and-sharing-policy/about-data- 
management-and-sharing-policies/data-management-and-sharing-policy-overview#after 
(accessed January 31, 2024).

78 See https://datascience.cancer.gov/data-commons (accessed September 5, 2023). 
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of the White House Office of Science and Technology Policy.79 The intent is 
that all data will be “available to those who would benefit from its utilization.” 
“Without data, you can’t innovate,” she concluded.

REFLECTING ON THE WORKSHOP DISCUSSIONS

In the final session, the moderators of each session reflected on key points 
highlighted by speakers, including opportunities to advance the use of inte-
grated diagnostics in cancer care (see also Boxes 1 and 2).

Envisioning the Future for Integrated Diagnostics 

Hricak emphasized that “diagnostics are moving toward data science, and 
there is a need for data integration.” She suggested that the scope of integrated 
diagnostics remain flexible and patient centered, noting that these go beyond 
a clinical decision support system or data display dashboard. Many speakers 
highlighted that funding for integrated diagnostics can be a challenge, and 
it can be difficult to demonstrate a return on investment in the short term, 
Hricak said. Elenitoba-Johnson called for the development of policies and 
incentives to promote the adoption of integrated diagnostics in clinical prac-
tice. Hricak said other considerations highlighted by many speakers included 
improving interoperability of data systems across clinical disciplines; imple-
menting data standards, synoptic operative reports, and a lexicon to convey 
the degree of diagnostic certainty; facilitating collaboration to transition image 
annotation and segmentation from manual to automated; fostering a culture 
of data sharing; restructuring reimbursement to cover the diagnosis versus 
diagnostic testing procedures; scaling up precision diagnostics to reach broader 
populations; and leveraging institutional governance to adopt integrated diag-
nostics within clinical care.

Highlighting Insights from Academia, Industry, 
and Health Care Organizations

Nancy Davidson, executive vice president for Clinical Affairs at the Fred 
Hutchinson Cancer Center and Raisbeck Endowed Chair for Collaborative 
Cancer Research at the University of Washington, highlighted perspectives 
from representatives of academic medical centers, industry, and large health 
care organizations. Several speakers stressed the need to facilitate the integra-

79 See https://www.whitehouse.gov/wp-content/uploads/2022/08/08-2022-OSTP-Public-
Access-Memo.pdf (accessed February 1, 2024).
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tion of data from across disciplinary or organizational silos, she said, while 
others suggested that integrated diagnostics could better manage and com-
municate diagnostic testing results. To promote adoption, several speakers 
suggested conducting analyses to assess the value of integrated diagnostics in 
achieving high-quality, efficient care, which could provide evidence to support 
payment models and insurance coverage. 

Davidson said that many speakers highlighted the importance of training 
the next generation of clinicians to take an integrated approach to diagnostics 
and to train specialists in integrated diagnostics. Davidson added that much 
could be learned from health systems that are implementing and scaling inte-
grating diagnostics. Some of the lessons shared by speakers included facilitat-
ing structured reporting to integrate data across diagnostic specialties, ensuring 
feedback loops to assess diagnostic performance, and ensuring that a primary 
focus of integrated diagnostics is patient-centered care.

Improving Evidence Generation

Much of the discussion on improving evidence generation for integrated 
diagnostics centered on the opportunities to use EHR data and capabilities to 
support the evaluation of integrated diagnostics, Levy said, adding that this 
includes working with EHR vendors to advance and disseminate use cases. 
Many speakers said that EHR data collected during routine care could be 
leveraged for pragmatic studies and suggested being more intentional about 
collecting EHR data for prospective clinical trials. Levy said that  speakers 
highlighted the need for “significant investment in evidence generation for 
analytic validity, clinical validity, and clinical utility” to support regulatory 
review and implementation of integrated diagnostics in clinical practice. 
Although challenges persist, “the culture of data sharing for discovery remains 
strong,” Levy stressed. She concluded that “regulations, policies, and guidelines 
that recommend minimum structured documentation standards for diagnostic 
reporting influence documentation practices that enables evidence generation 
for integrated diagnostics.” 

Enhancing Design and Use of Integrated Diagnostics

Jensen said one of the recurring topics of discussion around design and 
use of integrated diagnostics was the potential for AI algorithms to perpetu-
ate and amplify biases in training datasets, with many speakers highlighting 
the importance of training and testing models on datasets that reflect the 
diversity of the population. This includes ensuring that patient enrollment 
in clinical trials of integrated diagnostics is diverse and inclusive, which also 
expands patient access to cutting-edge research, because these prospective trial 
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populations are likely to be used for future research, including AI algorithm 
development. 

