National Institute for Health and Care Excellence

Final

Subarachnoid haemorrhage caused by a ruptured aneurysm: diagnosis and management

[C] Evidence review for severity scoring systems

NICE guideline NG228 Methods, evidence and recommendations November 2022

Final

National Institute for Health and Care Excellence

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and, where appropriate, their careful or guardian.

Local commissioners and providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© NICE 2022. All rights reserved. Subject to Notice of rights.

ISBN: 978-1-4731-4815-4

Contents

1	Seve	erity sc	oring systems	5			
	1.1	Reviev adults	w question: What is the prognostic utility of severity scoring systems in with suspected or confirmed subarachnoid haemorrhage?	5			
	1.2	2 Introduction					
	1.3	PICO	table	5			
	1.4	Clinica	Clinical evidence				
		1.4.1	Included studies	8			
		1.4.2	Excluded studies	8			
		1.4.3	Summary of clinical studies included in the evidence review	9			
		1.4.4	Quality assessment of clinical studies included in the evidence review	. 19			
	1.5	Econo	mic evidence	44			
		1.5.1	Included studies	44			
		1.5.2	Excluded studies	. 44			
	1.6	Evider	nce statements	. 44			
		1.6.1	Clinical evidence statements	. 44			
		1.6.2	Health economic evidence statements	. 44			
	1.7	The co	ommittee's discussion of the evidence	. 44			
		1.7.1	Interpreting the evidence	. 44			
		1.7.2	Cost effectiveness and resource use	. 46			
		1.7.3	Other factors the committee took into account	. 47			
Ap	pendi	ces		70			
•	Appe	endix A:	Review protocols	70			
	Appe	endix B:	Literature search strategies	. 76			
		B.1 C	linical search literature search strategy	. 76			
		B.2 H	ealth Economics literature search strategy	. 81			
	Appe	endix C	Clinical evidence selection	. 84			
	Appendix D:		Clinical evidence tables	. 85			
	Appe	endix E:	Forest plots	107			
		E.18W	/FNS 4	116			
	Appendix F:		GRADE tables	120			
	Appendix G:		: Health economic evidence selection	142			
	Appe	endix H	Health economic evidence tables	143			
	Appendix I:		Excluded studies	144			
		I.1 E	xcluded clinical studies	144			
	I.2 Excluded health economic studies						
	Appe	endix J:	Research recommendations	154			

1 Severity scoring systems

Evidence review underpinning recommendations 1.1.17 and 1.2.5 and research recommendations in the NICE guideline.

1.1 Review question: What is the prognostic utility of severity scoring systems in adults with suspected or confirmed subarachnoid haemorrhage?

1.2 Introduction

SAH typically causes sudden severe headache rising to a peak within minutes, associated with vomiting and possibly altered level of consciousness. Over time, patients with subarachnoid haemorrhage may recover with little or no neurological consequence, may survive with significant disability, or may deteriorate and die.

SAH severity scoring systems have been developed in an attempt to codify the clinical findings that indicate the severity of a bleeding event. These have typically combined indicators of a patient's level of consciousness and neurological function. In current practice SAH severity scoring systems are used to guide decisions on patient care.

To be effective, a scoring system should contain simple, commonly understood criteria that facilitate rapid assessment of a patient's condition (should be easy to use). A system should have low intra- and inter-user variation in scores, and thresholds should have significant correlation with patient outcome.

This review was carried out to evaluate the prognostic accuracy of these severity scoring systems in people with SAH.

1.3 PICO table

For full details see the review protocol in Appendix A:.

Population	Adults (16 and older) with a suspected or confirmed subarachnoid haemorrhage caused by a suspected or confirmed ruptured aneurysm.
Prognostic variables under consideration	 Severity scoring system such as: World Federation of Neurosurgical Societies grading scale Grade1 Grade 2 Grade 3 Grade 4 Grade 5
	 Fisher scale Grade1 Grade 2 Grade 3 Grade 4 Hunt and Hess Scale Grade1 Grade 2 Grade 3

Table 1: PICO characteristics of review question

	 Grade 4 Grade 5 Glasgow Coma Scale 3-15 Prognosis on Admission of Aneurysmal Subarachnoid Haemorrhage (PAASH) scale Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Confounding factors	• Age
Outcome(s)	Markers of poor outcome: • Mortality • Functional status • Modified Rankin Scale (MRS) • Glasgow Outcome Score (GOS) • Oxford Handicap Score (OHS) • Rebleed subarachnoid haemorrhage Measured by: • Accuracy data • Sensitivity, specificity, positive predictive value, negative predictive value • Association data • Adjusted Risk Ratio or Odds Ratio Short term outcomes <30 days will be grouped. Outcomes will be reported monthly for the first year and grouped at yearly time-points thereafter.
Study design	Cohort studies Cross-sectional studies
	Studies will only be included if all the key confounders have been accounted for in a multivariate analysis. In the absence of multivariate analysis, studies that account for key confounders with univariate analysis or matched groups will be considered.

Hunt & Hess scale (1968)

Category	Criteria
Grade I	Asymptomatic, or minimal headache and slight nuchal rigidity.
Grade II	Moderate to severe headache, nuchal rigidity, no neurological deficit other than cranial nerve palsy.
Grade III	Drowsiness, confusion, or mild focal deficit.
Grade IV	Stupor, moderate to severe hemiparesis, possibly early decerebrate rigidity and vegetative disturbances.
Grade V	Deep coma, decerebrate rigidity, moribund appearance.

Fisher scale (1980)

Grade	Descriptions
Fisher I	No Blood detected
Fisher II	Diffuse deposition or thin layer with all vertical layers of blood (interhemispheric fissure, insular cistern, ambient cistern) <1 mm thick
Fisher III	Localized clots and/or vertical layers of blood >= 1mm in thickness
Fisher IV	Diffuse or no subarachnoid blood, but with intracerebral or intraventricular clots

Glasgow Coma Scale (1974)

	1	2	3	4	5
Eye (E)	Does not open eyes	Opens eyes in response to painful stimuli	Opens eyes in response to voice	Opens eyes spontaneously	N/A
Verba I (V)	Makes no sounds	Incomprehensib le sounds	Utters inappropriate words	Confused/disori ented	Oriented, converses normally
Motor (M)	Makes no movements	Extension to painful stimuli (decerebrate response)	Abnormal flexion to painful stimuli (decorticate response)	Flexion/withdra wal to painful stimuli	Localizes painful stimuli

World Federation of Neurological Surgeons score (1988)

Grade	Original WFNS	Modified WFNS
I	GCS 15	GCS 15
П	GCS 13 – 14 with focal neurologic deficits	GCS14
III	GCS 13-14 without focal neurologic deficits	GCS 13
IV	GCS 7-12	GCS 7-12
V	GCS 3-6	GCS 3-6

Modified Rankin Scale (mRS) (1988)

0	No symptoms.
1	No significant disability. Able to carry out all usual activities, despite some symptoms.
2	Slight disability. Able to look after own affairs without assistance, but unable to carry out all previous activities.
3	Moderate disability. Requires some help, but able to walk unassisted.
4	Moderately severe disability. Unable to attend to own bodily needs without assistance, and unable to walk unassisted.
5	Severe disability. Requires constant nursing care and attention, bedridden, incontinent.
6	Dead.

Glasgow Outcome Scale (1975)

GOS Category	Proposed description of category
5 - Death	Ascribable to particular incident and due to original brain damage. Potentially subcategorize death according to whether occur before or after regaining consciousness to distinguish initial recovery from brain damage
4 - Persistent Vegetative State	Unresponsive and speechless for weeks or months after acute brain damage. Sleep wake cycles after 2-3 weeks
3 - Severe disability (conscious but disabled)	Dependent on daily support because of physical and/or mental causes
2 - Moderate disability (disabled but independent)	Independent in 'daily life' (for example, can use public transport and work in a sheltered environment). Able to maintain self-care and 'activities for daily living'. Considerable family disruption possible
1 - Good recovery	Resumption of normal life, although there may be minor neurological and psychological deficits. Return to work could lead to false impressions in either direction (for example, socioeconomic factors in work availability, attitude of past employers; included here are leisure interests and family relationships.

1.4 Clinical evidence

1.4.1 Included studies

Twenty-three observational studies were included in the review;^{1, 31, 51, 57, 74, 78, 83, 106, 110, 117, 125, 126, 140, 163, 190, 196, 203, 240, 249, 250, 261, 266, 292 these are summarised in Table 2 below. Of the 23 studies included within the review, 16 studies were retrospective cohort studies and 7 were prospective cohort studies. Evidence from these studies is summarised in the clinical evidence summary below (Table 3).}

See also the study selection flow chart in Appendix C:, study evidence tables in Appendix D:, forest plots in Appendix E: and GRADE tables in Appendix H:.

1.4.2 Excluded studies

See the excluded studies list in Appendix I:.

1.4.3 Summary of clinical studies included in the evidence review

Table 2: Summary of studies included in the evidence review

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
Abulhasan 2018 ¹	Single cohort study (n=434) all patients with spontaneous SAH admitted to the neurologic ICU (all patients admitted with nontraumatic SAH, proven by computed tomography (CT) scan or cerebrospinal fluid analysis)	multivariate analysis	Hunt & Hess grades 4 & 5	 Age < 60 < 60-79 years ≥80 years Intracerebral haemorrhage Intraventricular haemorrhage Rebleeding within 24 hours Maximum lumen size ≥7mm 	In hospital mortality	This study is an external validation study of the HAIR score. The study does not appropriately describe the follow up period for the outcomes.
Claasen 2004 ³¹	Prospective cohort study (n=467) Patients with SAH admitted to Neurological intensive care unit between July 1 1996 and June 1 2002, admitted within 3 days of onset (follow up: 3 months)	forward stepwise multiple logistic regression analysis	Hunt and Hess grade	 In hospital bleeding Aneurysm size >10mm Intraventricular haemorrhage Loss of consciousness Age (per decile) 	Functional status: mRS 4-6	Outcome given as an odds ratio per grade increase (not individual grade odds ratios)
Dijkland 2016 ⁵¹	Retrospective cohort study (n=2,435) of two data sets.	multivariate logistic regression analysis	Fisher grade 1 – 4 WFNS 1 – 6	• Age	Mortality	Study uses the ISAT and Rotterdam cohort for external model validation

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
	Patients were 18 years or older, admitted to hospital less than or equal to 28 days after ictus, SAH proven by CT or CSF spectrophotometry and ruptured intracranial aneurysm as the presumed cause. (follow up: 60 days)			 Maximum lumen size aneurysm (mm) 		
Duan 2016 ⁵⁷	Prospective cohort study (n=520) Patients were age ≥ 60 years; and with aSAH treated endovascularly (follow up: 1 year)	multivariate logistic regression analysis	Hunt & Hess score 4 – 5 Fisher score 3 – 4	 Age ≥ 75 Hypertension Located on and distal the circle of Willis Periprocedural complications 	Functional status: mRS ≥ 3	
Galea 2017 ⁷⁴	Prospective cohort study (n=3341) Patients with an aSAH were included and data were collected from 14 centres in the United Kingdom (follow up: at discharge)	multivariate analysis	WFNS grade (per grade increase)	 Age Pre-op bleed DCI Hypertension IHD Treatment CSF diversion CSF infection Age Pre-op bleed DCI 	GOS 1 - 3	GOS was dichotomized into favourable outcome (GOS score 4 and 5) and unfavourable outcome (GOS score 1–3).

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
				 Hypertension IHD Treatment CSF diversion CSF infection 		
Germanson 1998 ⁷⁸	Cohort study (n=751) Patients were selected according to the NICSAH I study (unclear of inclusion criteria) (follow up: 3 months)	logistic regression	GCS	 Age Sex Location of aneurysm Level of consciousness 	Functional status: GOS 1 – 3	Not all prognostic information given and unclear regarding which predictors are used within the regression model. Unable to meta- analyse outcome.
Goldberg 2018 ⁸³	Retrospective cohort study (n=146) Bernese SAH database for poor grade patients (WFNS grade IV – V), elderly patients (age \geq 60 years) suffering from aSAH admitted between 2005 to 2017 (follow up: 23.5 months)	multivariate cox regression analysis	WFNS grade V compared to WFNS grade IV	 Age: 60-69 70-79 80-90 ICH 	Survival Analyses	
Inamasu 2016 ¹⁰⁶	Single centre retrospective cohort study with	multivariable analysis	GCS score 3 – 4	 Age Female sex GCS score 3 – 4 	In hospital mortality	The study does not appropriately describe the follow

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
	multivariate analysis (n=115) Patients with WFNS grade V SAH who were considered suitable candidates for endovascular treatment, who were taken to the angiographic suite within 24 hours of symptom onset. The coil selection was at the discretion of the attending EVT specialist			 Intraoperative / postoperative rebleeding Delayed cerebral ischaemia Years of experience of EVT specialist 		up period for the outcomes.
Jabbarli 2015 ¹¹⁰	Retrospective cohort study (n=157) Patients with non- traumatic non aneurysmal subarachnoid haemorrhage admitted between January 2005 to December 2012 (follow up: 6 months)	multivariate analysis	Hunt & Hess grade	 Age > 65 Diffuse basal bleeding pattern Acute hydrocephalus Leucocytosis at mission Rebleeding Vasospasm on TCS Cerebral infarction Meningitis Severe anaemia 	Functional status: mRS 3-6	

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
Karamanakos 2012 ¹¹⁷	Retrospective cohort study (n=1657) Admission alive to the hospital within 24 hours from the start of the acute aneurysmal SAH verified by CT, spinal tap or autopsy (follow up: $1 - 3$ days; $4 - 30$ days; 1 - 12 months)	multivariate analysis	Hunt and Hess grade I - V	 Age Gender Time period of SAH ICT IVH SDH Hydrocephalus Site of aneurysm Size of aneurysm Number of saccular aneurysms 	Mortality	Not clearly specified which confounders were used in multivariate analysis, only reports only those that were statistically significant
Konzalla 2016 ¹²⁵ / Konzalla 2018 ¹²⁶	Retrospective cohort study (n=193) Patients with aneurysms of carotid bifurcation and posterior communicating artery between 1999 and 2013 (follow up: 6 months)	multivariate analysis	WFNS grade I – III Fisher grade 3	 Age Admission status Aneurysms of carotid bifurcation artery Absence of mild or severe cerebrovascular spasm 	Functional status: mRS >2	
Lee 2014 ¹⁴⁰	Retrospective cohort study (n=400) Patients were identified from the GET with the guidelines stroke database (patients	multivariate analysis	Hunt & Hess grades	 Age IVH Rebleed within 24hours 	In hospital mortality	Validation of the HAIR score for SAH. The study does not appropriately describe the follow up period for the outcomes.

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
	were excluded if CT negative SAH and traumatic SAH) (follow up:)					
Mocco 2006 ¹⁶³	Retrospective cohort study (n=98) Patients with aneurysmal SAH admitted to Columbia University Medical Center and enrolled in our Subarachnoid Hemorrhage Outcomes Project. Of these, 148 patients were of poor clinical grade, defined as Hunt and Hess Grades IV and V. SAH was confirmed in all patients by head computed tomographic scans and was rated according to the Fisher scale. (follow up: 12 months)	multivariable analysis	Admission Hunt & Hess IV – V Worst Hunt & Hess of V Fisher grade 3 – 4	 Aged ≥ 64 years of age Hyperglycaemia Worst Hunt and Hess grade V Aneurysm size 13mm or greater 	Functional status: mRS 4 – 6	

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
Orakdogen 2016 ¹⁹⁰	Retrospective cohort study (n=104) Evidence of SAH from a computerized tomography (CT) scan and the presence of an angiographically- confirmed saccular aneurysm as the cause of the haemorrhage	logistic regression analysis	WFNS (IV – V)	 Age > 55 Size of aneurysm >7mm Clinical vasospasm 	Mortality	The study does not appropriately describe the follow up period for the outcomes.
Ozono 2020 ¹⁹⁶	Retrospective cohort study (n=1123) All patients with aSAH who were age 20 years or older and the interval between symptom onset and admission was ≤72 hours. (follow up: 3 months)	multivariate logistic regression analysis	Age Modified WFNS (I – V)	 Endovascular Coiling Mean age Sex Location of aneurysm Vasospasm Duration from onset to treatment 	Mortality mRS ≥3	Results for elderly and non-elderly were combined for analysis.
Rabinstein 2004 ²⁰³	Retrospective cohort study (n=81) consecutive patients with symptomatic cerebral	multivariate analysis	Poor grade WFNS	AgeCoiling	Functional status: mRS >2	

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
	vasospasm from aneurysmal SAH treated with percutaneous balloon angioplasty or selective intra- arterial papaverine infusion between 1990 and 2000 (follow up: 3 months)					
Starke 2009 ²⁴⁰	Retrospective cohort study (n=160) Poor grade aSAH patients (follow up: 1 year)	multivariate analysis	GCS	GenderAge > 70	Functional status: mRS 4 - 6	Authors have grouped outcomes from admission GCS and refer to outcomes as mRS 0-3 (favourable outcome) and mRS 4-6 (unfavourable outcome)
Taki 2011 ²⁴⁹	Retrospective cohort study (n=614) Patients with SAH who were ≥20 years old at onset; SAH on CT scans or lumbar puncture; saccular aneurysm as the cause of the SAH confirmed on three dimensional CTA, MRA or DSA and aneurysmal	multivariate logistic regression analysis	Admission WFNS grade IV – V	 Age Admission WFNS Preadmission aneurysm rupture Vasospasm induced cerebral infarct Infection Shunt dependent hydrocephalus Seizure 	Functional status: mRS Mortality	

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
	obliteration by clipping or coiling within 14 days of onset (follow up: 12 months)			 Post clipping haemorrhagic complication Post coiling ischemic complication 		
Taweesomboon yat 2019 ²⁵⁰	Retrospective observational cohort study (n=189) Patients who underwent neurosurgical clipping or endovascular coiling for SAH (follow up: 6 months)	multivariate logistic regression analyses	Hunt & Hess grade	 Age Seizure Deterioration before intervention Side of aneurysm Aneurysm horizontal orientation Intervention 	mRS 3 - 6	Poor outcomes defined as mRS 3 – 6
Van Donkelaar 2017 ²⁶¹	Prospective observational cohort study (n=1620) patients with a nontraumatic SAH (follow up: 2 months)	multivariate logistic regression analyses	rWFNS	 Age Gender History Initial WFNS Type of SAH Aneurysm location Aneurysm size mFisher grade Intracerebral hematoma Subdural hematoma Hydrocephalus Type of treatment 	Functional status: mRS 4 - 6	rWFNS equates to WFNS score post resuscitation. Poor outcome (modified Rankin Scale Score 4–6)

Study	Population	Analysis	Prognostic variable(s)	Confounders	Outcomes	Comments
Wang 2019 ²⁶⁶	Prospective cohort study with multivariate analysis n = 104 All these patients underwent early microsurgical clipping or endovascular coiling within three days after SAH (follow up: 6 – 36 months)	Multivariate analysis	Fisher grade I – II WFNS grade IV	 Low density area on CT Hydrocephalus Endovascular coiling External ventricular drainage Intraventricular drainage Decompressive craniectomy Intracranial hematoma Cerebral Hernia 	mRS 0 - 2	Favourable outcome was defined as mRS ≤2
Zhao 2017 ²⁹²	Prospective and observational cohort study n = 136 Patients who presented with poor-grade aSAH at the time of treatment (Poor- grade aSAH was defined as a WFNS grade of IV or V) (follow up: 12 months)	multivariate analysis	WFNS grade V modified Fisher grade	 Age Aneurysm neck size Postop pneumonia 	Functional status: mRS 4 - 6	Poor-grade aSAH was defined as a mRS 4 - 6

See Appendix D:for full evidence tables.

1.4.4 Quality assessment of clinical studies included in the evidence review

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
mRS 4 - 6 scale 0-6; high score represents poorer outcome	467 (1 study) 3 months	⊕⊕⊕⊖ MODERATE1 due to indirectness	OR 1.8 (1.3 to 2.49) per clinical grade increase
mRS 3 - 6 scale 0-6; high score represents poorer outcome	157 (1 study) 6 months	⊕⊕⊕⊖ MODERATE1 due to indirectness	OR 2.03 (1.13 to 3.65) per clinical grade increase

1 The majority of the evidence had indirect outcomes (outcome per grade increase) and population (non aneurysmal SAH)

Table 4: Clinical evidence summary: Hunt and Hess grade two

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Hunt and Hess grade 1 as reference			
Mortality	1657 (1 study) 1 - 3 days	⊕⊕⊖⊖ LOW1,2 due to risk of bias, imprecision	OR 0.6 (0.1 to 3.6)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
Mortality	1657	⊕⊕⊝ ⊖	OR 1.4
	(1 study) 4 - 30 days	LOW1,2 due to risk of bias, imprecision	(0.4 to 4.9)
Mortality	1657 (1 study) 1 - 12 months	$\oplus \oplus \ominus \ominus$ LOW1,2 due to risk of bias, imprecision	OR 0.6 (0.2 to 1.8)
mRS 3 – 6 scale 0-6; high score represents poorer outcome	185 (1 study) 6 months	$\oplus \oplus \ominus \ominus$ LOW1,2 due to risk of bias, imprecision	OR 1.19 (0.13 to 10.89)

1 Downgraded by 1 increment if the confidence interval crossed the null line

2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Hunt and Hess grade 1 as reference			
Mortality	1657 (1 study) 1 - 3 days	$\oplus \oplus \bigcirc$ LOW1,2 due to risk of bias, imprecision	OR 1.1 (0.2 to 6.05)
Mortality	1657 (1 study) 4 - 30 days	⊕⊕⊖MODERATE2due to risk of bias	OR 3.3 (1 to 10.89)
Mortality	1657 (1 study) 1 - 12 months	⊕⊕⊝⊝ LOW1,2 due to risk of bias, imprecision	OR 2.8 (0.8 to 9.8)
mRS 3 – 6 scale 0-6; high score represents poorer outcome	185 (1 study) 6 months	⊕⊕⊝⊝ LOW1,2 due to risk of bias, imprecision	OR 1.43 (0.13 to 15.73)

1 Downgraded by 1 increment if the confidence interval crossed the null line

2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 6: Clinical evidence summary: Hunt and Hess grade four

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Hunt and Hess grades 1-3 as refere	ence		
In-hospital mortality	848 (2 studies)	 ⊕⊕⊕⊖ MODERATE2 due to risk of bias 	OR 5.11 (2.67 to 9.77)
Hunt and Hess grade 1 as referenc	e		
Mortality	1657 (1 study) 1 - 3 days	⊕⊕⊖ MODERATE2 due to risk of bias	OR 6 (1.3 to 27.69)
Mortality	1657 (1 study) 4-30 days	⊕⊕⊕⊖ MODERATE2 due to risk of bias	OR 10 (3 to 33.33)
Mortality	1657 (1 study) 1-12 months	 ⊕⊕⊕⊖ MODERATE2 due to risk of bias 	OR 3.4 (1 to 11.56)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
mRS 3 – 6 scale 0-6; high score represents poorer outcome	185 (1 study) 6 months	$\oplus \oplus \bigcirc$ LOW1,2 due to risk of bias, imprecision	OR 6.07 (0.6 to 61.12)
mRS 4 - 6 scale 0-6; high score represents poorer outcome	98 (1 study) 12 months	⊕⊕⊕⊖ MODERATE1 due to imprecision	HR 1.1 (0.21 to 5.87)

1 Downgraded by 1 increment if the confidence interval crossed the null line 2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 7: Clinical evidence summary: Hunt and Hess grade five

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
Hunt and Hess grade 1-3 as reference			
In-hospital mortality	848 (2 studies)	⊕⊕⊕⊖MODERATE2due to risk of bias	OR 42.02 (22.01 to 80.24)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
Hunt and Hess grade 1 as reference	е			
Mortality	1657 (1 study) 1-3 days	⊕⊕⊕⊖MODERATE2due to risk of bias	OR 92 (21 to 403.04)	
Mortality	1657 (1 study) 4-30 days	⊕⊕⊕⊖MODERATE2due to risk of bias	OR 43 (11 to 168.1)	
Mortality	1657 (1 study) 1-12 months	⊕⊕⊕⊖MODERATE2due to risk of bias	OR 12 (1.8 to 79.99)	
mRS 4 - 6 scale 0-6; high score represents poorer outcome	98 (1 study) 12 months	⊕⊕⊕⊖ MODERATE1 due to imprecision	HR 3.83 (0.61 to 24.01)	
1 Downgraded by 1 increment if the confidence interval crossed the null line				

	No of Participants		
	(studies)	Quality of the evidence	Relative effect
Outcomes	Follow up	(GRADE)	(95% CI)
2 Downgraded by 1 increment if the	e maiority of the evidence was	at high risk of bias, and downgraded by 2 increments if the major	ity of the evidence was