Jensen said another topic was the use of DMTs to provide guidance to 
treating clinicians on test ordering and interpreting test results. Jensen said it 
might be helpful to develop a DMT on specific clinical areas at the outset and 
expand capacity to additional areas, rather than attempting a comprehensive 
rollout. Jensen also suggested that research funders support development of 
DMTs. 

Naik and Jason Slagle, research associate professor in the department of 
anesthesiology at Vanderbilt University Medical Center, highlighted additional 
design and use considerations that speakers discussed, including the need for 
investments in data engineering to scale the integration of data from across the 
diagnostic specialties. Slagle said that successful implementation of integrated 
diagnostics also hinges on trust, understanding, accountability, timing options, 
prioritization, annotation, and actionability. He added that these issues affect 
clinicians’ perceptions of integrated diagnostics and their willingness to use 
them. Naik pointed out that once implemented, ongoing testing should incor-
porate “the principles of high reliability organizations to ensure reliability and 
reduce unwanted variation.” He also noted the need for open-source protocols 
for algorithms and interinstitutional sharing and testing of protocols to sup-
port scalability and sustainability.

Many speakers emphasized the need to redesign EHRs to better meet 
clinician needs and facilitate integrated diagnostics, Slagle said. Some of the 
suggested changes included incorporating data visualization, multilevel model-
ing, and ML approaches for workflow and diagnostics, he summarized. Using 
principles of risk communication to support shared decision making was also 
discussed as an opportunity to improve patient care. Naik added that some 
speakers suggested a code of conduct for implementing AI-based integrated 
diagnostics and also leveraging innovative clinical trial designs to facilitate 
simultaneous testing of tools and implementation strategies. Finally, Slagle 
noted that more data scientists need to be recruited to the fields of cancer 
research and care. 

Regulatory Oversight and Insurance Coverage

Jensen suggested that developers of integrated diagnostics meet with 
FDA leadership to discuss regulatory pathways to evaluate them. In regard 
to insurance coverage, he noted “there seems to be a reticence … in paying 
for integrated diagnostics as a stand-alone component of medical care” and 
suggested that moving toward bundled payments for oncology care might 
partially address this issue.
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Access and Equity

“Equity needs to be a part of all we do,” stressed Wendy Nilsen, acting 
deputy division director of the NSF Industrial Innovation and Partnerships 
Division. She noted that many speakers called attention to the complexity 
of AI-based algorithms and the need to validate them across institutions and 
populations. Several solutions used in the development of validated risk pre-
diction models were discussed, including an approach to splitting datasets for 
training and testing in which the algorithm learns to detect bias automatically. 
The challenges of developing explainable AI were also discussed and a ML 
model that uses calibrated selective classification was described. As an alter-
native to trying to explain how an algorithm makes a prediction, this model 
learns to report when its prediction cannot be trusted based on calibrated 
uncertainty, she said.

The distribution of cancer care across the United States was discussed, 
noting clear disparities in access to high-quality care and new technologies, 
Nilsen said. Because most patients with cancer receive their care in the com-
munity, participants discussed the need for a hub-and-spoke system to better 
enable the equitable deployment of integrated diagnostics and the delivery of 
cancer care, and to build research on dissemination and implementation into 
product development, she summarized. 

 Nilsen noted that workforce issues were raised, along with the impor-
tance of multidisciplinary teams in developing, implementing, and using 
integrated diagnostics. Several participants discussed the need to leverage 
new digital technologies to “increase caregiver capacity, patient experience, 
and clinical efficiency and effectiveness” and the capacity and skills of the 
oncology workforce to integrate diagnostic tools and improve evidence 
generation.

Elenitoba-Johnson observed the a lack of uniformity in how policies 
and payment models are deployed in different regions or care venues, and 
an organization’s market share impacts its negotiating power with payers. He 
said crosscutting policies will be needed to support the delivery integrated 
diagnostics at scale. Lennerz agreed but added that “local coverage policy can 
drive national coverage policy and vice versa.” Levy noted that a bundled pay-
ment model already exists for inpatient care, and that could be used to test 
the incorporation of integrated diagnostics.

Participants shared additional reflections on opportunities to advance 
technology, access, and equity. Shulman highlighted the need to bring in 
human-centered design from other industries (e.g., the airplane cockpit). The 
potential of integrated diagnostics to improve care and outcomes will not be 
realized if clinicians cannot readily use the resulting information during a 
patient visit, he said. Hricak agreed and noted that new radiology dashboard 
designs are much improved to display key clinical findings. Naik added that 

PREPUBLICATION COPY—Uncorrected Proofs



80  INTEGRATED DIAGNOSTICS IN PRECISION ONCOLOGY CARE

user-centered design should address the needs of both the clinician and the 
patient as users. Karlan also emphasized the need to engage those users when 
developing new AI-based integrated diagnostics. Winn highlighted the differ-
ence between useful and usable. Something that is useful is “fit for a purpose” 
but not necessarily “fit to be used.” In the current context, data can be useful 
but not necessarily usable by different end users. The usefulness, and usability, 
of discoveries should be considered in parallel, he said, emphasizing that a 
critical disconnect in health is that there is a “lot of discovering, but that 
doesn’t cross the bridge to implementation,” and as a result, not everyone ben-
efits from the advances. “That’s why I really think about the useful discovery, 
usefulness, and at the end, the usability,” he said. 
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A planning committee of the National Academies of Sciences, Engineer-
ing, and Medicine will plan and host a 1.5-day public workshop that will 
examine the state of the science and the vision for integrated diagnostics in 
precision oncology care. The workshop will feature invited presentations and 
panel discussions on topics that may include

• Current efforts to develop and implement integrated diagnostics to 
inform treatment decision making in cancer care.

• Implications of integrated diagnostics for clinician training, care 
workflows, and organization of care teams.

• Opportunities for evidence generation to inform validation, clinical 
utility, oversight, as well as coverage and reimbursement for integrated 
diagnostics. 

• Strategies for ongoing quality assurance, evaluation, and refinement of 
integrated cancer diagnostics based on new evidence.

• Mechanisms to enable broad patient access to integrated diagnostics, 
particularly in community-based settings of cancer care.

The planning committee will develop the agenda for the workshop sessions, 
select and invite speakers and discussants, and moderate the discussions. A pro-
ceedings of the presentations and discussions at the workshop will be prepared 
by a designated rapporteur in accordance with institutional guidelines.

Appendix A

Statement of Task
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March 6, 2023

8:00 am Session 1: Vision and State of the Science for Integrated 
Diagnostics in Cancer Care

 Planning Committee Co-Chairs: 
 •  Kojo S.J. Elenitoba-Johnson, Memorial Sloan Kettering Cancer 

Center 
 •  Hedvig Hricak, Memorial Sloan Kettering Cancer Center

 An Overview of the Current State and Vision for Integrated 
Diagnostics in Cancer Care 

 •  Kojo S.J. Elenitoba-Johnson, Memorial Sloan Kettering Cancer 
Center 

 •  Hedvig Hricak, Memorial Sloan Kettering Cancer Center 

 Ensuring Integrated Diagnostics Facilitate Oncology Care 
 •  Travis Osterman, Vanderbilt University

 Panel Discussion 

9:15 am Break

Appendix B

Workshop Agenda
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9:30 am Session 2: Examples of Efforts to Develop, Implement, and 
Use Integrated Diagnostics

 Co-Moderators: 
 •  Nancy Davidson, Fred Hutchinson Cancer Center (participating 

virtually) 
 •  Kojo S.J. Elenitoba-Johnson, Memorial Sloan Kettering Cancer 

Center

 PANEL 1: ACADEMIC CENTER PERSPECTIVES 
 Presentations
 •  Gabriel Krestin, Erasmus MC (participating virtually)
 •  Jochen Lennerz, Massachusetts General Hospital 
 •  Manuel Salto-Tellez, Royal Marsden and Queen’s University 

Belfast 
 •  Mitchell Schnall, University of Pennsylvania
 •  Garry E. Gold, Stanford University 

 Panel Discussion

 PANEL 2: INDUSTRY PERSPECTIVES
 Presentations 
 •  Dorin Comaniciu, Siemens Healthineers 
 •  Torbjörn Kronander, Sectra AB
 •  Nick Trentadue, Epic 

 Panel Discussion

 PANEL 3: LESSONS LEARNED FROM OTHER 
CONTEXTS OF CARE 

 Presentations 
 •  Gil Alterovitz, VA Health System 
 •  Atul Butte, University of California, San Francisco

 Panel Discussion

12:00 pm Break

12:45 pm Session 3: Improving Evidence Generation for Integrated 
Diagnostics

 Moderator: 
 Mia Levy, Foundation Medicine/Rush University
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 Vision for Improving Evidence Generation for Integrated 
Diagnostics and Precision Oncology 