Table 8: Clinical evidence summary: Hunt and Hess grade 4 – 5

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Hunt and Hess grad	de 1-3 as reference		
mRS >3 scale 0-6; high score represents poorer outcome	520 (1 study) 12 months	⊕⊕⊕⊖ MODERATE1 due to indirectness	OR 1.76 (1.13 to 2.73)
4			

1 The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 4 and 5)

Table 9:	Clinical evidence summary	y: Fisher grade	(per grade increase)
----------	---------------------------	-----------------	----------------------

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)		
mRS 4 - 6 scale 0-6; high score represents poorer outcome	136 (1 study) 12 months	⊕⊕⊕⊖ MODERATE1 due to indirectness	OR 2.3 (1.5 to 3.53)		
1 The maintiful of the excitence had indirect extremes (extreme new grade increase)					

1 The majority of the evidence had indirect outcomes (outcome per grade increase)

Table 10: Clinical evidence summary: Fisher grade 1

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
Fisher grade 4 as reference			
Mortality	2435 (1 study) 60 days	⊕⊕⊝⊝ LOW1,2 due to risk of bias and imprecision	OR 0.36 (0.09 to 1.44)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
Fisher grade 0 as reference				
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕⊖ MODERATE1 due to imprecision	OR 0.8 (0.3 to 2.13)	
1 Downgraded by 1 increment if the confidence interval crossed the null line 2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias				

Table 11: Clinical evidence summary: Fisher grade 1 - 2

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Fisher grade 3-4 as reference			
mRS 0 – 2 scale 0-6; high score represents poorer outcome	104 (1 study) 6 months	⊕⊕⊖⊖LOW1,2due to risk of bias and indirectness	OR 12.10 (2.10 to 69.72)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)

2 The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 1 and 2)

Table 12: Clinical evidence summary: Fisher grade 2

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Fisher grade 4 as reference			
Mortality	2435 (1 study) 60 days	⊕⊕⊕⊖MODERATE2due to risk of bias	OR 0.52 (0.27 to 1)
Fisher grade 0 as reference			
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕⊖MODERATE1due to imprecision	OR 1.1 (0.4 to 3.02)
1Downgraded by 1 increment if the co	nfidence interval crossed the	null line	

Outcomes	No of Participants (studies) Follow up	Quality of the evidence	Relative effect	
Outcomes	Follow up	(GRADE)	(95% CI)	
2 Downgraded by 1 increment if the majority of the evidence was at high risk of high, and downgraded by 2 increments if the majority of the evidence was				

Table 13: Clinical evidence summary: Fisher grade 3

20

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
Fisher grade 4 as reference			
Mortality	2335 (1 study) 60 days	$\oplus \oplus \ominus \ominus$ LOW1,2 due to risk of bias and imprecision	OR 0.97 (0.7 to 1.34) Pooled
Fisher grade 1 as reference			
mRS >2 scale 0-6; high score represents poorer outcome	193 (1 study) 6 months	⊕⊕⊖⊖ LOW2,3 due to risk of bias, indirectness	OR 0.49 (0.25 to 0.96)
mRS 4 - 6			

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
scale 0-6; high score represents poorer outcome	98 (1 study) 12 months	⊕⊕⊖⊖ MODERATE1 due to imprecision	OR 1.41 (0.44 to 4.51)	
Fisher grade 0 as reference				
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	<pre> ⊕⊕⊕⊖ MODERATE1 due to imprecision </pre>	OR 1.6 (0.4 to 6.4)	
1 Downgraded by 1 increment if the confidence interval crossed the null line 2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence				

3 The majority of the evidence had an indirect population (Patients with aneurysms of carotid bifurcation and posterior communicating artery)

Table 14: Clinical evidence summary: Fisher grade 3 – 4

Outcomes Fisher grade 1-2 as reference	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
mRS >3 scale 0-6; high score represents poorer outcome	520 (1 study) 12 months	⊕⊕⊕⊖ MODERATE1 due to indirectness	OR 3.23 (2.43 to 4.3)	
1 The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 3 and 4)				

Table 15: Clinical evidence summary: Fisher grade 4

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
Fisher grade 0 as reference			
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕⊕ HIGH	OR 4.1 (1.7 to 9.89)
Fisher grade 1 as reference			
mRS 4 - 6			

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
scale 0-6; high score represents poorer outcome	98 (1 study) 12 months	⊕⊕⊕⊖ MODERATE1 due to imprecision	OR 1.09 (0.33 to 3.58)
1 Downgraded by 1 increment if the confid	dence interval crossed the nu	ull line	

Table 16: Clinical evidence summary: WFNS (per grade increase)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
GOS 1 – 3 scale 1-5; high score represents positive outcome.	3341 (1 study) At discharge	⊕⊕⊝⊖ LOW1,2 due to risk of bias, indirectness	OR 2.06 (1.91 to 2.22)

1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

2 The majority of the evidence had indirect outcomes (outcome per grade increase)

Table 17: Clinical evidence summary: WFNS 1-3

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
WFNS grade 4-5 as re	eference		
mRS >2 scale 0-6; high score represents poorer outcome	193 (1 study) 6 months	⊕⊕⊝⊝ LOW1,2 due to risk of bias, indirectness	OR 9.6 (4.9 to 18.81)

1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

2 The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 1 to 3)

Table 18: Clinical evidence summary: WFNS 2

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
WFNS grade 1 as reference			
Mortality	2335 (1 study; 2 cohorts) 60 days	⊕⊕⊕⊕MODERATE2due to risk of bias	OR 1.94 (1.3 to 2.87) Pooled
Mortality	1123 (1 study; 2 cohorts) 90 days	⊕⊕⊖⊖MODERATE1due to imprecision	OR 2.07 (0.87 to 4.9)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
mRS ≥3 scale 0-6; high score represents poorer outcome	1123 (1 study; 2 cohorts) 90 days	⊕⊕⊖⊖ MODERATE1 due to imprecision	OR 1.64 (0.93 to 2.92)
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕⊕ HIGH	OR 1.6 (1.1 to 2.33)

1 Downgraded by 1 increment if the confidence interval crossed the null line 2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 19: Clinical evidence summary: WFNS 3

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
WING grade T as relerence			
Mortality	2335 (1 study; 2 cohorts) 60 days	⊕⊕⊖⊖LOW1,2due to risk of bias and imprecision	OR 1.82 (0.95 to 3.47)
Mortality	1123 (1 study; 2 cohorts) 90 days	⊕⊕⊕⊖MODERATE1due imprecision	OR 2.26 (0.8 to 6.34)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
mRS ≥3 scale 0-6; high score represents poorer outcome	1123 (1 study; 2 cohorts) 90 days	⊕⊕⊕⊕ HIGH	OR 4.35 (2.29 to 8.27)
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕⊕ HIGH	OR 3.2 (1.4 to 7.31)

1 Downgraded by 1 increment if the confidence interval crossed the null line 2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 20: Clinical evidence summary: WFNS 4

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
WENS grade 1 as reference				
Mortality	2335 (1 study; 2 cohorts) 60 days	⊕⊕⊖ MODERATE1 due to risk of bias	OR 5.05 (2.91 to 8.77)	
Mortality	1123 (1 study; 2 cohorts) 90 days	⊕⊕⊕⊕ HIGH	OR 2.54 (1.11 to 5.81)	

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
Mortality	614 (1 study) 12 months	⊕⊕⊕⊖MODERATE1due to risk of bias	OR 3.71 (1.03 to 13.36)	
mRS 3-6 scale 0-6; high score represents poorer outcome	614 (1 study) 12 months	 ⊕⊕⊕⊖ MODERATE1 due to risk of bias 	OR 3.46 (1.49 to 8.04)	
mRS ≥3 scale 0-6; high score represents poorer outcome	1123 (1 study; 2 cohorts) 90 days	⊕⊕⊕⊕ HIGH	OR 10.50 (6.35 to17.38)	
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕⊕ HIGH	OR 5.7 (3.7 to 8.78)	
WFNS grade 5 as reference				
mRS 0 – 2 scale 0-6; high score represents poorer outcome	104 (1 study) 6 months	⊕⊕⊕⊝MODERATE1due to risk of bias	OR 10.82 (3.73 to 31.37)	
1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was				

at very high risk of bias
Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)	
WFNS grade 1-3 as	s reference			
Mortality	104 (1 study)	⊕⊕⊖⊖ LOW1,2 due to risk of bias, indirectness	OR 88.81 (8.61 to 916.19)	
mRS >2 scale 0-6; high score represents poorer outcome	81 (1 study) 3 months	⊕⊕⊝⊖ LOW1,2 due to risk of bias, indirectness	OR 3.58 (1.28 to 10.01)	
1 The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 4 and 5) 2 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias				

Table 21: Clinical evidence summary: WFNS 4 - 5

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
WFNS grade 1 as reference			
Mortality (Pooled)	2335 (1 study, 2 cohorts) 60 days	$\oplus \oplus \ominus \ominus$ LOW1,2 due to risk of bias, inconsistency	OR 42.38 (1.17 to 1534.17)
Mortality	1123 (1 study, 2 cohorts) 90 days	⊕⊕⊕⊕ HIGH	OR 9.22 (4.35 to 19.52)
Mortality	614 (1 study) 12 months	⊕⊕⊕⊝ MODERATE1 due to risk of bias	OR 9.43 (2.5 to 35.57)
mRS ≥3 scale 0-6; high score represents poorer outcome	1123 (1 study, 2 cohorts) 90 days	⊕⊕⊕⊝ MODERATE2 due to inconsistency	OR 31.80 (13.75 to 73.53)
mRS 4 - 6 scale 0-6; high score represents poorer outcome	1620 (1 study) 2 months	⊕⊕⊕ HIGH	OR 12.1 (7.3 to 20.06)
mRS 3-6 scale 0-6; high score represents poorer outcome	614 (1 study) 12 months	⊕⊕⊕⊖MODERATE1due to risk of bias	OR 13.48 (5.09 to 35.7)

Table 22: Clinical evidence summary: WFNS 5

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
mRS 4 - 6 scale 0-6; high score represents poorer outcome	136 (1 study) 12 months	⊕⊕⊕⊕ HIGH	OR 8.6 (3.1 to 23.86)
WFNS grade 4 as reference			
Survival Analyses	146 (1 study) 23.5 months	⊕⊕⊖⊖ MODERATE1 due to risk of bias	HR 2.78 (1.69 to 4.57)
1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias			

2 Downgraded by 1 or 2 increments because of heterogeneity, I2>50%, p>0.04, subgroup analysis not possible; <2 studies per subgroup.

Table 23: Clinical evidence summary: WFNS 6

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
WFNS grade 1 as reference			
Mortality	2435 (1 study) 60 days	⊕⊕⊕⊖MODERATE1due to risk of bias	OR 5.75 (2.41 to 13.72)

1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 24: Clinical evidence summary: Glasgow Coma Scale 3 - 4

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)	
GCS grades 5-6 as reference				
In-hospital mortality	115 (1 study)	$\bigoplus \bigcirc \bigcirc$ VERY LOW1,2 due to risk of bias, imprecision, indirectness	OR 2.27 (0.91 to 5.68)	
1 Downgraded by 1 increment if the confidence interval crossed the null line				

	No of Participants		
	(studies)	Quality of the evidence	Relative effect
Outcomes	Follow up	(GRADE)	(95% CI)
2 Downgraded by 1 increment if the majority of the evidence was at high	h risk of bias, and downgr	aded by 2 increments if the majority of	the evidence was
at very high risk of bias			

3 The majority of the evidence had indirect outcomes (outcome included multiple scores - GCS 3 - 4)

Table 25: Clinical evidence summary: Glasgow Coma Scale 8 - 9

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)	
GCS grades 10-12 as re	ference			
mRS 4 – 6 scale 0-6; high score represents poorer outcome	160 (1 study) 1 year	⊕⊕⊝⊝ LOW1,2 due to risk of bias, indirectness	OR 14.2 (1.5 to 134.41)	
1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias				

2 The majority of the evidence had indirect outcomes (outcome included multiple scores – GCS 8 – 9)

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% Cl)
GCS grades 10-12 as ref	erence		
mRS 4 – 6 scale 0-6; high score represents poorer outcome	160 (1 study) 1 year	$\oplus \oplus \ominus \ominus$ LOW1,2 due to risk of bias, indirectness	OR 38.5 (4.2 to 352.92)

1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

2 The majority of the evidence had indirect outcomes (outcome included multiple scores – GCS 5 - 7)

Table 27: Clinical evidence summary: Glasgow Coma Scale 3 - 4

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)
GCS grades 10-12 as refe	erence		
mRS 4 – 6 scale 0-6; high score represents poorer outcome	160 (1 study) 1 year	⊕⊕⊝⊝ LOW1,2 due to risk of bias, indirectness	OR 63.4 (5.6 to 717.76)
1 Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias			

Outcomes	No of Participants (studies) Follow up	Quality of the evidence (GRADE)	Relative effect (95% CI)		
2 The majority of the evidence had indirect outcomes (outcome included multiple scores $-GCS(3-4)$					

Table 28: Clinical evidence summary for evidence not suitable for GRADE – GCS per grade

Outcomes	No of Participants (studies) Follow up	Risk of bias	Relative effect
GOS 1 – 3 scale 1-5; high score represents positive outcome.	751 Germanson 1998 ⁷⁸ 3 months	High risk of bias	OR 1.5 for a three-point difference between two GCS scores 1

1 The study provides no information on statistical variance, therefore the committee were unable to ascertain the statistical significance of this outcome

See Appendix F: for full GRADE tables.

43

1.5 Economic evidence

1.5.1 Included studies

No health economic studies were included.

1.5.2 Excluded studies

No relevant health economic studies were excluded due to assessment of limited applicability or methodological limitations.

See also the health economic study selection flow chart in Appendix G:.

1.6 Evidence statements

1.6.1 Clinical evidence statements

One outcome measure for quality of life from 1 study was not suitable for inclusion in the GRADE summary tables.

The study found a trend towards mortality or severe impairment (GOS 1 - 3) in quality of life if there was a three-point difference in Glasgow Coma Scale. (n=751, low risk of bias).

1.6.2 Health economic evidence statements

No relevant economic evaluations were identified.

1.7 The committee's discussion of the evidence

1.7.1 Interpreting the evidence

1.7.1.1 The outcomes that matter most

The critical outcomes in this review were mortality, functional status and rate of recurrent subarachnoid haemorrhage. The committee considered these critical outcomes would, if predicted accurately, guide discussion around treatment decisions. The committee agreed that accurately predicting risk of morbidity and mortality would help clinicians to identify people with SAH who would likely benefit from intervention and those in whom outcomes are so poor that intervention would be unlikely to be clinically justified. Functional status was to be measured by validated grading systems such as the Modified Rankin Scale, Glasgow Outcome Score or Oxford Handicap Score.

The evidence review intended to assess the prognostic accuracy of validated severity scoring systems in predicting these outcomes. The committee did not define any thresholds for risk scores providing a significant prognostic value. Therefore, the committee assessed the magnitude of effect.

No evidence was found for the statistical significance for prognostic accuracy of severity scoring systems.

1.7.1.2 The quality of the evidence

The evidence ranged from high to very low quality, however the majority of the evidence was of low quality, using small datasets with retrospective validation. The committee had

particular concerns over the accuracy of the outcome data, agreeing that the accuracy of the data presented was unclear. The committee also noted some inconsistency in the magnitude of the risk association between different scoring tools and the specified outcomes. The committee agreed that some outcomes were indirect due to the inclusion of an indirect population (non-aneurysmal SAH and aneurysm of the carotid bifurcation); pooling of outcome data across multiple risk score thresholds also added uncertainty to the prognostic accuracy of some scores.

Due to the uncertainty in the clinical evidence, the committee did not consider it possible to recommend the use of a single severity scoring tool as a prognostic indicator. The committee also considered this uncertainty as the basis for a recommendation not to use a subarachnoid haemorrhage severity score in isolation to determine the need for, or timing of, transfer of care to a specialist neurosurgical centre.

The committee agreed that it would be useful to have a universal severity scoring system as a clinical descriptor that also reliably and accurately predicts outcome following SAH as this would assist clinical decision making and utilisation of resources. The committee made a high priority research recommendation to determine which factors best predict mortality or disability for people with aneurysmal subarachnoid haemorrhage (see Appendix J:).

1.7.1.3 Benefits and harms

The benefits of a well validated severity score include a global assessment of a patient's clinical condition in an easily understood format, which can help communication, and inform further interventions and care, and prognosis. The harms from a poorly validated score can include a bias against active treatment of patients with a poor predicted outcome.

The committee experience is that a proportion of patients that are initially in 'poor grade' categories (typically characterised by the aneurysmal subarachnoid haemorrhage resulting in altered consciousness and/or a need for ventilation for more than 48 hours) will achieve a meaningful or independent recovery with rapid resuscitation, critical care and neurosurgical or neurointerventional management. The committee agreed that the risk of this harm was such that they could only recommend a severity score on the basis of robust good quality evidence.

The available evidence examined association between clinical outcomes and severity scoring systems including Hunt & Hess (grade I-V), Fisher grade (I-IV), WFNS (1-5) and Glasgow Coma Score (3-15). All of these systems showed associations between worse scores and poorer clinical outcomes but the committee noted that the scores were assessed in small datasets and used different predictor variables in their multivariate analysis and outcomes, so comparisons across scores and studies are of limited value. Individual severity scoring systems showed association for some outcomes and not others at different cut offs or time points. However, none of the systems were consistent for all outcomes and cut offs or time points, which meant that the committee were unable to pick one scoring system over another.

There was a trend of an increased risk of morbidity and mortality with a higher Hunt & Hess score. Two studies showed an incremental increase in risk of poor functional status (as indicated by a high mRS) with each Hunt & Hess grade increase, with an odds ratio for poor functional status of 1.8 and 2.03 per Hunt and Hess grade increase, respectively, in each study. Several studies also showed an increase in risk of mortality up to a year after ictus with higher Hunt and Hess scores.

Three studies reported an increase in mortality with each increase in Fisher grade, with 1 large study showing a low risk of mortality at the lowest Fisher grade (OR 0.36) when compared to those with the highest grading (grade 4). A higher Fisher grade was also associated with a higher mRS score, indicating a greater risk of poor functional status.

The evidence showed that a higher WFNS score was associated with a higher risk of morbidity and mortality, with a significantly increased risk of mortality at the highest grading of WFNS. There was also a trend for every WFNS score increase to be associated with a higher risk of morbidity (indicated by a high mRS).

The evidence on Glasgow Coma Score showed that between 2 groups with lower levels of consciousness (multivariate analysis of patients with GCS 3-6; GCS 5 – 6 versus GCS 3 – 4), there was an increased risk of in-hospital mortality with a lower GCS score. One study also indicated that every decrease in GCS score was associated with a higher risk of increased morbidity indicated by a high mRS score (4 – 6).

The committee acknowledged that the evidence was generally of low quality but showed associations between the individual severity scores and poor outcomes. The committee noted that the severity scoring systems had not been prospectively validated in appropriately powered datasets from large cohorts of people with SAH and information about discrimination and calibration of the individual scoring systems is lacking. The committee was concerned that the potential harm from use of the scoring systems to support decision making in clinical practice may outweigh any benefit.

The committee agreed that the scoring systems in this review may be useful as clinical descriptors, but from their experience were aware that severity score can vary over time, especially soon after symptom onset. The committee were also aware that severity scoring systems are used in current clinical practice to influence decisions about transfer of care to a specialist neurosurgical centre. Thus, transfer into a specialist centre may be delayed or denied to people with SAH and a score indicating a poor prognosis (often referred to as 'poor grade'). Due to the uncertainty in the evidence and their experience the committee agreed that this practice should not be supported, but decisions about transfer to a neurosurgical centre should be based on a broader assessment of the person's clinical condition, the radiological findings, and comorbidities.

The committee were aware that scoring systems are also used to support treatment decisions for people with a confirmed diagnosis of aneurysmal SAH. The committee agreed that the evidence on severity scoring systems does not support this practice and that treatment decisions should be based on a holistic patient assessment rather than solely on a severity score. On the basis of the evidence and their experience the committee recommended that SAH severity scores should not be used in isolation to determine the suitability of any management option.

1.7.2 Cost effectiveness and resource use

No published economic evaluations were identified for inclusion in this review. The committee noted that use of severity scoring systems does not directly incur additional costs as the scores are primarily based on clinical observation and assessment. The Fisher score is based on CT scan findings, but this will have been carried out for all patients with an aneurysmal subarachnoid haemorrhage as part of diagnosis and also does not incur an additional cost.

The committee commented that in some cases severity scoring systems are being used as the sole indicator to determine whether a person with a confirmed subarachnoid haemorrhage is transferred to a neurosurgical centre for specialist assessment and care. They expressed concern that this often means that 'poor grade' patients are not transferred unless their condition improves. Consequently, these people may not receive timely specialist care, which may lead to poorer outcomes.

The committee acknowledged that there is little evidence available to compare the effects of neurosurgery or neurointervention in a specialist centre with conservative management in a general district hospital in people with 'poor grade' subarachnoid haemorrhage. However, the

committee considered that based on the specific expertise available and evidence in other clinical areas, better outcomes would be expected in a specialist centre.

The committee considered that the recommendation not to use severity scoring systems in isolation to determine suitability of interventions may lead to additional transfers to neurosurgical centres. However, overall this was not considered likely to result in a substantial resource impact due to the small number of additional transfers as a result of the recommendation.

1.7.3 Other factors the committee took into account

The committee noted that although there are numerous severity scoring systems, with the majority being based on or adapted from the GCS, there is no single severity scoring system that is used universally to predict morbidity and mortality in people with aSAH. The committee were concerned that scores are used inappropriately whereby people are denied assessment at neurosurgical centres and this informed their recommendation.

The committee added that severity scoring systems are used by healthcare professionals to assess a patient's clinical state at a single timepoint, but clinical state and severity score may vary over time, especially soon after symptom onset. The committee acknowledged that in practice severity scoring systems can be a useful clinical descriptor to provide the person with aSAH and their family or carers information about their current condition. However, severity scoring systems need to be used together with radiological findings, medical history and comorbidities. The committee considered that this reinforces the need to base clinical management decisions on a holistic patient assessment rather than solely on a severity scoring system. Therefore, the committee made the recommendation to not use a severity scoring system in isolation.

References

- 1. Abulhasan YB, Alabdulraheem N, Simoneau G, Angle MR, Teitelbaum J. Mortality after spontaneous subarachnoid hemorrhage: causality and validation of a prediction model. World Neurosurgery. 2018; 112:e799-e811
- Aggarwal A, Dhandapani S, Praneeth K, Sodhi HBS, Pal SS, Gaudihalli S et al. Comparative evaluation of H&H and WFNS grading scales with modified H&H (sans systemic disease): a study on 1000 patients with subarachnoid hemorrhage. Neurosurgical Review. 2018; 41(1):241-247
- 3. Ahn SH, Savarraj JP, Pervez M, Jones W, Park J, Jeon SB et al. The subarachnoid hemorrhage early brain edema score predicts delayed cerebral ischemia and clinical outcomes. Neurosurgery. 2018; 83(1):137-145
- Albertine P, Borofsky S, Brown D, Patel S, Lee W, Caputy A et al. The clinical significance of small subarachnoid hemorrhages. Emergency Radiology. 2016; 23(3):207-211
- 5. Allen BB, Forgacs PB, Fakhar MA, Wu X, Gerber LM, Boddu S et al. Association of seizure occurrence with aneurysm treatment modality in aneurysmal subarachnoid hemorrhage patients. Neurocritical Care. 2018; 29(1):62-68
- Anonymous. Corrections: Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study. BMJ. 2018; 362:k4079
- 7. Asano S, Hara T, Haisa T, Okamoto K, Kato T, Ohno H et al. Outcomes of 24 patients with subarachnoid hemorrhage aged 80 years or older in a single center. Clinical Neurology and Neurosurgery. 2007; 109(10):853-857
- Badalyan SH, Fanarjyan RV, Khachatryan TK, Grigorian AA. Modification of endovascular treatment of aneurysms of patent anterior communicating artery in absence of A1 segment hypoplasia. New Armenian Medical Journal. 2018; 12(1):11-19
- Basile-Filho A, Lago AF, Menegueti MG, Nicolini EA, Nunes RS, Lima SL et al. The use of SAPS 3, SOFA, and Glasgow Coma Scale to predict mortality in patients with subarachnoid hemorrhage: a retrospective cohort study. Medicine. 2018; 97(41):e12769
- 10. Baumann F, Khan N, Yonekawa Y. Patient and aneurysm characteristics in multiple intracranial aneurysms. Acta Neurochirurgica Supplement. 2008; 103:19-28
- 11. Bavinzski G, Killer M, Gruber A, Reinprecht A, Gross CE, Richling B. Treatment of basilar artery bifurcation aneurysms by using Guglielmi detachable coils: a 6-year experience. Journal of Neurosurgery. 1999; 90(5):843-852
- 12. Benes VR, Jurak L, Brabec R, Nechanicka N, Sercl M, Endrych L et al. Causes of poor outcome in patients admitted with good-grade subarachnoid haemorrhage. Acta Neurochirurgica. 2017; 159(3):559-565
- 13. Bian Y, Zhang P, Xiong Y, Xu F, Zhu S, Tang Z et al. Application of the APACHE II score to assess the condition of patients with critical neurological diseases. Acta Neurologica Belgica. 2015; 115(4):651-656
- 14. Bidzinski J, Marchel A, Pastuszko M. Acute surgery in intracranial aneurysms. Experience with 100 cases. Acta Neurochirurgica. 1990; 103(1-2):1-4

- 15. Bijlenga P, Gondar R, Schilling S, Morel S, Hirsch S, Cuony J et al. PHASES score for the management of intracranial aneurysm: a cross-sectional population-based retrospective study. Stroke. 2017; 48(8):2105-2112
- 16. Boerboom W, Heijenbrok-Kal MH, Khajeh L, van Kooten F, Ribbers GM. Long-term functioning of patients with aneurysmal subarachnoid hemorrhage: a 4-yr follow-up study. American Journal of Physical Medicine and Rehabilitation. 2016; 95(2):112-120
- 17. Bohnstedt BN, Kemp WJ, 3rd, Li Y, Payner TD, Horner TG, Leipzig TJ et al. Surgical treatment of 127 anterior choroidal artery aneurysms: a cohort study of resultant ischemic complications. Neurosurgery. 2013; 73(6):933-939; discussion 939-940
- Braun V, Rath S, Antoniadis G, Richter HP, Borm W. Treatment and outcome of aneurysmal subarachnoid haemorrhage in the elderly patient. Neuroradiology. 2005; 47(3):215-221
- 19. Bretz JS, Von Dincklage F, Woitzik J, Winkler MKL, Major S, Dreier JP et al. The Hijdra scale has significant prognostic value for the functional outcome of Fisher grade 3 patients with subarachnoid hemorrhage. Clinical Neuroradiology. 2017; 27(3):361-369
- 20. Cedzich C, Roth A. Neurological and psychosocial outcome after subarachnoid haemorrhage, and the hunt and hess scale as a predictor of clinical outcome. Zentralblatt für Neurochirurgie. 2005; 66(3):112-118
- 21. Cellerini M, Mangiafico S, Ammannati F, Ambrosanio G, Muto M, Galasso L et al. Ruptured, dissecting posterior inferior cerebellar artery aneurysms: endovascular treatment without parent vessel occlusion. Neuroradiology. 2008; 50(4):315-320
- 22. Chalouhi N, Teufack S, Chandela S, Dalyai R, Tjoumakaris S, Hasan DM et al. Aneurysmal subarachnoid hemorrhage in patients under 35-years-old: a single-center experience. Clinical Neurology and Neurosurgery. 2013; 115(6):665-668
- 23. Chalouhi N, Zanaty M, Whiting A, Tjoumakaris S, Hasan D, Ajiboye N et al. Treatment of ruptured intracranial aneurysms with the pipeline embolization device. Neurosurgery. 2015; 76(2):165-172; discussion 172
- 24. Chan KH, Ka-Kit Leung G, Lau KK, Liu S, Lui WM, Lau CP et al. Predictive value of the HAS-BLED score for the risk of recurrent intracranial hemorrhage after first spontaneous intracranial hemorrhage. World Neurosurgery. 2014; 82(1-2):e219-223
- 25. Cherian MP, Pranesh MB, Mehta P, Vijayan K, Baskar P, Kalyanpur TM et al. Outcomes of endovascular coiling of anterior communicating artery aneurysms in the early post-rupture period: a prospective analysis. Neurology India. 2011; 59(2):218-223
- 26. Cheung RT, Zou LY. Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage. Stroke. 2003; 34(7):1717-1722
- Chiang VL, Claus EB, Awad IA. Toward more rational prediction of outcome in patients with high-grade subarachnoid hemorrhage. Neurosurgery. 2000; 46(1):28-35; discussion 35-26
- 28. Choi HH, Ha EJ, Lee JJ, Yoo DH, Cho WS, Kim JE et al. Comparison of clinical outcomes of intracranial aneurysms: procedural rupture versus spontaneous rupture. American Journal of Neuroradiology. 2017; 38(11):2126-2130

- 29. Chotai S, Ahn SY, Moon HJ, Kim JH, Chung HS, Chung YG et al. Prediction of outcomes in young adults with aneurysmal subarachnoid hemorrhage. Neurologia Medico-Chirurgica. 2013; 53(3):157-162
- 30. Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, Copeland D et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke. 2001; 32(9):2012-2020
- 31. Claassen J, Vu A, Kreiter KT, Kowalski RG, Du EY, Ostapkovich N et al. Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Critical Care Medicine. 2004; 32(3):832-838
- 32. Cui JB, Chen QQ, Liu TT, Li SJ. Risk factors for early-onset ventilator-associated pneumonia in aneurysmal subarachnoid hemorrhage patients. Brazilian Journal of Medical and Biological Research. 2018; 51(7):e6830
- Czorlich P, Mende KC, Vettorazzi E, Regelsberger J, Westphal M, Schmidt NO. Validation of the modified Graeb score in aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica. 2015; 157(11):1867-1872; discussion 1872
- 34. Czorlich P, Sauvigny T, Ricklefs F, Kluge S, Vettorazzi E, Regelsberger J et al. The simplified acute physiology score II to predict hospital mortality in aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica. 2015; 157(12):2051-2059
- Dabilgou AA, Drave A, Kyelem JMA, Naon L, Napon C, Kabore J. Spontaneous subarachnoid haemorrhage in neurological setting in Burkina Faso: clinical profile, causes, and mortality risk factors. Neurology Research International. 2019; 2019:8492376
- 36. Dapaah A, Dow G, Lenthall R, McConachie N, Ingale H. Subarachnoid haemorrhage in patients >=75 years age: a two-year review of mortality, function and hydrocephalus. British Journal of Neurosurgery. 2019; 33(4):446-447
- 37. Darflinger R, Thompson LA, Zhang Z, Chao K. Recurrence, retreatment, and rebleed rates of coiled aneurysms with respect to the Raymond-Roy scale: a meta-analysis. Journal of Neurointerventional Surgery. 2016; 8(5):507-511
- Daverat P, Castel JP, Dartigues JF, Orgogozo JM. Death and functional outcome after spontaneous intracerebral hemorrhage. A prospective study of 166 cases using multivariate analysis. Stroke. 1991; 22(1):1-6
- 39. De Marchis GM, Lantigua H, Schmidt JM, Lord AS, Velander AJ, Fernandez A et al. Impact of premorbid hypertension on haemorrhage severity and aneurysm rebleeding risk after subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry. 2014; 85(1):56-59
- 40. de Oliveira Manoel AL, Mansur A, Silva GS, Germans MR, Jaja BN, Kouzmina E et al. Functional outcome after poor-grade subarachnoid hemorrhage: a single-center study and systematic literature review. Neurocritical Care. 2016; 25(3):338-350
- 41. De Santis A, Carnini F, Costa F, Fornari M, Galbusera F, Gaini SM et al. 237 ACoA aneurysms clipped or embolized. Outcomes measurement using the De Santis-CESE assessment tool. Journal of Neurosurgical Sciences. 2007; 51(4):159-168
- 42. De Santis A, Laiacona M, Barbarotto R, De Divitiis O, Migliore M, Capitani E. Neuropsychological outcome of operated cerebral aneurysms: prognostic factors on 148 patients. Acta Neurologica Scandinavica. 1998; 97(6):393-397

- 43. Dehdashti AR, Rilliet B, Rufenacht DA, de Tribolet N. Shunt-dependent hydrocephalus after rupture of intracranial aneurysms: a prospective study of the influence of treatment modality. Journal of Neurosurgery. 2004; 101(3):402-407
- 44. Delgado Almandoz JE, Jagadeesan BD, Moran CJ, Cross DT, 3rd, Zipfel GJ, Lee JM et al. Independent validation of the secondary intracerebral hemorrhage score with catheter angiography and findings of emergent hematoma evacuation. Neurosurgery. 2012; 70(1):131-140; discussion 140
- 45. Delgado Almandoz JE, Schaefer PW, Goldstein JN, Rosand J, Lev MH, Gonzalez RG et al. Practical scoring system for the identification of patients with intracerebral hemorrhage at highest risk of harboring an underlying vascular etiology: the Secondary Intracerebral Hemorrhage Score. American Journal of Neuroradiology. 2010; 31(9):1653-1660
- 46. Dengler NF, Diesing D, Sarrafzadeh A, Wolf S, Vajkoczy P. The Barrow Neurological Institute Scale revisited: predictive capabilities for cerebral infarction and clinical outcome in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2017; 81(2):341-349
- 47. Dengler NF, Sommerfeld J, Diesing D, Vajkoczy P, Wolf S. Prediction of cerebral infarction and patient outcome in aneurysmal subarachnoid hemorrhage: comparison of new and established radiographic, clinical and combined scores. European Journal of Neurology. 2018; 25(1):111-119
- 48. Deruty R, Pelissou-Guyotat I, Mottolese C, Amat D, Bognar L. Level of consciousness and age as prognostic factors in aneurysmal SAH. Acta Neurochirurgica. 1995; 132(1-3):1-8
- Diaz RJ, Wong JH. Clinical outcomes after endovascular coiling in high-grade aneurysmal hemorrhage. Canadian Journal of Neurological Sciences. 2011; 38(1):30-35
- 50. Diesing D, Wolf S, Sommerfeld J, Sarrafzadeh A, Vajkoczy P, Dengler NF. A novel score to predict shunt dependency after aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery. 2018; 128(5):1273-1279
- 51. Dijkland SA, Roozenbeek B, Brouwer PA, Lingsma HF, Dippel DW, Vergouw LJ et al. Prediction of 60-day case fatality after aneurysmal subarachnoid hemorrhage: external validation of a prediction model. Critical Care Medicine. 2016; 44(8):1523-1529
- 52. Dilvesi D, Cigic T, Papic V, Horvat I, Karan M, Vulekovic P. The Fisher Grade in predicting a degree of cerebral vasospasm in patients after intracranial aneurysm rupture. Vojnosanitetski Pregled. 2016; 73(4):349-352
- 53. Dinc N, Lescher S, Quick-Weller J, Berkefeld J, Platz J, Senft C et al. Outcome, prognostic factors, and follow-up results after subarachnoid hemorrhage from pericallosal artery aneurysms. World Neurosurgery. 2017; 99:566-571
- 54. Diringer MN, Edwards DF. Does modification of the Innsbruck and the Glasgow Coma Scales improve their ability to predict functional outcome? Archives of Neurology. 1997; 54(5):606-611
- 55. Dreier JP, Kremer C, Lammers G, Lohmann F, Hansen HC, Valdueza JM. Migraine and delayed ischaemic neurological deficit after subarachnoid haemorrhage in women: a case-control study. European Journal of Neurology. 2007; 14(12):1363-1368

- 56. Duan G, Wen W, Zuo Q, Yang P, Zhang L, Hong B et al. Development and validation of the procedure-related neurologic complications risk score for elderly patients with ruptured intracranial aneurysm undergoing endovascular treatment. World Neurosurgery. 2017; 100:648-657.e642
- 57. Duan G, Yang P, Li Q, Zuo Q, Zhang L, Hong B et al. Prognosis predicting score for endovascular treatment of aneurysmal subarachnoid hemorrhage: a risk modeling study for individual elderly patients. Medicine. 2016; 95(7):e2686
- 58. Dunham CM, Ransom KJ, Flowers LL, Siegal JD, Kohli CM. Cerebral hypoxia in severely brain-injured patients is associated with admission Glasgow Coma Scale score, computed tomographic severity, cerebral perfusion pressure, and survival. Journal of Trauma-Injury Infection & Critical Care. 2004; 56(3):482-489; discussion 489-491
- 59. Eagles ME, Jaja BNR, Macdonald RL. Incorporating a modified Graeb score to the Modified Fisher Scale for improved risk prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Neurosurgery. 2018; 82(3):299-305
- 60. Egashira Y, Yoshimura S, Enomoto Y, Ishiguro M, Asano T, Iwama T. Ultra-early endovascular embolization of ruptured cerebral aneurysm and the increased risk of hematoma growth unrelated to aneurysmal rebleeding. Journal of Neurosurgery. 2013; 118(5):1003-1008
- 61. Eide PK, Sorteberg W. Intracranial pressure levels and single wave amplitudes, Glasgow Coma Score and Glasgow Outcome Score after subarachnoid haemorrhage. Acta Neurochirurgica. 2006; 148(12):1267-1275; discussion 1275-1266
- 62. Elliott JP, Le Roux PD, Ransom G, Newell DW, Grady MS, Winn HR. Predicting length of hospital stay and cost by aneurysm grade on admission. Journal of Neurosurgery. 1996; 85(3):388-391
- 63. Elsayed M, Ibrahim R, Ahmed M, Badi S. Clinical outcome of primary subarachnoid hemorrhage and their determinants three week after admission, in Omdurman Teaching Hospital- Sudan from May 2013 - September 2013. Journal of the Neurological Sciences. 2019; 405 (Supplement):84
- 64. Elwatidy S. Prediction of outcome of subarachnoid hemorrhage. A proposed scoring system. Neurosciences. 2003; 8(4):225-228
- 65. Fauchier L, Chaize G, Gaudin AF, Vainchtock A, Rushton-Smith SK, Cotte FE. Predictive ability of HAS-BLED, HEMORR2HAGES, and ATRIA bleeding risk scores in patients with atrial fibrillation. A French nationwide cross-sectional study. International Journal of Cardiology. 2016; 217:85-91
- 66. Fernandez Perez I, Ois A, Cascales-Lahoz D, Avellaneda C, Cuadrado-Godia E, Rodriguez-Campello A et al. Long-term outcome after multiple aneurismal subarachnoid hemorrhage. European Stroke Journal. 2019; 4 (Supplement 1):652
- 67. Fiehler J, Boor S, Dorbecker R, Eckert B, Gotz F, Hartmann M et al. Table for Optimization and Monitoring of Cerebral Aneurysm Therapy (TOMCAT): results and implications of the lead-in phase. Clinical Neuroradiology. 2008; 18(3):168-176
- 68. Flores G, Amaral-Nieves N, de Jesus A, Feliciano C. Descriptive study of aneurysmal and nonaneurysmal subarachnoid hemorrhage and the role of confirmative digital subtraction angiography in patients with nonaneurysmal subarachnoid in Puerto Rico. World Neurosurgery. 2020; 134:e481-e486

- 69. Foreman PM, Hendrix P, Harrigan MR, Fisher WS, 3rd, Vyas NA, Lipsky RH et al. PHASES score applied to a prospective cohort of aneurysmal subarachnoid hemorrhage patients. Journal of Clinical Neuroscience. 2018; 53:69-73
- 70. Fountas KN, Kapsalaki EZ, Lee GP, Machinis TG, Grigorian AA, Robinson JS et al. Terson hemorrhage in patients suffering aneurysmal subarachnoid hemorrhage: predisposing factors and prognostic significance. Journal of Neurosurgery. 2008; 109(3):439-444
- 71. Franke CL, van Swieten JC, Algra A, van Gijn J. Prognostic factors in patients with intracerebral haematoma. Journal of Neurology, Neurosurgery and Psychiatry. 1992; 55(8):653-657
- 72. Friedman JA, Goerss SJ, Meyer FB, Piepgras DG, Pichelmann MA, McIver JI et al. Volumetric quantification of Fisher Grade 3 aneurysmal subarachnoid hemorrhage: a novel method to predict symptomatic vasospasm on admission computerized tomography scans. Journal of Neurosurgery. 2002; 97(2):401-407
- 73. Frontera JA, Claassen J, Schmidt JM, Wartenberg KE, Temes R, Connolly ES, Jr. et al. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified fisher scale. Neurosurgery. 2006; 59(1):21-27; discussion 21-27
- 74. Galea JP, Dulhanty L, Patel HC, UK & Ireland Subarachnoid Hemorrhage Database Collaborators. Predictors of outcome in aneurysmal subarachnoid hemorrhage patients: observations from a multicenter data set. Stroke. 2017; 48(11):2958-2963
- 75. Gallas S, Pasco A, Cottier JP, Gabrillargues J, Drouineau J, Cognard C et al. A multicenter study of 705 ruptured intracranial aneurysms treated with Guglielmi detachable coils. American Journal of Neuroradiology. 2005; 26(7):1723-1731
- 76. Garbossa D, Panciani PP, Fornaro R, Crobeddu E, Marengo N, Fronda C et al. Subarachnoid hemorrhage in elderly: advantages of the endovascular treatment. Geriatrics & Gerontology International. 2012; 12(1):46-49
- 77. Gerber CJ, Lang DA, Neil-Dwyer G, Smith PW. A simple scoring system for accurate prediction of outcome within four days of a subarachnoid haemorrhage. Acta Neurochirurgica. 1993; 122(1-2):11-22
- Germanson TP, Lanzino G, Kongable GL, Torner JC, Kassell NF. Risk classification after aneurysmal subarachnoid hemorrhage. Surgical Neurology. 1998; 49(2):155-163
- Ghelmez D, Tuta S, Popa C. Prognostic factors in hypertensive intracerebral hemorrhage - Study on a group of 80 patients. Romanian Journal of Neurology. 2013; 12(4):202-205
- 80. Ghosh S, Dey S, Maltenfort M, Vibbert M, Urtecho J, Rincon F et al. Impact of Hunt-Hess grade on the glycemic status of aneurysmal subarachnoid hemorrhage patients. Neurology India. 2012; 60(3):283-287
- Gilsbach JM, Harders AG. Morbidity and mortality after early aneurysm surgery--a prospective study with nimodipine prevention. Acta Neurochirurgica. 1989; 96(1-2):1-7
- 82. Giraldo EA, Mandrekar JN, Rubin MN, Dupont SA, Zhang Y, Lanzino G et al. Timing of clinical grade assessment and poor outcome in patients with aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery. 2012; 117(1):15-19

- 83. Goldberg J, Schoeni D, Mordasini P, Z'Graggen W, Gralla J, Raabe A et al. Survival and outcome after poor-grade aneurysmal subarachnoid hemorrhage in elderly patients. Stroke. 2018; 49(12):2883-2889
- 84. Greving JP, Wermer MJ, Brown RD, Jr., Morita A, Juvela S, Yonekura M et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurology. 2014; 13(1):59-66
- Gruber A, Ungersbock K, Reinprecht A, Czech T, Gross C, Bednar M et al. Evaluation of cerebral vasospasm after early surgical and endovascular treatment of ruptured intracranial aneurysms. Neurosurgery. 1998; 42(2):258-267; discussion 267-258
- 86. Grunwald IQ, Kamran M, Corkill RA, Kuhn AL, Choi IS, Turnbull S et al. Simple measurement of aneurysm residual after treatment: the SMART scale for evaluation of intracranial aneurysms treated with flow diverters. Acta Neurochirurgica. 2012; 154(1):21-26
- 87. Guresir E, Beck J, Vatter H, Setzer M, Gerlach R, Seifert V et al. Subarachnoid hemorrhage and intracerebral hematoma: incidence, prognostic factors, and outcome. Neurosurgery. 2008; 63(6):1088-1093; discussion 1093-1084
- Ha SK, Lim DJ, Kang SH, Kim SH, Park JY, Chung YG. Analysis of multiple factors affecting surgical outcomes of proximal middle cerebral artery aneurysms. Clinical Neurology and Neurosurgery. 2011; 113(5):362-367
- 89. Hamid RS, Tanveer ul H, Chishti I, Azeemuddin M, Sajjad Z, Salam B. Treatment of intracranial aneurysms using detachable coils; initial results at a University hospital in Pakistan. Journal of the Pakistan Medical Association. 2010; 60(8):638-641
- 90. Hanel RA, Xavier AR, Mohammad Y, Kirmani JF, Yahia AM, Qureshi AI. Outcome following intracerebral hemorrhage and subarachnoid hemorrhage. Neurological Research. 2002; 24(Suppl 1):S58-62
- 91. Haug T, Sorteberg A, Finset A, Lindegaard KF, Lundar T, Sorteberg W. Cognitive functioning and health-related quality of life 1 year after aneurysmal subarachnoid hemorrhage in preoperative comatose patients (Hunt and Hess Grade V patients). Neurosurgery. 2010; 66(3):475-484; discussion 484-475
- Haupt WF, Hojer C, Pawlik G. Prognostic value of evoked potentials and clinical grading in primary subarachnoid haemorrhage. Acta Neurochirurgica. 1995; 137(3-4):146-150
- 93. Heeley E, Anderson CS, Woodward M, Arima H, Robinson T, Stapf C et al. Poor utility of grading scales in acute intracerebral hemorrhage: results from the INTERACT2 trial. International Journal of Stroke. 2015; 10(7):1101-1107
- Hellawell DJ, Taylor R, Pentland B. Persisting symptoms and carers' views of outcome after subarachnoid haemorrhage. Clinical Rehabilitation. 1999; 13(4):333-340
- 95. Hemphill JC, 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001; 32(4):891-897
- 96. Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery. 2004; 101(3):408-416

- 97. Hijdra A, van Gijn J, Nagelkerke NJ, Vermeulen M, van Crevel H. Prediction of delayed cerebral ischemia, rebleeding, and outcome after aneurysmal subarachnoid hemorrhage. Stroke. 1988; 19(10):1250-1256
- 98. Hilditch CA, Brinjikji W, Tsang AC, Nicholson P, Kostynskyy A, Tymianski M et al. Application of PHASES and ELAPSS scores to ruptured cerebral aneurysms: how many would have been conservatively managed? Journal of Neurosurgical Sciences. 2018; https://dx.doi.org/10.23736/S0390-5616.18.04498-3
- 99. Hong J, Rubino S, Lollis SS. Prehospital Glasgow coma score predicts emergent intervention following helicopter transfer for spontaneous subarachnoid hemorrhage. World Neurosurgery. 2016; 87:422-430
- 100. Hostettler IC, Muroi C, Richter JK, Schmid J, Neidert MC, Seule M et al. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis. Journal of Neurosurgery. 2018; 129(6):1499-1510
- 101. Huang JA, Wang PY, Chang MC, Chia LG, Yang DY, Wu TC. Allen score in clinical diagnosis of intracranial hemorrhage. Chinese Medical Journal. 1994; 54(6):407-411
- 102. Hutchinson PJ, Power DM, Tripathi P, Kirkpatrick PJ. Outcome from poor grade aneurysmal subarachnoid haemorrhage--which poor grade subarachnoid haemorrhage patients benefit from aneurysm clipping? British Journal of Neurosurgery. 2000; 14(2):105-109
- 103. Hutter BO, Kreitschmann-Andermahr I, Gilsbach JM. Health-related quality of life after aneurysmal subarachnoid hemorrhage: impacts of bleeding severity, computerized tomography findings, surgery, vasospasm, and neurological grade. Journal of Neurosurgery. 2001; 94(2):241-251
- 104. Ikawa F, Ohbayashi N, Imada Y, Matsushige T, Kajihara Y, Inagawa T et al. Analysis of subarachnoid hemorrhage according to the Japanese Standard Stroke Registry Study--incidence, outcome, and comparison with the International Subarachnoid Aneurysm Trial. Neurologia Medico-Chirurgica. 2004; 44(5):275-276
- 105. Inagawa T, Shibukawa M, Hidaka T. A comparison of computed tomography-based scales with and without consideration of the presence or absence of intraventricular hemorrhage in patients with aneurysmal subarachnoid hemorrhage. World Neurosurgery. 2018; 114:e926-e937
- 106. Inamasu J, Sadato A, Oheda M, Hayakawa M, Nakae S, Ohmi T et al. Improvement in patient outcomes following endovascular treatment of WFNS grade V subarachnoid haemorrhage from 2000 to 2014. Journal of Clinical Neuroscience. 2016; 27:114-118
- 107. Iosif C, Di Maria F, Sourour N, Degos V, Bonneville F, Biondi A et al. Is a high initial World Federation of Neurosurgery (WFNS) grade really associated with a poor clinical outcome in elderly patients with ruptured intracranial aneurysms treated with coiling? Journal of Neurointerventional Surgery. 2014; 6(4):286-290
- 108. Ironside N, Buell TJ, Chen CJ, Kumar JS, Paisan GM, Sokolowski JD et al. Highgrade aneurysmal subarachnoid hemorrhage: predictors of functional outcome. World Neurosurgery. 2019; 125:e723-e728
- 109. Jabbarli R, Reinhard M, Roelz R, Shah M, Niesen WD, Kaier K et al. Early identification of individuals at high risk for cerebral infarction after aneurysmal subarachnoid hemorrhage: the BEHAVIOR score. Journal of Cerebral Blood Flow and Metabolism. 2015; 35(10):1587-1592