 •  Mia Levy, Foundation Medicine/Rush University

 Clinical Evidence Generation and Integrated Diagnostics
 •  Bradford Hirsch, Verily/Alphabet

 Opportunities to Leverage Electronic Health Records in  
Clinical Evidence Generation

 •  Neal Meropol, Flatiron Health

 Lessons Learned from AACR Project GENIE to Inform 
Evidence Generation

 •  Charles Sawyers, AACR Project GENIE and Memorial Sloan 
Kettering Cancer Center

 Panel Discussion 

2:10 pm Break

2:25 pm Session 4: Oversight and Coverage of Integrated Diagnostics
 Moderator: 
 Roy Jensen, The University of Kansas Cancer Center

 Ethical AI by Design
 •  My T. Thai, University of Florida

 Integrative Diagnostics: What Is It and Who Does It
 •  Michael Laposata, University of Texas, Galveston 

 Regulatory Perspectives
 •  Reena Philip, FDA Oncology Center of Excellence 

 Coverage Considerations
 •  Jennifer Malin, Optum Health Solutions

 Panel Discussion 

3:45 pm Break
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4:00 pm Session 5: Patient, Clinician, and Workflow Considerations
 Co-Moderators: 
 •  Jason Slagle, Vanderbilt University
 •  Aanand Naik, UTHealth Houston

 Multimodal Data Integration in Cancer from Real World and  
Experimental Data

 •  Sohrab Shah, Memorial Sloan Kettering Cancer Center

 Implementing Integrated Diagnostics into Precision Oncology 
Care

 •  David Dorr, Oregon Health & Science University

 EHR Vision: Now and Next
 •  CJ Robison, Oracle Health

 Trust in Artificial Intelligence and Factors Affecting its 
Acceptance

 •  Avishek Choudhury, West Virginia University

 Tools and Processes to Support Decisions and Enhance Risk 
Communication 

 •  Mary Politi, Washington University School of Medicine in 
St. Louis

 Panel Discussion 

5:30 pm Adjourn 

March 7, 2023

8:00 am Welcome, Plans for the Day
 Planning Committee Co-Chairs
 •  Kojo S.J. Elenitoba-Johnson, Memorial Sloan Kettering Cancer 

Center 
 •  Hedvig Hricak, Memorial Sloan Kettering Cancer Center
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8:05 am Keynote Session:
 Advancing Progress and Ensuring Health Equity in Integrated 

Diagnostics
 Moderator:
 •  Hedvig Hricak, Memorial Sloan Kettering Cancer Center
 •  Lyndsay Harris, National Cancer Institute, Cancer Diagnosis 

Program (participating virtually)
 •  Susan Coller Monarez, Advanced Research Projects Agency for 

Health (participating virtually)

 Panel Discussion

8:50 am Session 6: Ensuring Patient Access and Health Equity
 Co-Moderators: 
 •  Wendy Nilsen, National Science Foundation
 •  Beth Karlan, University of California, Los Angeles

 Equity and Algorithm Development
 •  Regina Barzilay, Massachusetts Institute of Technology

 Community-Based Settings of Care
 •  Randall Oyer, Association of Community Cancer Centers and 

Penn Medicine Lancaster General Health

 Challenges and Opportunities for Promoting Patient Access in 
Health Equity in Integrated Diagnostics

 •  Otis Brawley, Johns Hopkins University (participating virtually)

 Panel Discussion

9:45 am Break

10:00 am Session 7: Opportunities to Advance Integrated Diagnostics in 
Cancer Care

 Moderator:
 •  Kojo S.J. Elenitoba-Johnson, Memorial Sloan Kettering Cancer 

Center 

 Panelists:
 Session 1: Kojo S.J. Elenitoba-Johnson and Hedvig Hricak
 Session 2: Nancy Davidson (virtually) and Kojo S.J. Elenitoba-Johnson
 Session 3: Mia Levy
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 Session 4: Roy Jensen
 Session 5: Jason Slagle and Aanand Naik
 Session 6: Wendy Nilsen and Beth Karlan

11:30 am Closing Remarks
 Planning Committee Co-Chairs: 
 •  Kojo S.J. Elenitoba-Johnson, Memorial Sloan Kettering Cancer 

Center 
 •  Hedvig Hricak, Memorial Sloan Kettering Cancer Center

11:45 am Adjourn 
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