- 110. Jabbarli R, Reinhard M, Roelz R, Shah M, Niesen WD, Kaier K et al. Outcome prediction after non-aneurysmal non-traumatic subarachnoid hemorrhage. Current Neurovascular Research. 2015; 12(3):269-276
- 111. Jain R, Deveikis J, Thompson BG. Endovascular management of poor-grade aneurysmal subarachnoid hemorrhage in the geriatric population. American Journal of Neuroradiology. 2004; 25(4):596-600
- 112. Jaja BN, Cusimano MD, Etminan N, Hanggi D, Hasan D, Ilodigwe D et al. Clinical prediction models for aneurysmal subarachnoid hemorrhage: a systematic review. Neurocritical Care. 2013; 18(1):143-153
- 113. Jaja BNR, Saposnik G, Lingsma HF, Macdonald E, Thorpe KE, Mamdani M et al. Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study. BMJ. 2018; 360:j5745
- 114. Jamil SA, Khan AS, Akturk Z. Predictors of outcome for non-traumatic intracerebral hemorrhage. Neurosciences. 2008; 13(3):263-267
- 115. Jamjoom A, Jamjoom ZA, Stranjalis G, Cummins B, Torrens M. The outcome of surgery of aneurysmal subarachnoid haemorrhage. British Journal of Clinical Practice. 1993; 47(3):136-140
- 116. Juvela S. Alcohol consumption as a risk factor for poor outcome after aneurysmal subarachnoid haemorrhage. BMJ. 1992; 304(6843):1663-1667
- 117. Karamanakos PN, von Und Zu Fraunberg M, Bendel S, Huttunen T, Kurki M, Hernesniemi J et al. Risk factors for three phases of 12-month mortality in 1657 patients from a defined population after acute aneurysmal subarachnoid hemorrhage. World Neurosurgery. 2012; 78(6):631-639
- 118. Katsuki M, Yamamoto Y, Uchiyama T, Wada N, Kakizawa Y. Clinical characteristics of aneurysmal subarachnoid hemorrhage in the elderly over 75; would temporal muscle be a potential prognostic factor as an indicator of sarcopenia? Clinical Neurology and Neurosurgery. 2019; 186:105535
- 119. Kazumata K, Kamiyama H, Ishikawa T. Reference table predicting the outcome of subarachnoid hemorrhage in the elderly, stratified by age. Journal of Stroke and Cerebrovascular Diseases. 2006; 15(1):14-17
- 120. Khandelwal P, Kato Y, Sano H, Yoneda M, Kanno T. Treatment of ruptured intracranial aneurysms: our approach. Minimally Invasive Neurosurgery. 2005; 48(6):325-329
- 121. Kikkawa Y, Ikeda T, Takeda R, Nakajima H, Ogura T, Ooigawa H et al. Results of early high-flow bypass and trapping for ruptured blood blister-like aneurysms of the internal carotid artery. World Neurosurgery. 2017; 105:470-477
- 122. Kilic M, Yilmaz I, Tanriverdi O, Akgun C, Musluman AM, Yilmaz A. Factors that affect postoperative hydrocephalus development in aneurysmal subarachnoid hemorrhage: a clinical study. Turkish Neurosurgery. 2017; 27(3):353-361
- 123. Koc RK, Akdemir H, Oktem IS, Meral M, Menku A. Acute subdural hematoma: outcome and outcome prediction. Neurosurgical Review. 1997; 20(4):239-244
- 124. Kollegger H, Zeiler K, Oder W, Dal-Bianco P, Schmidbauer M, Deecke L. Subarachnoid haemorrhage: prognostic factors as related to working capacity. International Disability Studies. 1989; 11(2):57-60

- 125. Konczalla J, Brawanski N, Platz J, Senft C, Kashefiolasl S, Seifert V. Aneurysm location as a prognostic outcome factor after subarachnoid hemorrhage from internal carotid artery aneurysms and potential impact for further experimental subarachnoid hemorrhage models. World Neurosurgery. 2016; 92:273-278
- 126. Konczalla J, Seifert V, Beck J, Guresir E, Vatter H, Raabe A et al. Outcome after Hunt and Hess Grade V subarachnoid hemorrhage: a comparison of pre-coiling era (1980-1995) versus post-ISAT era (2005-2014). Journal of Neurosurgery. 2018; 128(1):100-110
- Kranthi S, Sahu BP, Aniruddh P. Factors affecting outcome in poor grade subarachnoid haemorrhage: an institutional study. Asian Journal of Neurosurgery. 2016; 11(4):365-371
- 128. Kremer C, Groden C, Lammers G, Weineck G, Zeumer H, Hansen HC. Outcome after endovascular therapy of ruptured intracranial aneurysms: morbidity and impact of rebleeding. Neuroradiology. 2002; 44(11):942-945
- 129. Kulwin C, Bohnstedt BN, Payner TD, Leipzig TJ, Scott JA, DeNardo AJ et al. Aneurysmal acute subdural hemorrhage: prognostic factors associated with treatment. Journal of Clinical Neuroscience. 2014; 21(8):1333-1336
- 130. Kumar R, Vaid VK, Kalra SK, Behari S, Mahapatra AK. Outcome predicting factors in intracranial aneurysms: defining the complex aneurysms. Pan Arab Journal of Neurosurgery. 2010; 14(2):29-37+139
- 131. Kurtz P, Taccone FS, Goncalves B, Soares M, Bozza F, Medeiros Machado M et al. Predictors of mortality after subarachnoid hemorrhage: a restrospective multicenter cohort study. Critical Care. 2019; 23(Suppl 2):72
- 132. Kusumi M, Yamada M, Kitahara T, Endo M, Kan S, lida H et al. Rerupture of cerebral aneurysms during angiography a retrospective study of 13 patients with subarachnoid hemorrhage. Acta Neurochirurgica. 2005; 147(8):831-837
- 133. Kutsuna N, Makita K, Goto K, Hirayama K, Takahama M, Kido G et al. Observational study of treated non-traumatic subarachnoid hemorrhage in nonagenarians. Interdisciplinary Neurosurgery. 2018; 11:47-50
- 134. Lagares A, Gomez PA, Alen JF, Lobato RD, Rivas JJ, Alday R et al. A comparison of different grading scales for predicting outcome after subarachnoid haemorrhage. Acta Neurochirurgica. 2005; 147(1):5-16
- 135. Lagares A, Gomez PA, Lobato RD, Alen JF, Alday R, Campollo J. Prognostic factors on hospital admission after spontaneous subarachnoid haemorrhage. Acta Neurochirurgica. 2001; 143(7):665-672
- 136. Laidlaw JD, Siu KH. Poor-grade aneurysmal subarachnoid hemorrhage: outcome after treatment with urgent surgery. Neurosurgery. 2003; 53(6):1275-1280; discussion 1280-1272
- 137. Le Roux PD, Elliott JP, Newell DW, Grady MS, Winn HR. Predicting outcome in poorgrade patients with subarachnoid hemorrhage: a retrospective review of 159 aggressively managed cases. Journal of Neurosurgery. 1996; 85(1):39-49
- Lee CS, Park JU, Kang JG, Lim YC. The clinical characteristics and treatment outcomes of patients with ruptured middle cerebral artery aneurysms associated with intracerebral hematoma. Journal of Cerebrovascular & Endovascular Neurosurgery. 2012; 14(3):181-185

- 139. Lee KC, Huh SK, Park HS, Shin YS, Lee KS. Management of poor-grade patients with ruptured intracranial aneurysm. Keio Journal of Medicine. 1997; 46(2):69-73
- 140. Lee VH, Ouyang B, John S, Conners JJ, Garg R, Bleck TP et al. Risk stratification for the in-hospital mortality in subarachnoid hemorrhage: the HAIR score. Neurocritical Care. 2014; 21(1):14-19
- 141. Leira EC, Davis PH, Martin CO, Torner JC, Yoo B, Weeks JB et al. Improving prediction of outcome in "good grade" subarachnoid hemorrhage. Neurosurgery. 2007; 61(3):470-473; discussion 473-474
- 142. Leira EC, Davis PH, Martin CO, Yoo B, Torner J, Weeks J. A shortened baseline NIH stroke scale predicts 3-month outcome after subarachnoid hemorrhage. Stroke. 2006; 37(2):640
- 143. Lerch C, Yonekawa Y, Muroi C, Bjeljac M, Keller E. Specialized neurocritical care, severity grade, and outcome of patients with aneurysmal subarachnoid hemorrhage. Neurocritical Care. 2006; 5(2):85-92
- 144. Liao CC, Huang YH, Fang PH, Lee TC. Surgical and endovascular treatment for ruptured anterior circulation cerebral aneurysms: a comparison of outcomes--a single centre study from Taiwan. International Journal Of Surgery. 2013; 11(9):998-1001
- 145. Liao L, Derelle AL, Merlot I, Civit T, Audibert G, Tonnelet R et al. Endovascular treatment of distal anterior cerebral artery aneurysms: long-term results. Journal of Neuroradiology. 2020; 47(1):33-37
- 146. Lin CL, Kwan AL, Chuang MC, Howng SL. Outcome of spontaneous subarachnoid hemorrhage of unknown etiology. Kaohsiung Journal of Medical Sciences. 1998; 14(10):625-632
- 147. Lin CL, Kwan AL, Howng SL. Acute hydrocephalus and chronic hydrocephalus with the need of postoperative shunting after aneurysmal subarachnoid hemorrhage. Kaohsiung Journal of Medical Sciences. 1999; 15(3):137-145
- 148. Lin CL, Kwan AL, Howng SL. Prognosis of spontaneous intracerebral hemorrhage in hemodialysis patients. Kaohsiung Journal of Medical Sciences. 1999; 15(8):484-490
- 149. Lin N, Lanzino G, Lopes DK, Arthur AS, Ogilvy CS, Ecker RD et al. Treatment of distal anterior circulation aneurysms with the pipeline embolization device: a us multicenter experience. Neurosurgery. 2016; 79(1):14-22
- 150. Lindvall P, Runnerstam M, Birgander R, Koskinen LO. The Fisher grading correlated to outcome in patients with subarachnoid haemorrhage. British Journal of Neurosurgery. 2009; 23(2):188-192
- 151. Lip GY, Lin HJ, Hsu HC, Su TC, Chen MF, Lee YT et al. Comparative assessment of the HAS-BLED score with other published bleeding risk scoring schemes, for intracranial haemorrhage risk in a non-atrial fibrillation population: the Chin-Shan Community Cohort Study. International Journal of Cardiology. 2013; 168(3):1832-1836
- 152. Lisk DR, Pasteur W, Rhoades H, Putnam RD, Grotta JC. Early presentation of hemispheric intracerebral hemorrhage: prediction of outcome and guidelines for treatment allocation. Neurology. 1994; 44(1):133-139
- 153. Liu HM, Wong HF, Lee KW, Tu YK, Yeh YS, Chou CW et al. Taiwan aneurysm registry: multivariate analysis of two-month, one-year, and two-year outcomes after endovascular and microsurgical treatment of ruptured aneurysms. Interventional Neuroradiology. 2013; 19(1):35-42

- 154. Lo BW, Fukuda H, Angle M, Teitelbaum J, Macdonald RL, Farrokhyar F et al. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis. Surgical Neurology International. 2016; 7:73
- 155. Lo BW, Fukuda H, Angle M, Teitelbaum J, Macdonald RL, Farrokhyar F et al. Clinical outcome prediction in aneurysmal subarachnoid hemorrhage Alterations in brainbody interface. Surgical Neurology International. 2016; 7(Suppl 18):S527-537
- 156. Lo BW, Fukuda H, Nishimura Y, Farrokhyar F, Thabane L, Levine MA. Systematic review of clinical prediction tools and prognostic factors in aneurysmal subarachnoid hemorrhage. Surgical Neurology International. 2015; 6:135
- 157. Lo BW, Macdonald RL, Baker A, Levine MA. Clinical outcome prediction in aneurysmal subarachnoid hemorrhage using Bayesian neural networks with fuzzy logic inferences. Computational and Mathematical Methods in Medicine. 2013; 2013:904860
- 158. Luo M, Yang S, Ding G, Xiao Q. Endovascular coiling versus surgical clipping for aneurysmal subarachnoid hemorrhage: a meta-analysis of randomized controlled trials. Journal of Research in Medical Sciences. 2019; 24:88
- 159. Mader TJ, Mandel A. A new clinical scoring system fails to differentiate hemorrhagic from ischemic stroke when used in the acute care setting. Journal of Emergency Medicine. 1998; 16(1):9-13
- 160. Maragkos GA, Enriquez-Marulanda A, Salem MM, Ascanio LC, Chida K, Gupta R et al. Proposal of a grading system for predicting discharge mortality and functional outcome in patients with aneurysmal subarachnoid hemorrhage. World Neurosurgery. 2019; 121:e500-e510
- 161. Meling TR, Sorteberg A, Bakke SJ, Slettebo H, Hernesniemi J, Sorteberg W. Blood blister-like aneurysms of the internal carotid artery trunk causing subarachnoid hemorrhage: treatment and outcome. Journal of Neurosurgery. 2008; 108(4):662-671
- 162. Miyazawa N, Nukui H, Horikoshi T, Yagishita T, Sugita M, Kanemaru K. Surgical management of aneurysms of the bifurcation of the internal carotid artery. Clinical Neurology and Neurosurgery. 2002; 104(2):103-114
- 163. Mocco J, Ransom ER, Komotar RJ, Schmidt JM, Sciacca RR, Mayer SA et al. Preoperative prediction of long-term outcome in poor-grade aneurysmal subarachnoid hemorrhage. Neurosurgery. 2006; 59(3):529-538
- 164. Mortimer AM, Bradley MD, Mews P, Molyneux AJ, Renowden SA. Endovascular treatment of 300 consecutive middle cerebral artery aneurysms: clinical and radiologic outcomes. American Journal of Neuroradiology. 2014; 35(4):706-714
- 165. Mouchtouris N, Lang MJ, Barkley K, Barros G, Turpin J, Sweid A et al. Predictors of hospital-associated complications prolonging ICU stay in patients with low-grade aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery. 2020; 132(6):1829-1835
- 166. Muengtaweepongsa S, Prapa-Anantachai P, Dharmasaroja PA, Rukkul P, Yodvisitsak P. External validation of the SEDAN score: the real world practice of a single center. Annals of Indian Academy of Neurology. 2015; 18(2):181-186
- 167. Murphy A, Lee TY, Marotta TR, Spears J, Macdonald RL, Aviv RI et al. Prospective multicenter study of changes in MTT after aneurysmal SAH and relationship to delayed cerebral ischemia in patients with good- and poor-grade admission status. American Journal of Neuroradiology. 2018; 39(11):2027-2033

- 168. Mushtaq M, Khan Z, Afridi NM, Shah AW. Predictive value of glasgow coma scale (GCS) scores in patients presenting with spontaneous intracerebral hemorrhage. Medical Forum Monthly. 2017; 28(10):48-50
- 169. Myles GL, Malkoff MD, Perry AG, Bucholz RD, Gomez CR. Therapeutic Intervention Scoring System used in the care of patients in pentobarbital-induced coma to determine nurse-patient ratios. American Journal of Critical Care. 1996; 5(1):74-79
- 170. Nakagawa M, Sugiu K, Tokunaga K, Sakamoto C, Fujiwara K. The proposal of subgroups for grade V on World Federation of Neurologic Surgeons grading for subarachnoid hemorrhage. Journal of Neurosurgical Sciences. 2013; 57(4):303-306
- 171. Nanda A, Vannemreddy P. Management of intracranial aneurysms: factors that influence clinical grade and surgical outcome. Southern Medical Journal. 2003; 96(3):259-263
- 172. Nanda A, Vannemreddy P. Surgical management of unruptured aneurysms: prognostic indicators. Surgical Neurology. 2002; 58(1):13-19; discussion 19-20
- 173. Nastasovic T, Milakovic B, Stosic M, Eric Marinkovic J, Ilic R, Milicevic M et al. Predictors of unfavourable outcome in aneurysmal subarachnoid haemorrhage. Neurologia i Neurochirurgia Polska. 2019; 53(6):421-427
- 174. National Institute for Health and Care Excellence. Developing NICE guidelines: the manual [updated October 2018]. London. National Institute for Health and Care Excellence, 2014. Available from: http://www.nice.org.uk/article/PMG20/chapter/1%20Introduction%20and%20overview
- 175. Naval NS, Chang T, Caserta F, Kowalski RG, Carhuapoma JR, Tamargo RJ. Improved aneurysmal subarachnoid hemorrhage outcomes: a comparison of 2 decades at an academic center. Journal of Critical Care. 2013; 28(2):182-188
- 176. Navalitloha Y, Taechoran C, O'Chareon S. Outcome in treatment of intracranial aneurysm 10 years retrospective study at King Chulalongkorn Memorial Hospital. Journal of the Medical Association of Thailand. 2000; 83(10):1150-1157
- 177. Neidert MC, Maldaner N, Stienen MN, Roethlisberger M, Zumofen DW, D'Alonzo D et al. The Barrow Neurological Institute Grading Scale as a predictor for delayed cerebral ischemia and outcome after aneurysmal subarachnoid hemorrhage: data from a nationwide patient registry (Swiss SOS). Neurosurgery. 2018; 83(6):1286-1293
- 178. Nemoto M, Masuda H, Sakaeyama Y, Okonogi S, Node Y, Ueda K et al. Clinical characteristics of subarachnoid hemorrhage with an intracerebral hematoma and prognostic factors. Journal of Stroke and Cerebrovascular Diseases. 2018; 27(5):1160-1166
- 179. Niemann DB, Wills AD, Maartens NF, Kerr RS, Byrne JV, Molyneux AJ. Treatment of intracerebral hematomas caused by aneurysm rupture: coil placement followed by clot evacuation. Journal of Neurosurgery. 2003; 99(5):843-847
- Nossek E, Setton A, Karimi R, Dehdashti AR, Langer DJ, Chalif DJ. Analysis of superiorly projecting anterior communicating artery aneurysms: anatomy, techniques, and outcome. A proposed classification system. Neurosurgical Review. 2016; 39(2):225-235; discussion 235
- 181. O'Sullivan MG, Dorward N, Whittle IR, Steers AJW, Miller JD. Management and longterm outcome following subarachnoid haemorrhage and intracranial aneurysm surgery in elderly patients: An audit of 199 consecutive cases. British Journal of Neurosurgery. 1994; 8(1):23-30

- 182. O'Sullivan MG, Sellar R, Statham PF, Whittle IR. Management of poor grade patients after subarachnoid haemorrhage: the importance of neuroradiological findings on clinical outcome. British Journal of Neurosurgery. 1996; 10(5):445-452
- 183. Oder W, Kollegger H, Zeiler K, Dal-Bianco P, Wessely P, Deecke L. Subarachnoid hemorrhage of unknown etiology: early prognostic factors for long-term functional capacity. Journal of Neurosurgery. 1991; 74(4):601-605
- 184. Ogden M, Bakar B, Karagedik MI, Bulut IU, Cetin C, Aydin G et al. Analysis of biochemical laboratory values to determine etiology and prognosis in patients with subarachnoid hemorrhage: a clinical study. Neurological Research. 2019; 41(2):156-167
- Ogilvy CS, Carter BS. A proposed comprehensive grading system to predict outcome for surgical management of intracranial aneurysms. Neurosurgery. 1998; 42(5):959-968; discussion 968-970
- 186. Ogilvy CS, Cheung AC, Mitha AP, Hoh BL, Carter BS. Outcomes for surgical and endovascular management of intracranial aneurysms using a comprehensive grading system. Neurosurgery. 2006; 59(5):1037-1042; discussion 1043
- 187. Oh JW, Lee JY, Lee MS, Jung HH, Whang K, Brain Research G. The meaning of the prognostic factors in ruptured middle cerebral artery aneurysm with intracerebral hemorrhage. Journal of Korean Neurosurgical Society. 2012; 52(2):80-84
- 188. Ois A, Vivas E, Figueras-Aguirre G, Guimaraens L, Cuadrado-Godia E, Avellaneda C et al. Misdiagnosis worsens prognosis in subarachnoid hemorrhage with good Hunt and Hess score. Stroke. 2019; 50(11):3072-3076
- 189. Olsen MH, Orre M, Leisner ACW, Rasmussen R, Bache S, Welling KL et al. Delayed cerebral ischaemia in patients with aneurysmal subarachnoid haemorrhage: functional outcome and long-term mortality. Acta Anaesthesiologica Scandinavica. 2019; 63(9):1191-1199
- 190. Orakdogen M, Emon ST, Somay H, Engin T, Ates O, Berkman MZ. Prognostic factors in patients who underwent aneurysmal clipping due to spontaneous subarachnoid hemorrhage. Turkish Neurosurgery. 2016; 26(6):840-848
- 191. Osawa M, Hongo K, Tanaka Y, Nakamura Y, Kitazawa K, Kobayashi S. Results of direct surgery for aneurysmal subarachnoid haemorrhage: outcome of 2055 patients who underwent direct aneurysm surgery and profile of ruptured intracranial aneurysms. Acta Neurochirurgica. 2001; 143(7):655-664
- 192. Oshiro EM, Walter KA, Piantadosi S, Witham TF, Tamargo RJ. A new subarachnoid hemorrhage grading system based on the Glasgow Coma Scale: a comparison with the Hunt and Hess and World Federation of Neurological Surgeons Scales in a clinical series. Neurosurgery. 1997; 41(1):140-147; discussion 147-148
- 193. Ota N, Noda K, Hatano Y, Hashimoto A, Miyazaki T, Kondo T et al. Preoperative predictors and prognosticators after microsurgical clipping of poor-grade subarachnoid hemorrhage: a retrospective study. World Neurosurgery. 2019; 125:e582-e592
- 194. Otani N, Nawashiro H, Wada K, Nagatani K, Takeuchi S, Kobayashi H et al. Surgical results after primary decompressive craniectomy in poor-grade aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica Supplement. 2013; 118:269-272
- 195. Otani N, Takasato Y, Masaoka H, Hayakawa T, Yoshino Y, Yatsushige H et al. Surgical outcome following decompressive craniectomy for poor-grade aneurysmal

subarachnoid hemorrhage in patients with associated massive intracerebral or Sylvian hematomas. Cerebrovascular Diseases. 2008; 26(6):612-617

- 196. Ozono I, Ikawa F, Hidaka T, Yoshiyama M, Matsuda S, Michihata N et al. Risk factor for poor outcome of the elderly patients with aneurysmal subarachnoid hemorrhage based on the post hoc analysis of modified WFNS study. World Neurosurgery. 2020; 141:e466-e473
- 197. Passier PECA, Anne Visser-Meily JMA, Rinkel GJE, Lindeman E, Post MWM. Life satisfaction and return to work after aneurysmal subarachnoid hemorrhage. Journal of Stroke and Cerebrovascular Diseases. 2011; 20(4):324-329
- 198. Payner TD, Melamed I, Ansari S, Leipzig TJ, Scott JA, Denardo AJ et al. Trends over time in the management of 2253 patients with cerebral aneurysms: a single practice experience. Surgical Neurology International. 2011; 2:110
- 199. Pereira AR, Sanchez-Pena P, Biondi A, Sourour N, Boch AL, Colonne C et al. Predictors of 1-year outcome after coiling for poor-grade subarachnoid aneurysmal hemorrhage. Neurocritical Care. 2007; 7(1):18-26
- 200. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010; 138(5):1093-1100
- 201. Proust F, Bracard S, Thines L, Pelissou-Guyotat I, Leclerc X, Penchet G et al. Functional outcome 1 year after aneurysmal subarachnoid hemorrhage due to ruptured intracranial aneurysm in elderly patients. Neurochirurgie. 2020; 66(1):1-8
- 202. Proust F, Debono B, Hannequin D, Gerardin E, Clavier E, Langlois O et al. Treatment of anterior communicating artery aneurysms: complementary aspects of microsurgical and endovascular procedures. Journal of Neurosurgery. 2003; 99(1):3-14
- 203. Rabinstein AA, Friedman JA, Nichols DA, Pichelmann MA, McClelland RL, Manno EM et al. Predictors of outcome after endovascular treatment of cerebral vasospasm. American Journal of Neuroradiology. 2004; 25(10):1778-1782
- 204. Raj R, Rautio R, Pekkola J, Rahi M, Sillanpaa M, Numminen J. Treatment of ruptured intracranial aneurysms using the woven Endobridge device: a two-center experience. World Neurosurgery. 2019; 123:e709-e716
- 205. Ravindran K, Enriquez-Marulanda A, Kan PTM, Renieri L, Limbucci N, Mangiafico S et al. Use of flow diversion for the treatment of distal circulation aneurysms: a multicohort study. World Neurosurgery. 2018; 118:e825-833
- 206. Reponen E, Tuominen H, Hernesniemi J, Korja M. Modified Rankin scale and shortterm outcome in cranial neurosurgery: a prospective and unselected cohort study. World Neurosurgery. 2016; 91:567-573.e567
- 207. Reponen E, Tuominen H, Korja M. Evidence for the use of preoperative risk assessment scores in elective cranial neurosurgery: a systematic review of the literature. Anesthesia and Analgesia. 2014; 119(2):420-432
- 208. Risselada R, Lingsma HF, Bauer-Mehren A, Friedrich CM, Molyneux AJ, Kerr RS et al. Prediction of 60 day case-fatality after aneurysmal subarachnoid haemorrhage: results from the International Subarachnoid Aneurysm Trial (ISAT). European Journal of Epidemiology. 2010; 25(4):261-266
- 209. Risselada R, Lingsma HF, Molyneux AJ, Kerr RS, Yarnold J, Sneade M et al. Prediction of two month modified Rankin Scale with an ordinal prediction model in

patients with aneurysmal subarachnoid haemorrhage. BMC Medical Research Methodology. 2010; 10:86

- 210. Rivero-Arias O, Wolstenholme J, Gray A, Molyneux AJ, Kerr RS, Yarnold JA et al. The costs and prognostic characteristics of ischaemic neurological deficit due to subarachnoid haemorrhage in the United Kingdom. Evidence from the MRC International Subarachnoid Aneurysm Trial. Journal of Neurology. 2009; 256(3):364-373
- 211. Roganovic Z, Pavlicevic G. Factors influencing the outcome after the operative treatment of cerebral aneurysms of anterior circulation. Vojnosanitetski Pregled. 2002; 59(5):463-471
- 212. Ronne-Engstrom E, Borota L, Kothimbakam R, Marklund N, Lewen A, Enblad P. Outcome from spontaneous subarachnoid haemorrhage--results from 2007-2011 and comparison with our previous series. Upsala Journal of Medical Sciences. 2014; 119(1):38-43
- 213. Rosen DS, Macdonald RL. Grading of subarachnoid hemorrhage: modification of the world World Federation of Neurosurgical Societies scale on the basis of data for a large series of patients. Neurosurgery. 2004; 54(3):566-575; discussion 575-566
- 214. Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: a systematic review. Neurocritical Care. 2005; 2(2):110-118
- Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007; 38(8):2315-2321
- 216. Rubbert C, Patil KR, Beseoglu K, Mathys C, May R, Kaschner MG et al. Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission. European Radiology. 2018; 28(12):4949-4958
- 217. Sacho RH, Dulhanty L, Holland JP, Patel HC. Outcome in patients presenting with an aneurysm related intracerebral haemorrhage in the post-ISAT era. British Journal of Neurosurgery. 2013; 27(2):194-197
- Salary M, Quigley MR, Wilberger JE, Jr. Relation among aneurysm size, amount of subarachnoid blood, and clinical outcome. Journal of Neurosurgery. 2007; 107(1):13-17
- Sandercock PA, Allen CM, Corston RN, Harrison MJ, Warlow CP. Clinical diagnosis of intracranial haemorrhage using Guy's Hospital score. British Medical Journal. 1985; 291(6510):1675-1677
- 220. Sano H. Treatment of complex intracranial aneurysms of anterior circulation using multiple clips. Acta Neurochirurgica Supplement. 2010; 107:27-31
- 221. Sasahara A, Suzuki K, Takahashi Y, Koseki H, Hirota K, Ohbuchi H et al. Corrigendum to "Prognostic assessment of aneurysmal subarachnoid hemorrhage patients with WFNS Grade V by CT perfusion on arrival" [World Neurosurgery 92 (2016) 1-6]. World Neurosurgery. 2016; 94:582
- 222. Sasaki T, Sato M, Oinuma M, Sakuma J, Suzuki K, Matsumoto M et al. Management of poor-grade patients with aneurysmal subarachnoid hemorrhage in the acute stage: importance of close monitoring for neurological grade changes. Surgical Neurology. 2004; 62(6):531-535; discussion 535-537
- 223. Saveland H, Hillman J, Brandt L, Edner G, Jakobsson KE, Algers G. Overall outcome in aneurysmal subarachnoid hemorrhage. A prospective study from neurosurgical

units in Sweden during a 1-year period. Journal of Neurosurgery. 1992; 76(5):729-734

- 224. Saveland H, Hillman J, Brandt L, Jakobsson KE, Edner G, Algers G. Causes of morbidity and mortality, with special reference to surgical complications, after early aneurysm operation: a prospective, one-year study from neurosurgical units in Sweden. Acta Neurologica Scandinavica. 1993; 88(4):254-258
- 225. Saveland H, Sonesson B, Ljunggren B, Brandt L, Uski T, Zygmunt S et al. Outcome evaluation following subarachnoid hemorrhage. Journal of Neurosurgery. 1986; 64(2):191-196
- 226. Scharbrodt W, Stein M, Schreiber V, Boker DK, Oertel MF. The prediction of longterm outcome after subarachnoid hemorrhage as measured by the Short Form-36 Health Survey. Journal of Clinical Neuroscience. 2009; 16(11):1409-1413
- 227. Scholler K, Massmann M, Markl G, Kunz M, Fesl G, Bruckmann H et al. Aneurysmal subarachnoid hemorrhage in elderly patients: long-term outcome and prognostic factors in an interdisciplinary treatment approach. Journal of Neurology. 2013; 260(4):1052-1060
- 228. Schuiling WJ, de Weerd AW, Dennesen PJ, Algra A, Rinkel GJ. The simplified acute physiology score to predict outcome in patients with subarachnoid hemorrhage. Neurosurgery. 2005; 57(2):230-236; discussion 230-236
- 229. Sharma P, Mehrotra A, Das KK, Bhaisora KS, Sardhara J, Godbole CA et al. Factors predicting poor outcome in a surgically managed series of multiple intracranial aneurysms. World Neurosurgery. 2016; 90:29-37
- 230. Shen J, Huang K, Shen J, Zhu Y, Jiang H, Pan J et al. Clinical efficacy between microsurgical clipping and endovascular coiling in the treatment of ruptured poorgrade anterior circulation aneurysms. World Neurosurgery. 2019; 127:e321-e329
- 231. Shimoda M, Oda S, Tsugane R, Sato O. Prognostic factors in delayed ischaemic deficit with vasospasm in patients undergoing early aneurysm surgery. British Journal of Neurosurgery. 1997; 11(3):210-215
- 232. Sloan MA, Sila CA, Mahaffey KW, Granger CB, Longstreth WT, Jr., Koudstaal P et al. Prediction of 30-day mortality among patients with thrombolysis-related intracranial hemorrhage. Circulation. 1998; 98(14):1376-1382
- 233. Slusarz R, Beuth W, Ksiazkiewicz B. Postsurgical examination of functional outcome of patients having undergone surgical treatment of intracranial aneurysm. Scandinavian Journal of Caring Sciences. 2009; 23(1):130-139
- 234. Slusarz R, Beuth W, Sniegocki M. Functional Capacity Scale as a new tool for early functional assessment in patients after surgical treatment of intracranial aneurysms: a prospective study involving 128 patients. Medical Science Monitor. 2012; 18(11):CR680-686
- 235. Slusarz R, Biercewicz M, Smarszcz B, Szewczyk M, Rosinczuk J, Sniegocki M. Application of the functional capacity scale in the early assessment of functional efficiency in patients after aneurysm embolization: preliminary reports. Advances in Clinical & Experimental Medicine. 2017; 26(6):981-986
- Smith ML, Abrahams JM, Chandela S, Smith MJ, Hurst RW, Le Roux PD. Subarachnoid hemorrhage on computed tomography scanning and the development of cerebral vasospasm: the Fisher grade revisited. Surgical Neurology. 2005; 63(3):229-234; discussion 234-225

- 237. Solaroglu I, Kaptanoglu E, Okutan O, Beskonakli E, Taskin Y. Outcome of surgical management of 347 intracranial aneurysms in 305 cases. Turk Beyin Damar Hastaliklar Dergisi. 2003; 9(2):57-61
- St Julien J, Bandeen-Roche K, Tamargo RJ. Validation of an aneurysmal subarachnoid hemorrhage grading scale in 1532 consecutive patients. Neurosurgery. 2008; 63(2):204-210; discussion 210-201
- 239. Stapleton CJ, Walcott BP, Butler WE, Ogilvy CS. Neurological outcomes following intraprocedural rerupture during coil embolization of ruptured intracranial aneurysms. Journal of Neurosurgery. 2015; 122(1):128-135
- 240. Starke RM, Komotar RJ, Kim GH, Kellner CP, Otten ML, Hahn DK et al. Evaluation of a revised Glasgow Coma Score scale in predicting long-term outcome of poor grade aneurysmal subarachnoid hemorrhage patients. Journal of Clinical Neuroscience. 2009; 16(7):894-899
- 241. Starke RM, Komotar RJ, Otten ML, Schmidt JM, Fernandez LD, Rincon F et al. Predicting long-term outcome in poor grade aneurysmal subarachnoid haemorrhage patients utilising the Glasgow Coma Scale. Journal of Clinical Neuroscience. 2009; 16(1):26-31
- 242. Stienen MN, Weisshaupt R, Fandino J, Hildebrandt G, Studerus-Germann A, Schatlo B. Characteristics of patients without neuropsychological deficits following aneurysmal subarachnoid haemorrhage. Acta Neurochirurgica Supplement. 2015; 120:125-129
- 243. Suzuki A, Yasui N, Hadeishi H, Mizuno M, Abumiya T, Sampei T et al. Early surgery in elderly patients with ruptured intracranial aneurysms--preoperative clinical evaluation and prognosis. Neurologia Medico-Chirurgica. 1990; 30(2):95-99
- 244. Szklener S, Melges A, Korchut A, Zaluska W, Trojanowski T, Rejdak R et al. Predictive model for patients with poor-grade subarachnoid haemorrhage in 30-day observation: a 9-year cohort study. BMJ Open. 2015; 5(6):e007795
- 245. Szydelko M, Kwolek A, Druzbicki M. Results of rehabilitation in patients after subarachnoid haemorrhage from ruptured intracranial aneurysm and after surgical treatment. Neurologia i Neurochirurgia Polska. 2008; 42(2):116-122
- 246. Tai J, Liu J, Lv J, Huibin K, Hou Z, Yang J et al. Risk factors predicting a higher grade of subarachnoid haemorrhage in small ruptured intracranial aneurysm (< 5 mm). Neurologia i Neurochirurgia Polska. 2019; 53(4):296-303
- 247. Takagi K, Tamura A, Nakagomi T, Nakayama H, Gotoh O, Kawai K et al. How should a subarachnoid hemorrhage grading scale be determined? A combinatorial approach based solely on the Glasgow Coma Scale. Journal of Neurosurgery. 1999; 90(4):680-687
- 248. Takahashi Y, Sasahara A, Yamazaki K, Inazuka M, Kasuya H. Disturbance of CT perfusion within 24 h after onset is associated with WFNS grade but not development of DCI in patients with aneurysmal SAH. Acta Neurochirurgica. 2017; 159(12):2319-2324
- 249. Taki W, Sakai N, Suzuki H, Group P. Determinants of poor outcome after aneurysmal subarachnoid hemorrhage when both clipping and coiling are available: prospective Registry of Subarachnoid Aneurysms Treatment (PRESAT) in Japan. World Neurosurgery. 2011; 76(5):437-445
- 250. Taweesomboonyat C, Tunthanathip T, Kaewborisutsakul A, Saeheng S, Oearsakul T, Riabroi K et al. Outcome of ruptured posterior communicating artery aneurysm

treatment comparing between clipping and coiling techniques. World Neurosurgery. 2019; 125:e183-e188

- 251. Tawk RG, Grewal SS, Heckman MG, Navarro R, Ferguson JL, Starke EL et al. Influence of body mass index and age on functional outcomes in patients with subarachnoid hemorrhage. Neurosurgery. 2015; 76(2):136-141
- 252. Taylor CJ, Robertson F, Brealey D, O'Shea F, Stephen T, Brew S et al. Outcome in poor grade subarachnoid hemorrhage patients treated with acute endovascular coiling of aneurysms and aggressive intensive care. Neurocritical Care. 2011; 14(3):341-347
- 253. Tewari M, Aggarwal A, Mathuriya S, Gupta V. The outcome after aneurysmal sub arachnoid hemorrhage: a study of various factors. Annals of Neurosciences. 2015; 22(2):78-80
- 254. Thomeer RT, Taal JC, Voormolen JH, Wintzen AR. Aneurysmal bleeding. A plea for early surgery in good-risk patients. Acta Neurochirurgica. 1994; 128(1-4):126-131
- 255. Tjahjadi M, Heinen C, Konig R, Rickels E, Wirtz CR, Woischneck D et al. Healthrelated quality of life after spontaneous subarachnoid hemorrhage measured in a recent patient population. World Neurosurgery. 2013; 79(2):296-307
- 256. Tjahjadi M, Kivelev J, Serrone JC, Maekawa H, Kerro O, Jahromi BR et al. Factors determining surgical approaches to basilar bifurcation aneurysms and its surgical outcomes. Neurosurgery. 2016; 78(2):181-191
- 257. Tommasino N, Saravia M, Rodriguez A, Mizraji R. Epidemiologic and evolutionary profile of patients with subarachnoid hemorrhage with Glasgow Coma Scale score of 8 or less who entered the follow-up program of the National Institute of Donation and Transplantation. Transplantation Proceedings. 2018; 50(2):405-407
- 258. Towgood K, Ogden JA, Mee E. Neurological, neuropsychological, and functional outcome following treatment for unruptured intracranial aneurysms. Journal of the International Neuropsychological Society. 2005; 11(5):522-534
- Ungersbock K, Bocher-Schwarz H, Ulrich P, Wild A, Perneczky A. Aneurysm surgery of patients in poor grade condition. Indications and experience. Neurological Research. 1994; 16(1):31-34
- 260. van den Berg R, Foumani M, Schroder RD, Peerdeman SM, Horn J, Bipat S et al. Predictors of outcome in World Federation of Neurologic Surgeons grade V aneurysmal subarachnoid hemorrhage patients. Critical Care Medicine. 2011; 39(12):2722-2727
- 261. van Donkelaar CE, Bakker NA, Veeger NJ, Uyttenboogaart M, Metzemaekers JD, Eshghi O et al. Prediction of outcome after subarachnoid hemorrhage: timing of clinical assessment. Journal of Neurosurgery. 2017; 126(1):52-59
- 262. van Heuven AW, Dorhout Mees SM, Algra A, Rinkel GJ. Validation of a prognostic subarachnoid hemorrhage grading scale derived directly from the Glasgow Coma Scale. Stroke. 2008; 39(4):1347-1348
- Vannemreddy PS, Nourbakhsh A, Nanda A. Evaluation of the prognostic indicators of giant intracranial aneurysms. Skull Base: An Interdisciplinary Approach. 2011; 21(1):37-46
- 264. Vergouwen MD, Compter A, Tanne D, Engelter ST, Audebert H, Thijs V et al. Outcomes of basilar artery occlusion in patients aged 75 years or older in the Basilar

Artery International Cooperation Study. Journal of Neurology. 2012; 259(11):2341-2346

- 265. Wang HY, Song J, Gao F, Duan XD, Gao X, Wang Y et al. Outcomes of microsurgical clipping vs coil embolization for ruptured aneurysmal subarachnoid hemorrhage: a multicenter real-world analysis of 583 patients in China. Medicine. 2019; 98(33):e16821
- 266. Wang X, Han C, Xing D, Wang C, Ding X. Early management of poor-grade aneurysmal subarachnoid hemorrhage: a prognostic analysis of 104 patients. Clinical Neurology and Neurosurgery. 2019; 179:4-8
- 267. Wani AA, Behari S, Vaid V, Jaiswal A, Jain VK. Predicting outcome of poor grade patients of subarachnoid haemorrhage due to anterior communicating artery aneurysm. Journal of Neurological Sciences. 2007; 24(4):287-295
- 268. Washington CW, Derdeyn CP, Dacey RG, Jr., Dhar R, Zipfel GJ. Analysis of subarachnoid hemorrhage using the Nationwide Inpatient Sample: the NIS-SAH Severity Score and Outcome Measure. Journal of Neurosurgery. 2014; 121(2):482-489
- 269. Watcharasaksilp W, Limpastan K, Norasathada T, Vaniyapong T. The result of surgical treatment in patients with cerebral aneurysms in Maharaj Nakorn Chiang Mai Hospital: a report of 225 cases. Journal of the Medical Association of Thailand. 2013; 96(7):814-818
- 270. Weir RU, Marcellus ML, Do HM, Steinberg GK, Marks MP. Aneurysmal subarachnoid hemorrhage in patients with Hunt and Hess grade 4 or 5: treatment using the Guglielmi detachable coil system. American Journal of Neuroradiology. 2003; 24(4):585-590
- 271. White AC, Roark CD, Case DE, Kumpe DA, Seinfeld J. Factors associated with rerupture of intracranial aneurysms after endovascular treatment: a retrospective review of 11 years experience at a single institution and review of the literature. Journal of Clinical Neuroscience. 2017; 44:53-62
- 272. Wilson DA, Nakaji P, Abla AA, Uschold TD, Fusco DJ, Oppenlander ME et al. A simple and quantitative method to predict symptomatic vasospasm after subarachnoid hemorrhage based on computed tomography: beyond the Fisher scale. Neurosurgery. 2012; 71(4):869-875
- Witsch J, Frey HP, Patel S, Park S, Lahiri S, Schmidt JM et al. Prognostication of long-term outcomes after subarachnoid hemorrhage: the FRESH score. Annals of Neurology. 2016; 80(1):46-58
- 274. Witsch J, Kuohn L, Hebert R, Cord B, Sansing L, Gilmore EJ et al. Early prognostication of 1-year outcome after subarachnoid hemorrhage: the FRESH score validation. Journal of Stroke and Cerebrovascular Diseases. 2019; 28(10):104280
- Witsch J, Kuohn L, Matouk C, Hebert R, Cord B, Sansing L et al. Validation of the original fresh score in patients with subarachnoid hemorrhage. Neurology. 2019; 92(15 Supplement):P5.9-039
- 276. Woertgen C, Ullrich OW, Rothoerl RD, Brawanski A. Comparison of the Claassen and Fisher CT classification scale to predict ischemia after aneurysmatic SAH? Zentralblatt für Neurochirurgie. 2003; 64(3):104-108
- 277. Wong GK, Lam SW, Ngai K, Wong A, Siu D, Poon WS et al. Cognitive domain deficits in patients with aneurysmal subarachnoid haemorrhage at 1 year. Journal of Neurology, Neurosurgery and Psychiatry. 2013; 84(9):1054-1058

- 278. Wong GK, Nung RC, Sitt JC, Mok VC, Wong A, Ho FL et al. Location, infarct load, and 3-month outcomes of delayed cerebral infarction after aneurysmal subarachnoid hemorrhage. Stroke. 2015; 46(11):3099-3104
- 279. Wong JS, Ng KH, Wong SH. Intracranial aneurysms in Sarawak General Hospital over a 30-month period. Journal of Clinical Neuroscience. 2004; 11(3):254-258
- 280. Wong SH, Yeo TT, Seow WT, Tan KK, Ong PL. Spontaneous subarachnoid haemorrhage and outcome--results from Tan Tock Seng Hospital, Singapore. Singapore Medical Journal. 1999; 40(7):459-464
- Wostrack M, Sandow N, Vajkoczy P, Schatlo B, Bijlenga P, Schaller K et al. Subarachnoid haemorrhage WFNS grade V: is maximal treatment worthwhile? Acta Neurochirurgica. 2013; 155(4):579-586
- Xu R, Zhu J, Sun XC, He ZH, Zhang XD. Objective evaluation of the treatment methods of intracranial aneurysm surgery. Acta Neurochirurgica - Supplement. 2011; 110(Pt 2):111-115
- 283. Yahia AM, Latorre JG, Gordon V, Whapham J, Swarnkar A, Fessler RD. Progressive occlusion of aneurysms in Neuroform Stent-assisted treatment of intracranial aneurysms. Journal of Neurology, Neurosurgery and Psychiatry. 2011; 82(3):278-282
- 284. Yanaka K, Kamezaki T, Yamada T, Takano S, Meguro K, Nose T. Acute subdural hematoma--prediction of outcome with a linear discriminant function. Neurologia Medico-Chirurgica. 1993; 33(8):552-558
- 285. Yang P, Zhao K, Zhou Y, Zhao R, Zhang L, Zhao W et al. Stent-assisted coil placement for the treatment of 211 acutely ruptured wide-necked intracranial aneurysms: a single-center 11-year experience. Radiology. 2015; 276(2):545-552
- Yilmaz A, Ozkul A. Demographic and clinical features of subarachnoid hemorrhages with and without cerebral aneurysm. Turk Beyin Damar Hastaliklar Dergisi. 2017; 23(2):56-61
- 287. Yousef K, Crago E, Fisher A, Mahmoud K, Lagattuta T, Hravnak M. Grading scales in subarachnoid hemorrhage: which scale to control for when studying outcomes. Critical Care Medicine. 2019; 47(Suppl 1):2
- 288. Zapata-Wainberg G, Ximenez-Carrillo Rico A, Benavente Fernandez L, Masjuan Vallejo J, Gallego Cullere J, Freijo Guerrero Mdel M et al. Epidemiology of intracranial haemorrhages associated with vitamin k antagonist oral anticoagulants in spain: TAC registry. Interventional Neurology. 2015; 4(1-2):52-58
- 289. Zeiler FA, Lo BWY, Akoth E, Silvaggio J, Kaufmann AM, Teitelbaum J et al. Predicting outcome in subarachnoid hemorrhage (SAH) utilizing the full outline of UnResponsiveness (FOUR) score. Neurocritical Care. 2017; 27(3):381-391
- 290. Zhang Y, Zhu X, Hou K, Zhao J, Gao X, Sun Y et al. Clinical outcomes of surgical clipping for intracranial aneurysms in patients with a Hunt and Hess grade 4 or 5. Arquivos de Neuro-Psiquiatria. 2016; 74(6):478-481
- 291. Zhao B, Tan X, Yang H, Zheng K, Li Z, Xiong Y et al. A Multicenter prospective study of poor-grade aneurysmal subarachnoid hemorrhage (AMPAS): observational registry study. BMC Neurology. 2014; 14:86
- 292. Zhao B, Yang H, Zheng K, Li Z, Xiong Y, Tan X et al. Preoperative and postoperative predictors of long-term outcome after endovascular treatment of poor-grade aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery. 2017; 126(6):1764-1771

- 293. Zheng B, Qiu Y, Jin H, Wang L, Chen X, Shi C et al. A predictive value of hyponatremia for poor outcome and cerebral infarction in high-grade aneurysmal subarachnoid haemorrhage patients. Journal of Neurology, Neurosurgery and Psychiatry. 2011; 82(2):213-217
- 294. Zheng K, Zhong M, Zhao B, Chen SY, Tan XX, Li ZQ et al. Poor-grade aneurysmal subarachnoid hemorrhage: risk factors affecting clinical outcomes in intracranial aneurysm patients in a multi-center study. Frontiers in Neurology. 2019; 10:123
- 295. Zijlmans JL, Coert BA, van den Berg R, Sprengers MES, Majoie C, Vandertop WP et al. Unfavorable outcome in patients with aneurysmal subarachnoid hemorrhage WFNS Grade I. World Neurosurgery. 2018; 118:e217-e222
- 296. Zou J. Analysis of the prognostic risk factors in middle-aged and elderly patients with acute cerebral hemorrhage undergoing minimally invasive surgery. International Journal of Clinical and Experimental Medicine. 2020; 13(1):216-223

Appendices

Appendix A: Review protocols

ID	Field	Content	
0.	PROSPERO registration number	CRD42019132514	
1.	Review title	What is the prognostic utility of severity scoring systems in adults with suspected or confirmed subarachnoid haemorrhage?	
2.	Review question	What is the prognostic utility of severity scoring systems in adults with suspected or confirmed subarachnoid haemorrhage?	
3.	Objective	To determine the prognostic utility of different scoring systems in adults with a suspected or confirmed subarachnoid haemorrhage.	
4.	Searches	The following databases will be searched:	
		• Embase	
		• MEDLINE	
		Searches will be restricted by:	
		English language only	
		The searches may be re-run 6 weeks before the final committee meeting and further studies retrieved for inclusion if relevant.	
		The full search strategies will be published in the final review.	
5.	Condition or domain being studied	Aneurysmal subarachnoid haemorrhage	
6.	Population	Inclusion: Adults (16 and older) with a suspected or confirmed subarachnoid haemorrhage caused by a suspected or confirmed ruptured aneurysm.	
		Exclusion:	
		 Adults with subarachnoid haemorrhage caused by head injury, ischaemic stroke or an arteriovenous malformation. 	
		 Children and young people aged 15 years and younger. 	
7.	Intervention/Exposure/Test	Prognostic factors:	
		Severity scoring system such as:	
		World Federation of Neurosurgical Societies grading scale:	
		o Grade1	
		∘ Grade 2	
		∘ Grade 3	
		∘ Grade 4	
		\circ Grade 5	

		Fisher scale:		
		o Grade1		
		• Grade 2		
		o Grade 2		
		Hunt and Hess Scale:		
		∘ Grade1		
		∘ Grade 2		
		∘ Grade 3		
		o Grade 4		
		∘ Grade 5		
		Glasgow Coma Scale:		
		o 3-15		
		• PAASH:		
		∘ Grade1		
		o Grade 2		
		• Grade 3		
		\circ Grade 4		
		o Grade 5		
0	Commenter/Deference			
8.	standard/Confounding factors	Contounding factors:		
	standard/comoditiding factors	• Age		
9.	Types of study to be included	Cohort studiesCross-sectional studies		
		Studies will only be included if all the key		
		confounders have been accounted for in a		
		multivariate analysis. In the absence of		
		multivariate analysis, studies that account for		
		Rey confounders with univariate analysis of matched groups will be considered		
10	Other evolution criteria			
10.	Other exclusion chiena	Exclusions:		
		Studies that do not account for key sepfounders		
		Contounders.		
		Adults with subarachnoid naemorrhage acurad by bood injuny isoboomic strake or an		
		arteriovenous malformation		
		a Children and young people aged 15 years		
		Children and young people aged 15 years and younger		
11	Contaut			
11.	Context			
10				
12.		Markers of poor outcome:		
		Mortality		
		 Functional status 		
		 Modified Rankin Scale (MRS) 		
		 Glasgow Outcome Score (GOS) 		
		 Oxford Handicap Score (OHS) 		
		 Rebleed subarachnoid haemorrhage 		
		Measured by:		
		Accuracy data		
		○ SN. SP. PPV. NPV		
		, , ,		

		 Association data 				
		○ Adjusted RR or OR				
		,				
		Short term outcomes <30 days will be grouped.				
		Outcomes	will be reported monthly for the first			
		thereafter	rouped at yearly time-points			
12	Secondary outcomes (important					
13.	outcomes)	n/a				
14.	coding)	EndNote will be used for reference management, sifting, citations and bibliographies. All references identified by the searches and from other sources will be screened for inclusion. 10% of the abstracts will be reviewed by two reviewers, with any disagreements resolved by discussion or, if necessary, a third independent reviewer. The full text of potentially eligible studies will be retrieved and will be assessed in line with the				
		criteria outlined above.				
		If not an intervention review, add: A				
		standardised form will be used to extract data				
		the manual section 6.4).				
15.	Risk of bias (quality) assessment					
10.		Risk of bias will be assessed using the appropriate checklist as described in				
		Developing NICE guidelines: the manual.				
		QUIPS will be used to critically appraise risk				
		prediction studies. Disagreements between the review authors over the risk of bias in particular				
		studies will be resolved by discussion, with				
		involvement of a third review author where				
4.0		necessary.				
16.	Strategy for data synthesis	Aggregate data on prognostic accuracy and				
		systems will be collected and synthesized in a				
		quantitative data analysis. Endnote will be used				
		management. If more than one study covered				
		the same combination of population, risk factor				
		and outcome then meta-analysis will be used to				
		using the generic inverse variance function on				
		Review Manager using fixed effect model. Data synthesis will be completed by two reviewers, with any disagreements resolved by discussion				
		or if necessary a third independent reviewer.				
17.	Analysis of sub-groups	Subgroups	(if heterogeneity):			
		Timing of scoring from ictus				
		₀ <7 days				
		 ○ 7-14 days ○ >14-28 days 				
	-	○ >28 days				
18.	I ype and method of review		Intervention			
			Diagnostic			
		\boxtimes	Prognos	tic		
-----	--	--	------------------------------	----------------------------	------------------------	
			Qualitati	ve		
			Epidemi	ologic		
			Service I	Delivery		
			Other (p	lease speci	fv)	
			(P		<i>.</i> ,	
19.	Language	English				
20.	Country	England				
21.	Anticipated or actual start date					
22.	Anticipated completion date	3 February	2021	I		
23.	Stage of review at time of this submission	Review sta	age	Started	Completed	
		Preliminary searches	/			
		Piloting of selection p	the study rocess			
		Formal scr of search r against elig criteria	eening esults gibility	V		
		Data extra	ction	•		
		Risk of bia (quality) assessme	s nt			
		Data analy	vsis	>	K	
24.	Named contact	5a. Named contact				
		National G	uideline C	entre		
		5h Named	contact e	mail		
		SAH@nice	e.ora.uk	mail		
		5e Organis	ational aff	iliation of th	e review	
		National In Excellence Centre	stitute for (NICE) a	Health and nd the Natic	Care onal Guideline	
25.	Review team members	From the National Guideline Centre: • Ms Gill Ritchie • Mr Ben Mayer • Mr Audrius Stonkus • Mr Vimal Bedia • Ms Emma Cowles • Ms Jill Cobb • Ms Amelia Unsworth				

-	-		
26.	Funding sources/sponsor	This systematic review is being completed by the National Guideline Centre which receives funding from NICE.	
27.	Conflicts of interest	All guideline committee members and anyone who has direct input into NICE guidelines (including the evidence review team and expert witnesses) must declare any potential conflicts of interest in line with NICE's code of practice for declaring and dealing with conflicts of interest. Any relevant interests, or changes to interests, will also be declared publicly at the start of each guideline committee meeting. Before each meeting, any potential conflicts of interest will be considered by the guideline committee Chair and a senior member of the development team. Any decisions to exclude a person from all or part of a meeting will be documented. Any changes to a member's declaration of interests will be recorded in the minutes of the meeting. Declarations of interests will be published with the final guideline.	
28.	Collaborators	Development of this systematic review will be overseen by an advisory committee who will use the review to inform the development of evidence-based recommendations in line with section 3 of <u>Developing NICE guidelines: the</u> <u>manual</u> . Members of the guideline committee are available on the NICE website.	
29.	Other registration details		
30.	Reference/URL for published protocol		
31.	Dissemination plans	NICE may use a range of different methods to raise awareness of the guideline. These include standard approaches such as: • notifying registered stakeholders of	
		publicationpublicising the guideline through NICE's	
		 newsletter and alerts issuing a press release or briefing as appropriate, posting news articles on the NICE website, using social media channels, and publicising the guideline within NICE. 	
32.	Keywords	Subarachnoid haemorrhage, scoring system	
33.	Details of existing review of same topic by same authors	None	
34.	Current review status		Ongoing
			Completed but not published
			Completed and published
			Completed, published and being updated

			Discontinued
35	Additional information		
36.	Details of final publication	www.nice	<u>org.uk</u>

Table 30: Health economic review protocol

Review question	All questions where health economic evidence applicable
Objectives	To identify health economic studies relevant to any of the review questions.
Search criteria	• Populations, interventions and comparators must be as specified in the clinical review protocol above.
	• Studies must be of a relevant health economic study design (cost–utility analysis, cost-effectiveness analysis, cost–benefit analysis, cost–consequences analysis, comparative cost analysis).
	• Studies must not be a letter, editorial or commentary, or a review of health economic evaluations. (Recent reviews will be ordered although not reviewed. The bibliographies will be checked for relevant studies, which will then be ordered.)
	 Unpublished reports will not be considered unless submitted as part of a call for evidence. Studios must be in English
Search strategy	A health economic study search will be undertaken using population-specific terms and a health economic study filter.
Review strategy	Studies not meeting any of the search criteria above will be excluded. Studies published before 2003, abstract-only studies and studies from non-OECD countries or the USA will also be excluded.
	Each remaining study will be assessed for applicability and methodological limitations using the NICE economic evaluation checklist which can be found in appendix H of Developing NICE guidelines: the manual. ¹⁷⁴
	Inclusion and exclusion criteria
	• If a study is rated as both 'Directly applicable' and with 'Minor limitations' then it will be included in the guideline. A health economic evidence table will be completed and it will be included in the health economic evidence profile.
	• If a study is rated as either 'Not applicable' or with 'Very serious limitations' then it will usually be excluded from the guideline. If it is excluded then a health economic evidence table will not be completed and it will not be included in the health economic evidence profile.
	 If a study is rated as 'Partially applicable', with 'Potentially serious limitations' or both then there is discretion over whether it should be included.
	Where there is discretion
	The health economist will decide based on the relative applicability and quality of the available evidence for that question, in discussion with the guideline committee if required. The ultimate aim is to include health economic studies that are helpful for decision-making in the context of the guideline and the current NHS setting. If several studies are considered of sufficiently high applicability and methodological quality that they could all be included, then the health economist, in discussion with the committee if required, may decide to include only the most applicable studies and to selectively exclude the remaining studies. All studies excluded based on applicability or methodological limitations will be listed with explanation in the excluded health economic studies appendix below.

The health economist will be guided by the following hierarchies.

Setting:

- UK NHS (most applicable).
- OECD countries with predominantly public health insurance systems (for example, France, Germany, Sweden).
- OECD countries with predominantly private health insurance systems (for example, Switzerland).
- Studies set in non-OECD countries or in the USA will be excluded before being assessed for applicability and methodological limitations.

Health economic study type:

- Cost-utility analysis (most applicable).
- Other type of full economic evaluation (cost-benefit analysis, cost-effectiveness analysis, cost-consequences analysis).
- Comparative cost analysis.
- Non-comparative cost analyses including cost-of-illness studies will be excluded before being assessed for applicability and methodological limitations.

Year of analysis:

- The more recent the study, the more applicable it will be.
- Studies published in 2003 or later but that depend on unit costs and resource data entirely or predominantly from before 2003 will be rated as 'Not applicable'.
- Studies published before 2003 will be excluded before being assessed for applicability and methodological limitations.
- Quality and relevance of effectiveness data used in the health economic analysis:
- The more closely the clinical effectiveness data used in the health economic analysis match with the outcomes of the studies included in the clinical review the more useful the analysis will be for decision-making in the guideline.

Appendix B: Literature search strategies

This literature search strategy was used for the following review;

 What is the prognostic utility of severity scoring systems in adults with suspected or confirmed subarachnoid haemorrhage?

The literature searches for this review are detailed below and complied with the methodology outlined in Developing NICE guidelines: the manual.¹⁷⁴

For more information, please see the Methods Report published as part of the accompanying documents for this guideline.

B.1 Clinical search literature search strategy

Searches were constructed using the following approach:

• Population AND Prognostic/risk factor terms AND Study filters

Table 31: Database date parameters and filters used

Database	Dates searched	Search filter used
Medline (OVID)	1946 – 24 June 2020	Exclusions
		Observational studies
		Prognostic studies

Database	Dates searched	Search filter used
Embase (OVID)	1974 – 24 June 2020	Exclusions Observational studies
		Prognostic studies

Medline (Ovid) search terms

· · ·	,
1.	exp Subarachnoid Hemorrhage/
2.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial) adj3 (hemorrhag* or haemorrhag* or bleed* or blood*)).ti,ab.
3.	(SAH or aSAH).ti,ab.
4.	exp Intracranial Aneurysm/
5.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial or brain) adj3 (aneurysm* or aneurism* or hematoma* or haematoma*)).ti,ab.
6.	or/1-5
7.	letter/
8.	editorial/
9.	news/
10.	exp historical article/
11.	Anecdotes as Topic/
12.	comment/
13.	case report/
14.	(letter or comment*).ti.
15.	or/7-14
16.	randomized controlled trial/ or random*.ti,ab.
17.	15 not 16
18.	animals/ not humans/
19.	exp Animals, Laboratory/
20.	exp Animal Experimentation/
21.	exp Models, Animal/
22.	exp Rodentia/
23.	(rat or rats or mouse or mice).ti.
24.	or/17-23
25.	6 not 24
26.	limit 25 to English language
27.	World Federation of Neurosurgical Societ*.ti,ab.
28.	(WFNS or m-WFNS or mWFNS or h-WFNS or hWFNS).ti,ab.
29.	(Glasgow adj coma).ti,ab.
30.	GCS.ti,ab.
31.	Glasgow Coma Scale/
32.	(Fisher* adj (grade* or scale* or score*)).ti,ab.
33.	mFS.ti,ab.
34.	(Hunt adj2 Hess).ti,ab.
35.	(PAASH or Prognosis on Admission of Aneurysmal Subarachnoid Hemorrhage).ti,ab.
36.	or/27-35
37.	((risk* or predict* or prognos* or severity or grading or diagnos*) adj4 (tool* or rule* or index* or indices or score* or scoring or scale* or model* or system* or algorithm* or stratif* or criteria or calculat* or classification* or grade*)).ti,ab.

38.	((score* or scoring or stratif*) adj3 (system* or schem* or scale*)).ti,ab.
39.	Severity of Illness Index/
40.	or/37-39
41.	26 and (36 or 40)
42.	predict.ti.
43.	(validat* or rule*).ti,ab.
44.	(predict* and (outcome* or risk* or model*)).ti,ab.
45.	((history or variable* or criteria or scor* or characteristic* or finding* or factor*) and (predict* or model* or decision* or identif* or prognos*)).ti,ab.
46.	decision*.ti,ab. and Logistic models/
47.	(decision* and (model* or clinical*)).ti,ab.
48.	(prognostic and (history or variable* or criteria or scor* or characteristic* or finding* or factor* or model*)).ti,ab.
49.	(stratification or discrimination or discriminate or c statistic or "area under the curve" or AUC or calibration or indices or algorithm or multivariable).ti,ab.
50.	ROC curve/
51.	or/42-50
52.	prognosis/
53.	(predict* or prognos*).ti,ab.
54.	Logistic models/
55.	Disease progression/
56.	or/52-55
57.	Epidemiologic studies/
58.	Observational study/
59.	exp Cohort studies/
60.	(cohort adj (study or studies or analys* or data)).ti,ab.
61.	((follow up or observational or uncontrolled or non randomi#ed or epidemiologic*) adj (study or studies or data)).ti,ab.
62.	((longitudinal or retrospective or prospective or cross sectional) and (study or studies or review or analys* or cohort* or data)).ti,ab.
63.	Controlled Before-After Studies/
64.	Historically Controlled Study/
65.	Interrupted Time Series Analysis/
66.	(before adj2 after adj2 (study or studies or data)).ti,ab.
67.	exp case control study/
68.	case control*.ti,ab.
69.	Cross-sectional studies/
70.	(cross sectional and (study or studies or review or analys* or cohort* or data)).ti,ab.
71.	or/57-70
72.	41 and (51 or 56 or 71)

Embase (Ovid) search terms

1.	*subarachnoid hemorrhage/
2.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial) adj3 (hemorrhag* or haemorrhag* or bleed* or blood*)).ti,ab.
3.	(SAH or aSAH).ti,ab.
4.	exp intracranial aneurysm/

5.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial or brain or saccular or berry or wide-neck*) adj3 (aneurysm* or aneurism* or hematoma* or haematoma*)).ti,ab.
6.	or/1-5
7.	letter.pt. or letter/
8.	note.pt.
9.	editorial.pt.
10.	Case report/ or Case study/
11.	(letter or comment*).ti.
12.	or/7-11
13.	randomized controlled trial/ or random*.ti,ab.
14.	12 not 13
15.	animal/ not human/
16.	Nonhuman/
17.	exp Animal Experiment/
18.	exp Experimental animal/
19.	Animal model/
20.	exp Rodent/
21.	(rat or rats or mouse or mice).ti.
22.	or/14-21
23.	6 not 22
24.	limit 23 to English language
25.	World Federation of Neurosurgical Societ*.ti,ab.
26.	(WFNS or m-WFNS or mWFNS or h-WFNS or hWFNS).ti,ab.
27.	(Glasgow adj coma).ti,ab.
28.	GCS.ti,ab.
29.	Glasgow coma scale/
30.	(Fisher* adj (grade* or scale* or score*)).ti,ab.
31.	mFS.ti,ab.
32.	(Hunt adj2 Hess).ti,ab.
33.	(PAASH or Prognosis on Admission of Aneurysmal Subarachnoid Hemorrhage).ti,ab.
34.	or/25-33
35.	((risk* or predict* or prognos* or severity or grading or diagnos*) adj4 (tool* or rule* or index* or indices or score* or scoring or scale* or model* or system* or algorithm* or stratif* or criteria or calculat* or classification* or grade*)).ti,ab.
36.	((score* or scoring or stratif*) adj3 (system* or schem* or scale*)).ti,ab.
37.	"severity of illness index"/
38.	or/35-37
39.	24 and (34 or 38)
40.	predict.ti.
41.	(validat [*] or rule*).ti,ab.
42.	(predict* and (outcome* or risk* or model*)).ti,ab.
43.	((history or variable* or criteria or scor* or characteristic* or finding* or factor*) and (predict* or model* or decision* or identif* or prognos*)).ti,ab.
44.	decision*.ti,ab. and Statistical model/
45.	(decision* and (model* or clinical*)).ti,ab.

46.	(prognostic and (history or variable* or criteria or scor* or characteristic* or finding* or factor* or model*)).ti,ab.
47.	(stratification or discrimination or discriminate or c statistic or "area under the curve" or AUC or calibration or indices or algorithm or multivariable).ti,ab.
48.	Receiver operating characteristic/
49.	or/40-48
50.	prognosis/
51.	(predict* or prognos*).ti,ab.
52.	Logistic models/
53.	Disease progression/
54.	or/50-53
55.	Clinical study/
56.	Observational study/
57.	family study/
58.	longitudinal study/
59.	retrospective study/
60.	prospective study/
61.	cohort analysis/
62.	follow-up/
63.	cohort*.ti,ab.
64.	62 and 63
65.	(cohort adj (study or studies or analys* or data)).ti,ab.
66.	((follow up or observational or uncontrolled or non randomi#ed or epidemiologic*) adj (study or studies or data)).ti,ab.
67.	((longitudinal or retrospective or prospective or cross sectional) and (study or studies or review or analys* or cohort* or data)).ti,ab.
68.	(before adj2 after adj2 (study or studies or data)).ti,ab.
69.	exp case control study/
70.	case control*.ti,ab.
71.	cross-sectional study/
72.	(cross sectional and (study or studies or review or analys* or cohort* or data)).ti,ab.
73.	or/55-61,64-72
74.	39 and (49 or 54 or 73)

B.2 Health Economics literature search strategy

Health economic evidence was identified by conducting a broad search relating to subarachnoid haemorrhage population in NHS Economic Evaluation Database (NHS EED – this ceased to be updated after March 2015) and the Health Technology Assessment database (HTA) with no date restrictions. NHS EED and HTA databases are hosted by the Centre for Research and Dissemination (CRD). Additional searches were run on Medline and Embase.

Table 32: Database date parameters and filters used

Database	Dates searched	Search filter used
Medline	2003 – 23 June 2020	Exclusions
		Health economics studies
Embase	2003 – 23 June 2020	Exclusions Health economics studies
Centre for Research and Dissemination (CRD)	HTA - Inception – 23 June 2020 NHSEED - Inception to March 2015	None

Medline (Ovid) search terms

1.	exp Subarachnoid Hemorrhage/
2.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial) adj3 (hemorrhag* or haemorrhag* or bleed* or blood*)).ti,ab.
3.	(SAH or aSAH).ti,ab.
4.	exp Intracranial Aneurysm/
5.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial or brain or saccular or berry or wide-neck*) adj3 (aneurysm* or aneurism* or hematoma* or haematoma*)).ti,ab.
6.	or/1-5
7.	letter/
8.	editorial/
9.	news/
10.	exp historical article/
11.	Anecdotes as Topic/
12.	comment/
13.	case report/
14.	(letter or comment*).ti.
15.	or/7-14
16.	randomized controlled trial/ or random*.ti,ab.
17.	15 not 16
18.	animals/ not humans/
19.	exp Animals, Laboratory/
20.	exp Animal Experimentation/
21.	exp Models, Animal/
22.	exp Rodentia/
23.	(rat or rats or mouse or mice).ti.
24.	or/17-23

<Click this field on the first page and insert footer text if required>

25.	6 not 24
26.	limit 25 to English language
27.	Economics/
28.	Value of life/
29.	exp "Costs and Cost Analysis"/
30.	exp Economics, Hospital/
31.	exp Economics, Medical/
32.	Economics, Nursing/
33.	Economics, Pharmaceutical/
34.	exp "Fees and Charges"/
35.	exp Budgets/
36.	budget*.ti,ab.
37.	cost*.ti.
38.	(economic* or pharmaco?economic*).ti.
39.	(price* or pricing*).ti,ab.
40.	(cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.
41.	(financ* or fee or fees).ti,ab.
42.	(value adj2 (money or monetary)).ti,ab.
43.	or/27-42
44.	26 and 43

Embase (Ovid) search terms

1.	subarachnoid hemorrhage/
2.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial) adj3 (hemorrhag* or haemorrhag* or bleed* or blood*)).ti,ab.
3.	(SAH or aSAH).ti,ab.
4.	exp intracranial aneurysm/
5.	((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial or brain or saccular or berry or wide-neck*) adj3 (aneurysm* or aneurism* or hematoma* or haematoma*)).ti,ab.
6.	or/1-5
7.	letter.pt. or letter/
8.	note.pt.
9.	editorial.pt.
10.	case report/ or case study/
11.	(letter or comment*).ti.
12.	or/7-11
13.	randomized controlled trial/ or random*.ti,ab.
14.	12 not 13
15.	animal/ not human/
16.	nonhuman/
17.	exp Animal Experiment/
18.	exp Experimental Animal/
19.	animal model/
20.	exp Rodent/

21.	(rat or rats or mouse or mice).ti.
22.	or/14-21
23.	6 not 22
24.	limit 23 to English language
25.	health economics/
26.	exp economic evaluation/
27.	exp health care cost/
28.	exp fee/
29.	budget/
30.	funding/
31.	budget*.ti,ab.
32.	cost*.ti.
33.	(economic* or pharmaco?economic*).ti.
34.	(price* or pricing*).ti,ab.
35.	(cost* adj2 (effective* or utilit* or benefit* or minimi* or unit* or estimat* or variable*)).ab.
36.	(financ* or fee or fees).ti,ab.
37.	(value adj2 (money or monetary)).ti,ab.
38.	or/25-37
39.	24 and 38

NHS EED and HTA (CRD) search terms

#1.	MeSH DESCRIPTOR Subarachnoid Hemorrhage EXPLODE ALL TREES
#2.	MeSH DESCRIPTOR Intracranial Hemorrhages EXPLODE ALL TREES
#3.	(((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial) adj3 (hemorrhag* or haemorrhag* or bleed* or blood*)))
#4.	((SAH or aSAH))
#5.	#1 OR #2 OR #3 OR #4
#6.	MeSH DESCRIPTOR Aneurysm EXPLODE ALL TREES
#7.	((aneurysm* or hematoma* or haematoma*))
#8.	#6 OR #7
#9.	MeSH DESCRIPTOR Intracranial Aneurysm EXPLODE ALL TREES
#10.	(((subarachnoid* or arachnoid* or cerebral or intracranial or intra-cranial) adj3 (aneurysm* or hematoma* or haematoma*)))
#11.	#9 OR #10
#12.	MeSH DESCRIPTOR Aneurysm, ruptured
#13.	(((ruptur* or weak* or brain or trauma*) adj3 (aneurysm* or hematoma* or haematoma*)))
#14.	#12 OR #13
#15.	(#5 or #8 or #11 or #14)

Appendix C: Clinical evidence selection

Figure 1: Flow chart of clinical study selection for the review of severity scoring systems for subarachnoid haemorrhage

Appendix D: Clinical evidence tables

Reference	Abulhasan 2018 ¹			
Study type and analysis	Retrospective cohort study with multivariate analysis			
Number of participants and characteristics	All patients with spontaneous SAH admitted to the neurologic ICU (included all patients admitted with non-traumatic SAH, proven computed tomography (CT) scan or cerebrospinal fluid analysis, regardless of the documented source of bleed.) (n=434) Age (Median, IQR): 56 (48-65) Male: 158 Female: 276			
	Fisher grade 1: 22	Hunt & Hess 1: 141		
	Fisher grade 2: 30	Hunt & Hess 2: 83		
	Fisher grade 3: 56	Hunt & Hess 3: 75		
	Fisher grade 4: 322	Hunt & Hess 4: 82		
		Hunt & Hess 5: 53		
Prognostic variable(s)	Hunt & Hess grade 4 Hunt & Hess grade 5			
Confounders OR Stratification strategy	Age • <60 • 60-79 years • ≥80 years Intracerebral haemorrhage Intraventricular haemorrhage Rebleeding within 24 hours Maximum lumen size ≥7mm			
Outcomes and effect sizes	In-Hospital Mortality: Area under curve: 0.89			

Reference	Abulhasan 2018 ¹			
	Hunt & Hess Grade	SAH	aSAH	
	1 – 3 (reference)	1	1	
	4	6.48 (2.56 – 16.4) OR (95% CI) p value <0.001	4.66 (1.76 – 12.3) OR (95% CI) p value 0.002	
	5	43 (16 – 116) OR (95% CI) p value <0.001	19 (6.70 – 53.8) OR (95% CI) p value <0.001	
Comments	Study is an external validation study of the HAIR score. The study does not appropriately describe the follow up period for the outcomes			
Risk of Bias	Low risk (assessed with QUIPS checklist)			

Reference	Claasen 2004 ³¹			
Study type and analysis	Prospective cohort study with forward stepwise multiple logistic regression analysis			
Number of participants and characteristics	Patients with SAH admitted to Neurological intensive care unit between July 1 1996 and June 1 2002, admitted within 3 days of onset (n=467) Mean age (SD): 54 (14) Female: 291			
Prognostic variable(s)	Hunt and Hess grade			
Confounders OR Stratification strategy	In hospital bleeding Aneurysm size >10mm Intraventricular haemorrhage Loss of consciousness Age (per decile)			
Outcomes and	Severe disability or mortality at 3 months (mRS 4 – 6)			
effect sizes	Hunt & Hess grade (OR 95% CI): 1.8 (1.3-2.3) per Hunt and Hess grade p value <0.001			
Comments	The outcome was indirect as it gave an OR per grade increase rather than individual grade increases.			
Risk of Bias	Low risk (assessed with QUIPS checklist)			

Reference	Diikland 2016 ⁵¹			
Study type and analysis	Retrospective cohort study with multivariate logistic regression analysis			
Number of participants and characteristics	Patients were 18 years or older, admitted to hospital less than or equal to 28 days after ictus, SAH proven by CT or CSF spectrophotometry and ruptured intracranial aneurysm as the presumed cause. (Prediction model (n=2,128) = ISAT cohort, Validation Cohort (n=307) = Rotterdam University medical centre) Age: ISAT cohort – 52 (44-60) Rotterdam cohort – 56 (47-66) Male: 896 Female: 1539			
Prognostic variable(s)	Fisher Grade 1 – 4 WFNS 1 - 6			
Confounders OR Stratification strategy	Age Maximum lumen size aneurysm (mm)			
Outcomes and	• Mortality (60 days)			
effect sizes		ISAT cohort OR (95% CI)	Rotterdam Cohort OR (95% CI)	
	Fisher grade 1	0.36 (0.09-1.49)	-	
	Fisher grade 2	0.52 (0.27-1.02)	-	
	Fisher grade 3	0.97 (0.69-1.37)	0.93 (0.31-2.81)	
	Fisher grade 4	Reference	Reference	
	WFNS 1	Reference	Reference	
	WFNS 2	1.87 (1.23-2.83)	2.56 (0.78-8.42)	
	WFNS 3	1.70 (0.87-3.32)	4.45 (0.39-50.61)	
	WFNS 4	4.87 (2.60-9.14)	5.71 (1.79-18.24)	
	WFNS 5	7.0 (2.54-19.28)	272.82 (68.97-1079.24)	
	WFNS 6	5.75 (2.41-13.73)	NA	
Comments				
Risk of Bias	Moderate risk due to differences between the two data sets and incomplete outcome comparisons (assessed with QUIPS checklist)			

Reference	Duan 2016 ⁵⁷				
Study type and analysis	Prospective cohort study with multivariate logistic regression analysis				
Number of participants and characteristics	Patients were age ≥ 60 years; and with aSAH treated endovascularly. (n=520) Mean age (SD): 67.88 (6.44) Male: 128 Female: 288				
	Fisher scale 1 – 2: 297		Hunt & Hess scale 1 - 3 : 374		
	Fisher scale 3 – 4: 119		Hunt & Hess scale 4 - 5 : 42		
Prognostic variable(s)	Hunt & Hess score 4 – 5 Fisher score 3 – 4				
Confounders OR Stratification strategy	Age ≥ 75 Hypertension Located on and distal the circle of Willis Periprocedural complications				
Outcomes and	(mRS ≥ 3) 1-year after coiling				
effect sizes	Covariate	Odds ratio		95% Cl, p value	
	Hunt & Hess score 4 – 5	1.758		1.133 – 2.729, p value 0.012	
	Fisher score 3 – 4	3.229		2.427 – 4.295, p value 0.000	
Comments	Reference assumed as Hunt & Hess 1 – 2 and Fisher score 1 – 2 for analysis				
Risk of Bias	Low risk (assessed with QUIPS checklist)				

Reference	Galea 2017 ⁷⁴
Study type and analysis	Prospective cohort study with multivariate analysis

Reference	Galea 2017 ⁷⁴					
Number of participants and	Patients (n=3341) with an aSAH were included and data were collected from 14 centers in the United Kingdom over a period of 4 years (September 2011–2015).					
characteristics	Median age (IQR)			55 (18)	55 (18)	
	M / F		1052 / 2289			
	WFNS	Grade 1		1715		
		Grade 2		682		
		Grade 3		202		
		Grade 4		412		
	Grade 5			442		
Prognostic variable(s)	WFNS					
Confounders OR Stratification strategy	Age Pre-op bleed DCI Hypertension IHD Treatment CSF diversion					
Outcomes and	OR of unfavourable outcome					
effect sizes	WNFS grade		Odds Ratio	95% CI	P value	
			1.04	1.03 – 1.05	< 0.001	
Comments	GOS was dichotomized into favourable outcome (GOS score 4 and 5) and unfavourable outcome (GOS score 1–3). Outcomes were measured at discharge.					
Risk of Bias	Moderate risk due to study attrition (assessed with QUIPS checklist)					

Reference	Germanson 1998 ⁷⁸
Study type and analysis	Cohort study with logistic regression
Number of participants and characteristics	Patients were selected according to the NICSAH I study (unclear of inclusion criteria) from September 1989 to January 1991 (n=751) Patient demographic data not given
Prognostic variable(s)	GCS
Confounders OR Stratification strategy	Age Sex Location of aneurysm Level of consciousness
Outcomes and effect sizes	unfavourable outcome (GOS 1 – 3)
	GOS 1.5 (for a three-point difference between two GCS scores)
Comments	Not all prognostic information given and unclear regarding which predictors are used within the regression model.
Risk of Bias	High risk due to missing patient information and unclear outcome definition (assessed with QUIPS checklist)

Reference	Goldberg 2018 ⁸³
Study type and analysis	Retrospective cohort study with multivariate cox regression analysis
Number of participants and characteristics	Bernese SAH database for poor grade patients (WFNS grade IV – V), elderly patients (age ≥ 60 years) suffering from aSAH admitted between 2005 to 2017 (n=146) Mean age (SD): 71.1 (7.7) years Male:38 Female: 108 WFNS grade IV: 39 WFNS grade V: 107
Prognostic variable(s)	WFNS grade V compared to WFNS grade IV

Severity scc	Subarachn
ing systems	vid haemorrhage

Reference	Goldberg 2018 ⁸³		
Confounders OR Stratification strategy	Age: 60-69; 70-79; 80-90 ICH		
Outcomes and effect sizes	survival analyses (HR 98% CI):		
	WFNS grade V compared to WFNS grade IV	2.78 (1.69 – 4.57)	P value<0.001
Comments	145 of 146 patients were included in the survival analyses, amounting to 282 follow up years with a mean follow up of 23.51±38.14 months		
Risk of Bias	Moderate risk due to no information on missing patients (assessed with QUIPS checklist)		

Reference	Inamasu 2016 ¹⁰⁶
Study type and analysis	Single centre retrospective cohort study with multivariate analysis
Number of participants and characteristics	Patients with WFNS grade V SAH who were considered suitable candidates for endovascular treatment, who were taken to the angiographic suite within 24 hours of symptom onset. The coil selection was at the discretion of the attending EVT specialist N=115
	Mean age (SD): 62.46 (12.68
	Male: 43
	Female: 73
Prognostic variable(s)	GCS score 3 – 4
Confounders OR	Age
Stratification	Female sex
strategy	Intraoperative / postoperative re-bleeding
	Delayed cerebral ischaemia
	Years of experience of EVT specialist
Outcomes and	GOS 1 – in hospital mortality OR (95% CI):
effect sizes	GCS 3 – 4: 2.274 (0.911-5.673) p value 0.078

Severity scoring	Subarachnoid
g systems	haemorrhage

Reference	Inamasu 2016 ¹⁰⁶
Comments	GCS 3 – 4 compared to 5 – 6 for multivariate analysis. The study does not appropriately describe the follow up period for the outcomes.
Risk of Bias	Moderate risk due to unclear outcome definition and no information on patients lost to follow up (assessed with QUIPS checklist)

Reference	Jabbarli 2015 ¹¹⁰		
Study type and analysis	Retrospective cohort study with multivariate analysis		
Number of participants and characteristics	Patients with non-traumatic non aneurysmal subarachnoid haemorrhage admitted between January 2005 to December 2012 (n=157) Age (mean SD): 59.37 (12.92) Female: 73 Male: 84 Poor Hunt and Hess grade (>3): 8		
Prognostic variable(s)	Hunt and Hess grade		
Confounders OR Stratification strategy	Age ≥ 65 Diffuse basal bleeding pattern Acute hydrocephalus Leucocytosis at mission Rebleeding Vasospasm on TCS Cerebral infarction Meningitis		
Outcomes and	Multivariate analysis of outcome predictors (poor grade mRS 3 – 6) at 6 months after NASAH (OR 95% CI)		
effect sizes	Hunt & Hess grade	2.03 (1.13-3.63)	P value 0.013
Comments	Hunt & Hess OR increase per clinical grade increase		
Risk of Bias	Low risk (assessed with QUIPS checklist)		

Reference	Karamanakos 2012 ¹¹⁷			
Study type and analysis	Retrospective cohort study with multivariate analysis			
Number of participants and characteristics	Admission alive to the hospital within 24 hours from the start of the acute aneurysmal SAH verified by CT, spinal tap or autopsy (n=1657) Age: ≤39: 865 40 - 64: 2785 ≥65: 773			
Prognostic variable(s)	Hunt and Hess grades I – V			
Confounders OR Stratification strategy	Age Gender Time period of SAH ICT IVH SDH Hydrocephalus Site of aneurysm Size of aneurysm			
Outcomes and	Mortality			
effect sizes	Hunt and Hess grade	1-3 days (OR 95% CI)	4 – 30 days (OR 95% CI)	1 – 12 months (OR 95% CI)
	1	1	1	1
	Ш	0.6 (0.1-2.8)	1.4 (0.4-5.0)	0.6 (0.2-2.0)
	III	1.1 (0.2-5.1)	3.3 (1.0-11)	2.5 (0.8-7.7)
	IV	6.0 (1.3-27) p value 0.019	10 (3.0-36) p value 0.0	3.4 (1.0-11) p value 0.042
	V	92 (21-418) p value 0.0	43 (11-180) p value 0.0	12 (1.8-74) p value 0.009
Comments	Not clearly specified which confounders were used in multivariate analysis, only reports only those that were statistically significant			

Severity scor	Subarachno
ing systems	oid haemorrhage

Reference	Karamanakos 2012 ¹¹⁷
Risk of Bias	Moderate risk due to unclear confounders for multivariate analysis (assessed with QUIPS checklist)

Reference	Konzalla 2016 ¹²⁵ merged with Konzalla 2018 ¹²⁶		
Study type and analysis	Retrospective cohort study with multivariate analysis		
Number of participants and characteristics	Patients with aneurysms of carotid bifurcation and posterior communicating artery between 1999 and 2013 (n=193) Mean age: 55.2 Female: 156 Male: 37 WFNS I – III: 114 Fisher grade 3: 141		
Prognostic variable(s)	WFNS grade I – III Fisher grade 3		
Confounders OR Stratification strategy	Age Admission status Aneurysms of carotid bifurcation artery Absence of mild or severe cerebrovascular spasm		
Outcomes and	Unfavourable outcome (mRS >2) OR (95% CI)		
effect sizes	WFNS I – III	9.6 (4.9 – 18.8) p value <0.001	
	Fisher grade 3	0.49 (0.25 – 0.97) p value 0.04	
Comments	Outcome was assessed by Modified Rankin score 6 months after aneurysmal SAH Reference assumed as WFNS IV – V and Fisher grade 1 for analysis.		
Risk of Bias	Moderate risk due to no information on patients lost to follow up (assessed with QUIPS checklist)		

Reference	Lee 2014 ¹⁴⁰
Study type and analysis	Retrospective cohort study with multivariate analysis

	Se/
gative SAH and traumatic	barachnoid haemorrhage /erity scoring systems
	1

Reference	Lee 2014 ¹⁴⁰					
Number of participants and characteristics	Patients were identified from the GET with the guidelines stroke database (patients were excluded if CT negative SAH and traumatic SAH) (n=400) Mean age: 56.9 Female:261					
Prognostic variable(s)	Hunt & Hess grades					
Confounders OR Stratification strategy	Age IVH Rebleed within 24hours					
Outcomes and effect sizes	in-hospital mortality					
	Hunt & Hess	OR (95% CI)				
	1 – 3 (reference)	1				
	4	4.08 (1.65 – 10.09)	P value < 0.0001			
	5	41.3 (17.56 – 97.11)				
Comments	Validation of the HAIR score for SAH. The study does not appropriate	tely describe the follow up period fo	or the outcomes.			
Risk of Bias	Moderate risk due to no information on patients lost to follow up (assessed with QUIPS checklist)					

Reference	Моссо 2006 ¹⁶³
Study type and analysis	Retrospective cohort study with multivariable analysis
Number of participants and characteristics	Patients with aneurysmal SAH admitted to Columbia University Medical Center and enrolled in our Subarachnoid Hemorrhage Outcomes Project. Of these, 148 patients were of poor clinical grade, defined as Hunt and Hess Grades IV and V. SAH was confirmed in all patients by head computed tomographic scans and was rated according to the Fisher scale. The presence and location of an intracranial aneurysm was confirmed with four-vessel cerebral angiography in a majority of patients, including all patients who underwent aneurysm securing intervention.

Reference	Моссо 2006 ¹⁶³				
	(n=98)				
	Mean age (range): 55 (19-89)				
	Male: 29				
	Female: 69				
	Hunt & Hess grade V at admission: 29				
	Fisher grade 1 – 2: 17				
	Fisher grade 3: 45				
	Fisher grade 4: 36				
Prognostic	nostic Admission Hunt & Hess IV – V				
variable(s)	Worst Hunt & Hess of V				
	Fisher grade 3 – 4				
Confounders OR	Aded ≥ 64 years of ade				
Stratification	Hyperglycaemia				
strategy	Worst Hunt and Hess grade V				
	Aneurysm size 13mm or greater				
Outcomes and	Poor outcome (mRS 4 – 6) at 12 months (Hazard ratio; 95% CI)				
effect sizes	Admission Hunt & Hess grade IV	1.100 (0.206-5.872)			
	Admission Hunt & Hess grade V	3.833 (0.612-24.023)			
	Fisher grade 3	1.410 (0.441-4.502)			
	Fisher grade 4	1.089 (0.331-3.577)			
Comments	Reference assumed as Hunt & Hess I and Fisher grade 1 for analysis				

Reference	Orakdogen 2016 ¹⁹⁰
Study type and analysis	Retrospective cohort study with logistic regression analysis
Number of participants	Evidence of SAH from a computerized tomography (CT) scan and the presence of an angiographically-confirmed saccular aneurysm as the cause of the haemorrhage (n=104)

Risk of Bias

Low risk (assessed with QUIPS checklist)

Reference	Orakdogen 2016 ¹⁹⁰		
and characteristics	Age: <55 – 62; ≥55 – 42 Male: 53 Female: 51 WFNS I – III: 86 WENS IV – V: 18		
Prognostic variable(s)	WFNS (high)		
Confounders OR Stratification strategy	Age ≥ 55 Size of aneurysm (>7.0mm) Clinical vasospasm (positive)		
Outcomes and	Mortality (OR 95% CI)		
effect sizes	WFNS (IV - V)	88.809 (8.609 – 916.152)	P value 0.001
Comments	Reference assumed as WFNS I – III for analysis. The study does not appropriately describe the follow up period for the outcomes.		
Risk of Bias	Moderate risk as unclear which other confour	nders were used within MVA (assessed with C	UIPS checklist)

Reference	Ozono 2020 ¹⁹⁶	Ozono 2020 ¹⁹⁶				
Study type and analysis	Retrospective cohort	Retrospective cohort study with multivariate analysis				
Number of participants and characteristics	Data for the present s prospective observation October 2010 to March hours. The 1124 patients were ≥65 years (n = 511).	tudy were obtained from the 1863 participants enrolled onal study, which included a total of 38 neurosurgical ir h 2013. All patients were age 20 years or older and the re divided into 2 groups: those who were non-elderly, a	in the mWFNS Scale study. This was a multicentre institutions across Japan. Patients were enrolled from a interval between symptom onset and admission was ≤72 age <65 years (n = 613), and those who were elderly, age			
	Variable	Non elderly (n=613)	Elderly (n=511)			
	Age, years, mean (SD)	52.5 (9.1)	74.3 (6.6)			
	Male / Female	255 / 358	97 / 414			

Reference	Ozono 2020 ¹⁹⁶							
	Surgical clipping	438			337	337		
	mWFNS grade	I	I 272		157			
		П	111		94	94		
		Ш	49		46			
		IV	97		112			
		V	84		102			
	Fisher grade	1	30		29			
		2	85		63			
		3	492		414			
		4	2		2			
Prognostic variable(s)	Age mWFNS							
Confounders OR Stratification strategy	Endovascular Coiling Mean age Sex Location of aneurysm Vasospasm							
Outcomes and	Mortality (mRS 6) at 3 months after onset of SAH							
effect sizes	mWFNS	Non elderly		Elde	Elderly			
		Odds ratio (9	5% CI)	P value	Odd	ls ratio (95% CI)	P value	
	1	Reference			Reference			
	II	2.76 (0.69 - 1	11.00)	0.151	1.72	2 (0.57 - 5.19)	0.339	
	III	3.36 (0.68 - 1	16.61)	0.138	1.70	0 (0.44 - 6.50)	0.44	
	IV	4.22 (1.10 - 1	16.18)	0.035	1.86	6 (0.65 - 5.35)	0.248	
	V	16.70 (5.03 -	55.46)	<0.001	6.30) (2.41 - 16.45)	<0.001	
	Poor Outcome of m	RS Score ≥3 a	t 3 Months	After Onset of SAH				
	mWFNS	Non elde	erly			Elderly		

Reference	Ozono 2020 ¹⁹⁶				
		Odds ratio (95% CI)	P value	Odds ratio (95% CI)	P value
	Ι	Reference		Reference	
	П	1.29 (0.50 - 3.34)	0.601	1.89 (0.92 - 3.90)	0.084
	III	3.54 (1.30 - 9.64)	0.013	5.02 (2.17 - 11.59)	<0.001
	IV	11.60 (5.50 - 24.46)	<0.001	9.67 (4.89 - 19.12)	<0.001
	V	49.59 (22.17 - 110.91)	<0.001	21.07 (10.10 - 43.94)	<0.001
Comments	Results for elderly and non-elderly were combined for analysis.				
Risk of Bias	Moderate risk due to analysis without calibration (assessed with QUIPS checklist)				

Reference	Rabinstein 2004 ²⁰³
Study type and analysis	Retrospective cohort study with multivariate analysis
Number of participants and characteristics	consecutive patients with symptomatic cerebral vasospasm from aneurysmal SAH treated with percutaneous balloon angioplasty or selective intra-arterial Papaverine infusion between 1990 and 2000 (n=81) (n=81) Mean age (range): 54 years (29 – 88) WFNS I : 29 WFNS II : 16 WFNS III : 7 WFNS IV : 25 WFNS V : 4
Prognostic variable(s)	WFNS
Confounders OR Stratification strategy	Age Coiling
Outcomes and	Poor outcome (mRS >2) 3 months (median follow up period)
effect sizes	Poor WFNS grade IV – V (OR 95% CI): 3.58 (1.28-11) p value 0.02

Reference	Rabinstein 2004 ²⁰³
Comments	Reference assumed as WFNS I – III for analysis
Risk of Bias	Moderate risk due to no information on patients lost to follow up (assessed with QUIPS checklist)

Reference	Starke 2009 ²⁴⁰					
Study type and analysis	Retrospective cohort study with multivariate a	analysis				
Number of participants and characteristics	Poor grade aSAH patients (n=160) Mean age (SD): 59.1 (15) Male: 45 Female: 115					
Prognostic variable(s)	GCS					
Confounders OR Stratification strategy	Female gender Age >70					
Outcomes and	unfavourable outcome (mRS 4 – 6) (OR 95%	o CI)				
effect sizes	A (GCS 10-12)	1.0				
	B (GCS 8-9)	14.2 (1.5-140.5)	P value 0.022			
	C (GCS 5-7)	38.5 (4.2-340)	P value 0.001			
	D (GCS 3-4)	63.4 (5.6-707.1)	P value 0.001			
Comments	Authors have grouped outcomes from admission GCS and refer to outcomes as mRS 0-3 (favourable outcome) and mRS 4-6 (unfavourable outcome) and the follow up period assumed to be one year as stated by authors					
Risk of Bias	Moderate risk due to confounder used in MVA and no information on patients lost to follow up (assessed with OUIPS checklist)					

Reference	Taki 2011 ²⁴⁹
Study type and analysis	Retrospective cohort study with multivariate logistic regression analysis

Reference	Taki 2011 ²⁴⁹						
Number of participants and characteristics	Patients with SAH who were ≥20 years old at onset; SAH on CT scans or lumbar puncture; saccular aneurysm as the cause SAH confirmed on three dimensional CTA, MRA or DSA and aneurysmal obliteration by clipping or coiling within 14 days of (n=614)						
	Mean age (SD): 61.01 (12.5) Female: 361 Male: 163						
	WFNS I: 167	Fisher grade 1: 7					
	WFNS II: 140	Fisher grade 2: 113					
	WFNS III: 55	Fisher grade 3: 341					
	WFNS IV: 108	Fisher grade 4: 73					
	WFNS V: 65						
Prognostic variable(s)	Admission WFNS grade IV – V						
Confounders OR Stratification strategy	Age Sex WFNS grade Fisher grade Re-rupture Date of obliteration Interval from admission to obliteration Symptomatic vasospasm Vasospasm cerebral infarct Cardiopulmonary dysfunction Infection Hydrocephalus Seizure Ileus Femur fracture Acute renal failure						

Reference	Taki 2011 ²⁴⁹						
	Location of aneurysm						
Outcomes and effect sizes	Multivariate logistic regression with Modified Rankin scale as a bina SAH	istic regression with Modified Rankin scale as a binary outcome (mRS 0-2 = good; mRS 3-6 = poor) at 12 months after					
	Admission WFNS grade	Odds Ratio (95% CI) P value					
	IV	3.46 (1.49 – 8.04) p value <0.005					
	V 13.48 (5.09-35.71) p value < 0.001						
	Multivariate logistic regression with Survival or death as a binary outcome						
	Admission WFNS grade	Odds Ratio (95% CI) P value					
	IV	3.71 (1.03-13.39) p value <0.05					
	V	9.43 (2.50-35.55) p value <0.005					
Comments	Reference assumed as WFNS grade I for analysis						
Risk of Bias	Moderate risk due to outcome assessed as binary outcomes (asses	sed with QUIPS checklist)					

Reference	Taweesomboonyat 2019 ²⁵⁰					
Study type and analysis	Retrospective cohort study with multivariate analysis					
Number of participants and characteristics	Patients who underwent neurosurgical clipping or endovascular coil (n=189) Age (mean SD): Clipping: 56.5 (11.4); Coiling: 64.3 (13.9) Female: 146 Male: 43	ing between November 2002 to March 2018				
	Hunt & Hess grade 1 - 7	WFNS grade 1 – 127				
	Hunt & Hess grade 2 - 122	WFNS grade 2 – 14				
	Hunt & Hess grade 3 - 27	WFNS grade 3 – 3				
	Hunt & Hess grade 4 - 33	WFNS grade 4 – 38				
		WFNS grade 5 – 7				
Prognostic variable(s)	Hunt & Hess grade (reference = grade 1)					

Reference	Taweesomboonyat 2019 ²⁵⁰					
Confounders OR Stratification strategy	Age Seizure Deterioration before intervention Side of aneurysm Aneurysm horizontal orientation Intervention					
Outcomes and	Multivariate analysis of factors associated with poor outcomes (OR 95% CI) 6 months					
effect sizes	HH grade 2	1.19 (0.13 – 11.39)				
	HH grade 3	1.43 (0.13 – 15.68)				
	HH grade 4	6.07 (0.6 – 61.12)				
Comments	Poor outcomes defined as mRS 3 – 6					
Risk of Bias	Moderate risk of bias due no information on p	patients lost to follow up (assessed with QUIPS checklist)				

Reference	Van Donkelaar 2017 ²⁶¹
Study type and analysis	Prospective observational cohort study multivariate logistic regression analyses
Number of participants and characteristics	patients with a nontraumatic SAH (n=1620) Median age (IQR): 55 (46-65) Female: 1001 WFNS I: 848 WFNS II: 313 WFNS III: 34 WFNS IV: 230 WFNS V: 195
Prognostic variable(s)	rWFNS (WFNS score post resuscitation)

Reference	Van Donkelaar 2017 ²⁶¹						
Confounders OR Stratification strategy	Age Gender History Initial WFNS Type of SAH Aneurysm location Aneurysm size mFisher grade Intracerebral hematoma Subdural hematoma Hydrocephalus Type of treatment						
Outcomes and	poor outcome (mRS 4 – 6) 2 months after SAH						
effect sizes	Covariate	Adjusted Odds Ratio (95% CI)	P value				
	rWFNS I	1.0					
	rWFNS II	1.6 (1.1-2.5)	0.02				
	rWFNS III	3.2 (1.4-7.4)	0.005				
	rWFNS IV	5.7 (3.7-8.8)	<0.001				
	rWFNS V	12.1 (7.3-19.9)	<0.001				
	mFisher grade 0	1.0					
	mFisher grade 1	0.8 (0.3-1.9)	0.55				
	mFisher grade 2	1.1 (0.4-2.7)	0.85				
	mFisher grade 3	1.6 (0.6-4.3)	0.30				
	mFisher grade 4	4.1 (1.7-9.8)	0.002				
Comments	Poor outcome (modified Rankin Scale Score	4–6)					
Risk of Bias	Low risk (assessed with QUIPS checklist)						

Wang 2019 ²⁶⁶						
Prospective cohort study with multivariate analysis						
n = 104 All these patients underwent early Male – 39 / Female – 65 Age: < $60 - 63$; $\geq 60 - 41$	y microsurgi	cal clipping or endovas	scular coiling within thre	e days after SAH		
Fisher	Grade			WFNS grade		
1 - 11	21		IV	58		
III – IV	83		V	46		
CT fisher grade I – II WFNS grade IV						
Low density area on CT Hydrocephalus Endovascular coiling External ventricular drainage Intraventricular drainage Decompressive craniectomy Intracranial hematoma						
Multivariate analysis of favourable	e outcome (0	OR 95% CI) 6 – 36 mo	nths post onset			
Fisher Grade I – II (compared to grade III – 12 IV)		12.102 (2.101-69.712)		P value 0.005		
WFNS grade IV (compared to gra	ade V)	3.852 (1.094-13.562)		P value 0.036		
Favourable outcome was defined	as mRS ≤2					
Moderate risk of bias as unclear which of the cofounders were used within MVA (assessed with QUIPS checklist)						
	Wang 2019 ²⁶⁶ Prospective cohort study with mu n = 104 All these patients underwent early Male -39 / Female -65 Age: $< 60 - 63$; $\ge 60 - 41$ Fisher I - II III - IV CT fisher grade I - II WFNS grade IV Low density area on CT Hydrocephalus Endovascular coiling External ventricular drainage Intraventricular drainage Decompressive craniectomy Intracranial hematoma Cerebral Hernia Multivariate analysis of favourable Fisher Grade I - II (compared to graf Favourable outcome was defined Moderate risk of bias as unclear v	Wang 2019 ²⁶⁶ Prospective cohort study with multivariate andn = 104All these patients underwent early microsurgiMale – 39 / Female – 65Age: < 60 – 63; \geq 60 – 41Fisher GradeI - II21III – IV83CT fisher grade I – IIWFNS grade IVLow density area on CTHydrocephalusEndovascular coilingExternal ventricular drainageIntraventricular drainageDecompressive craniectomyIntracranial hematomaCerebral HerniaMultivariate analysis of favourable outcome (not parade I – II (compared to grade III – IV)WFNS grade IV (compared to grade III – IV)Water at the state of bias as unclear which of the	Wang 2019 ²⁶⁶ Prospective cohort study with multivariate analysisn = 104All these patients underwent early microsurgical clipping or endovasMale – 39 / Female – 65Age: < 60 – 63; \geq 60 – 41Fisher GradeI - IIII – IIWFNS grade I – IIWFNS grade I/Low density area on CTHydrocephalusEndovascular coilingExternal ventricular drainageDecompressive craniectomyIntraventricular drainageDecompressive craniectomyIntracranial hematomaCerebral HerniaMultivariate analysis of favourable outcome (OR 95% CI) 6 – 36 moFisher Grade I – II (compared to grade III –V)3.852 (1.094-13.562)Favourable outcome was defined as mRS ≤2Moderate risk of bias as unclear which of the cofounders were used	Wang 2019 ²²⁶⁶ Prospective cohort study with multivariate analysis n = 104 All these patients underwent early microsurgical clipping or endovascular coiling within three Male – 39 / Female – 65 Age: < 60 – 63; ≥60 – 41	Wang 2019 ²⁶⁶ Prospective cohort study with multivariate analysis n = 104 All these patients underwent early microsurgical clipping or endovascular coiling within three days after SAH Male – 39 / Female – 65 Age: < 60 – 63; ≥60 – 41	

Reference	Zhao 2017 ²⁹²									
Study type and analysis	prospective and observational cohort study (from registries) with multivariate analysis									
Number of participants and characteristics	Patients who presented with poor-grade aSAH at the time of treatment (Poor-grade aSAH was defined as a World Federation of Neurosurgical Societies (WFNS) grade of IV or V) (n=136) Mean age (SD): 54.6 (11.8) Female: 64 Male: 72 Fisher grade I – II: 33 Fisher grade III – IV: 103									
Prognostic variable(s)	WFNS grade V mFisher grade									
Confounders OR Stratification strategy	Age Aneurysm neck size Postop pneumonia									
Outcomes and	poor outcome mRS 4- 6 at 12 months									
effect sizes		Pre-op model		Post-op model						
	Predictors	OR (95% CI)	P value	OR (95% CI)	P value					
	WFNS grade V	8.6 (3.1-23.8)	<0.001	7.6 (2.7-21.8)	<0.001					
	Modified fisher grade	2.3 (1.5-3.7)	<0.001	2.3 (1.5-3.7)	<0.001					
Comments	(Poor-grade aSAH was defined as a mRS 4 - 6) Reference assumed as WFNS 1 for analysis									
Risk of Bias	Moderate risk of bias as no information on pa	tients lost to follow up (assessed with QUIPS	checklist)						

Appendix E: Forest plots

E.1 Hunt & Hess grade (per grade increase)

Figure 2: mRS 4 – 6 (3 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
Claasen 2004	0.5878	0.166		1.80 [1.30, 2.49]				
					L			
					0.2	0.5	i ż	5
						Favours higher grade	Favours lower grade	

Figure 3: mRS 3 – 6 (6 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	\$E	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
Jabbarli 2015	0.708	0.2989		2.03 [1.13, 3.65]				
					0.2	0.5 1	2	5
						Favours higher grade	Favours lower grade	

E.2 Hunt & Hess grade 2

Figure 4: Mortality (1 – 3 days)

		-,	Odds Ratio Odds Ratio			Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	l, 95% Cl	
Karamanakos 2012	-0.5108	0.9142		0.60 [0.10, 3.60]				
					0.01	0.1	1 10	100
						Favours H&H 2	Favours H&H 1	

Figure 5: Mortality (4 – 30 days)

Figure 6: Mortality (1 – 12 months)

				Odds Ratio			Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV	, Fixed, 95% (3	
Karamanakos 2012	-0.5108	0.5605		0.60 [0.20, 1.80]		. —	-+		
					0.01	0.1	1	10	100
						Favours H	&H 2 Favou	rs H&H 1	

Figure 7: mRS 3 – 6 (6 months). Scale 0-6; high score represents poorer outcome.

			Odds Ratio Odds F			s Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fix	ed, 95% Cl	
Taweesomboonyat 2019	0.174	1.1297		1.19 [0.13, 10.89]			+	
								400
					0.01	0.1	1 10	100
						Favours H&H	2 Favours H&H 1	

E.3 Hunt & Hess grade 3

Figure 8: Mortality (1 – 3 days)

						Ouus	Rauo	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
Karamanakos 2012	0.0953	0.8698		1.10 [0.20, 6.05]			I	
							t	
					0.01	0.1 1	Tourse LIGULA	100
						Favours H&H 3	Favours H&H 1	
iguro Q. Mortal	lity / A = 20 d							
Figure 9: Mortal	lity (4 – 30 da	ays)						
igure 9: Mortal	lity (4 – 30 da	ays)		Odds Ratio		Odds	Ratio	
Figure 9: Mortal	lity (4 – 30 da log[Odds Ratio]	ays) _{SE}	Weight	Odds Ratio IV, Fixed, 95% Cl		Odds IV, Fixed	Ratio J, 95% Cl	
Figure 9: Mortal <u>Study or Subgroup</u> Karamanakos 2012	lity (4 – 30 da log[Odds Ratio] 1.1939	ays) <u>se</u>	Weight	Odds Ratio IV, Fixed, 95% CI 3.30 (1.00, 10.89)		Odds IV, Fixed	Ratio , 95% Cl	
Figure 9: Mortal <u>Study or Subgroup</u> Karamanakos 2012	l ity (4 – 30 da <u>log[Odds Ratio]</u> 1.1939	ays) <u>se</u> 0.6092	Weight	Odds Ratio IV, Fixed, 95% CI 3.30 (1.00, 10.89)		Odds IV, Fixed	Ratio , 95% CI	
Figure 9: Mortal <u>Study or Subgroup</u> Karamanakos 2012	l ity (4 – 30 da log[Odds Ratio] 1.1939	8ys) <u>8e</u> 0.6092	Weight	Odds Ratio IV, Fixed, 95% Cl 3.30 [1.00, 10.89]	L0.01	Odds IV, Fixed	Ratio , 95% CI	100

Figure 11: mRS 3 – 6 (6 Months). Scale 0-6; high score represents poorer outcome.

			Odds Ratio Od			Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		d, 95% Cl		
Taweesomboonyat 2019	0.3577	1.2234		1.43 [0.13, 15.73]			+	
					—		+	
					0.01	0.1	1 10	100
						Favours H&H 3	Favours H&H 1	

E.4 Hunt & Hess grade 4

Figure 12: In-hospital mortality

Confounder for meta-analysis: age

Figure 13: Mortality (1 – 3 days)

				Odds Ratio		C)dds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, I	Fixed, 95%	CI	
Karamanakos 2012	1.7918	0.7803		6.00 [1.30, 27.69]			—	-	
					b 04				400
					0.01	0.1	1	10	100
						Favours H&	H4 Favo	urs H&H 1	
Figure 14: Mortality (4 – 30 days)

				Odds Ratio		Odd	ls Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fix	ed, 95% Cl	
Karamanakos 2012	2.3026	0.6143		10.00 [3.00, 33.33]				_
					0.01	U.1	1 10	100
						Favours H&H	4 Favours H&H 1	

Figure 15: Mortality (1 – 12 months)

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	d, 95% CI	
Karamanakos 2012	1.2238	0.6244		3.40 [1.00, 11.56]			I	
					0.01	0.1	1 10	100
						Favours H&H 4	Favours H&H 1	

Figure 16: mRS 3 – 6 (6 Months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixed	, 95% CI	
Taweesomboonyat 2019	1.8034	1.1807		6.07 [0.60, 61.41]	⊢ 0.01	0.1 Favou	rs H&H 4	10 Favours H&H 1	100

Figure 17: mRS 4 – 6 (12 months). Scale 0-6; high score represents poorer outcome.

				Hazard Ratio		Hazard	Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed,	95% CI	
Моссо 2006	0.0953	0.8547		1.10 [0.21, 5.87]	L 0.01	0.1 1 Favours H&H 4	10 FAvours H&H 1	100

E.5 Hunt & Hess grade 5

Figure 18: In-hospital mortality

				Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% (CI
Abulhasan 2018	3.7612	0.5044	42.8%	43.00 [16.00, 115.56]		
Lee 2014	3.7209	0.4364	57.2%	41.30 [17.56, 97.15]		
Total (95% CI)			100.0%	42.02 [22.01, 80.24]		•
Heterogeneity: Chi² = Test for overall effect:	0.00, df = 1 (P = 0.9 Z = 11.33 (P < 0.00	0.01 0.1 1 Favours H&H 5 Favou	10 100 rs H&H 1-3			

Confounder for meta-analysis: age

Figure 19: Mortality (1 – 3 days)

i igure io. more		uy5)		Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	i, 95% Cl	
Karamanakos 2012	4.5218	0.7537		92.00 [21.00, 403.04]				+
					0.002	0.1	1 10	500
						Favours H&H 5	Favours H&H 1	

Figure 20: Mortality (4 – 30 days)										
				Odds Ratio		Odds	s Ratio			
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl			
Karamanakos 2012	3.7612	0.6956		43.00 [11.00, 168.10]				⊢		
					0.002	0.1 Favours H&H 5	1 10 Favours H&H	500 1		

Figure 21: Mortality (1 – 12 months)

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	l, 95% Cl	
Karamanakos 2012	2.4849	0.9679		12.00 [1.80, 79.99]			— -	
					L		<u> </u>	
					0.01	0.1	i 1'0	100
						Favours H&H 5	Favours H&H 1	

Figure 22: mRS 4 – 6 (12 months). Scale 0-6; high score represents poorer outcome.

				Hazard Ratio		Hazard Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% CI	
Mocco 2006	1.3436	0.9361		3.83 [0.61, 24.01]			
					0.01	0.1 1 10	100
						Favours H&H 5 Favours H&H 1	

E.6 Hunt & Hess grade 4 – 5

Figure 23: mRS >3 (12 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixe	d, 95% Cl	1	
Duan 2016	0.5642	0.2241		1.76 [1.13, 2.73]				-+		
					<u> </u>			+ +	<u> </u>	
					0.1	0.2	0.5	1 2	5	10
						Favou	Irs H&H 4-5	Favours	s H&H 1-3	

E.7 Fisher grade (per grade increase)

Figure 24: mRS 4 – 6 (12 months). Scale 0-6; high score represents poorer outcome.

			Odds Ratio			Odd	s Ratio		
Study or Subgroup	log[Odds Ratio]	SE	IV, Fixed, 95% CI			IV, Fixe	d, 95% Cl		
Zhao 2017	0.8329	0.2181	2.30 [1.50, 3.53]				-	+	
				L				· · · · · ·	
				0.1	0.2	0.5	1	ż 5	10'
					Favours	higher grade	Favour	s lower grade	

E.8 Fisher grade 1

Figure 25: Mortality (60 days)

				Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
Dijkland 2016	-1.0217	0.7073		0.36 [0.09, 1.44]			+	
					0.01	0.1	1 10	100
						Favours Fisher grade 4	Favours Fisher grade 1	

Figure 26: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixed	I, 95% CI		
Van Donkelaar 2017	-0.2231	0.5004		0.80 [0.30, 2.13]		-				
					0.1	0.2	0.5	1 2	5	10
						Favor	irs Fisher 1	Favours	Fisher 0	

E.9 Fisher grade 1 – 2

Figure 27: mRS 0 – 2 (6 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixed	I, 95% CI	
Wang 2019	2.4934	0.8934		12.10 [2.10, 69.72]					
					0.01	0.	1 [.]	i 10	100'
						Favours	Fisher 3 - 4	Favours Fisher 1 - 2	

E.10 Fisher grade 2

Figure 28: Mortality (60 days)

Figure 29: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		C	dds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, F	ixed, 95% C	I	
Van Donkelaar 2017	0.0953	0.5161		1.10 [0.40, 3.02]		-			
					0.01	0.1	1	10	100
						Favours Fish	er 2 Favour	s Fisher 0	

E.11 Fisher grade 3

Figure 30: Mortality (60 days)

Figure 31: mRS >2 (6 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio			
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixed	d, 95% Cl			
Konzalla 2016	-0.7133	0.3433		0.49 [0.25, 0.96]							
					⊢ 0.1	0.2 Favours	0.5 Fisher grade 1	Favours	l 2 Fisher grad	5 le 3	10

Figure 32: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	I, 95% CI	
Van Donkelaar 2017	0.47	0.7073		1.60 [0.40, 6.40]			+	
					0.01 0	l	1 10	100
					Favours F	isher grade 3	Fisher grade 0	

Figure 33: mRS 4 – 6 (12 months). Scale 0-6; high score represents poorer outcome.

				Hazard Ratio		Hazar	d Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% CI	
Mocco 2006	0.3436	0.593		1.41 [0.44, 4.51]			+	
					0.01	0.1	1 10	100
						Favours Fisher grade 3	Favours Fisher grade 1	

E.12 Fisher grade 3 – 4

Figure 34: mRS >3 (12 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio			
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixed	I, 95% C	I		
Duan 2016	1.1722	0.1457		3.23 [2.43, 4.30]					-		
										_	
					0.1	0.2	0.5 1	i d	ź	5	10'
						Favou	rs Fisher 3-4	Favour	s Fisher 1	-2	

E.13 Fisher grade 4

Figure 35: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixe	d, 95% CI		
Van Donkelaar 2017	1.411	0.4492		4.10 [1.70, 9.89]						
					0.01	0.	1	1 1	0	100
						Favours	Fisher grade 4	Favours Fishe	r grade O	

Figure 36: mRS 4 – 6 (12 months). Scale 0-6; high score represents poorer outcome.

				Hazard Ratio			Haza	rd Ratio			
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixe	ed, 95% CI			
Mocco 2006	0.0853	0.6076		1.09 [0.33, 3.58]				-			
					0.1	0.2	0.5	1	2 :	5	10
						Favours	s Fisher grade 4	FAvours	Fisher grade	e 1	

E.14 WFNS (per grade increase)

Figure 37: GOS 1 – 3 (at discharge). Scale 1-5; high score represents positive outcome.

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% Cl		Odds IV, Fixed	Ratio I, 95% CI	
Galea 2017	0.7227	0.0386		2.06 [1.91, 2.22]			+	
					0.2	0.5 Favours higher grade	2 Favours lower grade	5

E.15 WFNS 1 – 3

Figure 38: mRS >2 (6 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
Konzalla 2016	2.2618	0.3431		9.60 [4.90, 18.81]				
					+		<u> </u>	<u> </u>
					0.05	0.2	1 5	20
						Favours WFNS 1 - 3	Favours WFNS 4 - 5	

E.16 WFNS 2

Figure 39: Mortality (60 days)

Figure 40: Mortality (90 days)

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] S	E Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Ozono 2020a	1.0152 0.707	3 38.8%	2.76 [0.69, 11.04]	
Ozono 2020b	0.5423 0.563	5 61.2%	1.72 [0.57, 5.19]	
Total (95% CI)		100.0%	2.07 [0.87, 4.90]	•
Heterogeneity: Chi² = Test for overall effect:	0.27, df = 1 (P = 0.60); l ² : Z = 1.65 (P = 0.10)	= 0%		0.01 0.1 1 10 100 Favours WFNS 2 Favours WFNS 1

Figure 41: mRS ≥3 (3 months). Scale 0-6; high score represents poorer outcome.

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% Cl		Odds IV, Fixed	Ratio , 95% Cl	
Ozono 2020a	0.2546	0.4836	36.6%	1.29 [0.50, 3.33]				
Ozono 2020b	0.6366	0.3673	63.4%	1.89 [0.92, 3.88]		-		
Total (95% CI)			100.0%	1.64 [0.93, 2.92]			◆	
Heterogeneity: Chi ² = Test for overall effect:	0.40, df = 1 (P = 0.9 Z = 1.70 (P = 0.09)	0.01 Fa	0.1 vours WFNS 2	10 Favours WFN	100 NS 1			

Figure 42: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixed	l, 95% C	1	
Van Donkelaar 2017	0.47	0.1912		1.60 [1.10, 2.33]					_	
					0.1	0.2	0.5	1 1	2 5	10
						Favo	urs WFNS 2	Favour	s WFNS 1	

E.17 WFNS 3

Figure 43: Mortality (60 days)

				Odds Ratio		Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	d, 95% Cl		
Dijkland 2016a	0.5306	0.3418	93.0%	1.70 [0.87, 3.32]		-			
Dijkland 2016b	1.4929	1.2421	7.0%	4.45 [0.39, 50.77]					_
Total (95% CI)			100.0%	1.82 [0.95, 3.47]			•		
Heterogeneity: Chi² = Test for overall effect:	0.56, df = 1 (P = 0. Z = 1.82 (P = 0.07)	46); I² = ()%		⊢ 0.01	0.1 Favours WFNS 3	1 Favours V	10 VFNS 1	100

Figure 44: Mortality (90 days)

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] S	E Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Ozono 2020a	1.2119 0.815	1 41.7%	3.36 [0.68, 16.60]	
Ozono 2020b	0.5306 0.689	6 58.3%	1.70 [0.44, 6.57]	
Total (95% CI)		100.0%	2.26 [0.80, 6.34]	-
Heterogeneity: Chi² = Test for overall effect:	0.41, df = 1 (P = 0.52); l ² = Z = 1.55 (P = 0.12)	0.01 0.1 1 10 100 Favours WFNS 3 Favours WFNS 1		

Figure 45: mRS ≥3 (3 months). Scale 0-6; high score represents poorer outcome.

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% Cl		Odds IV, Fixed	Ratio , 95% Cl	
Ozono 2020a Ozono 2020b	1.2641 0 1.6134 0	l.5111 l.4279	41.2% 58.8%	3.54 [1.30, 9.64] 5.02 [2.17, 11.61]			#	
Total (95% Cl) Heterogeneity: Chi ² = Test for overall effect:	0.27, df= 1 (P = 0.60 Z = 4.48 (P < 0.0000)); I² = 0 1)	100.0% %	4.35 [2.29, 8.27]	0.01 0 Favo	1 1.1 1 1 urs WFNS 3	10 Favours WFNS 1	100

Figure 46: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
Van Donkelaar 2017	1.1632	0.4218		3.20 [1.40, 7.31]			— +	
					0.01	0.1	1 10	100
						Favours WFNS 3	Favours WFNS 1	

E.18 WFNS 4

Figure 47: Mortality (60 days)

			Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio] S	E Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Dijkland 2016a	1.5831 0.3203	2 77.4%	4.87 [2.60, 9.12]	
Dijkland 2016b	1.7422 0.591	3 22.6%	5.71 [1.79, 18.21]	
Total (95% CI)		100.0%	5.05 [2.91, 8.77]	•
Heterogeneity: Chi² = Test for overall effect:	0.06, df = 1 (P = 0.81); I² = Z = 5.75 (P ≤ 0.00001)	0%		0.01 0.1 1 10 100 Favours WFNS 4 Favours WFNS 1

Figure 48: Mortality (90 days)

Study or Subgroup	log[Odds Ratio]	S E	Weight	Odds Ratio IV, Fixed, 95% Cl		Odds IV, Fixed	Ratio 1, 95% Cl	
Ozono 2020a Ozono 2020b	1.4398 0.6206 (0.686 0.5364	37.9% 62.1%	4.22 [1.10, 16.19] 1.86 [0.65, 5.32]		_		
Total (95% CI) Heterogeneity: Chi ² = Test for overall effect:	0.88, df = 1 (P = 0.3) Z = 2.20 (P = 0.03)	5); I² = 0	100.0% 1%	2.54 [1.11, 5.81]	L 0.01	0.1 Favours WFNS 4	1 10 FAvours WFNS 1	100

Figure 49: Mortality (12 months)

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	l, 95% Cl	
Taki 2011	1.311	0.6538		3.71 [1.03, 13.36]			I	
					0.01	0.1 Favours WFNS 4	1 10 Favours WFNS 1	100

Figure 50: mRS 3-6 (12 months). Scale 0-6; high score represents poorer outcome.

Study on Subarray	la stodda Datial	er	Mainha	Odds Ratio			Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	3E	weight	IV, FIXed, 95% CI		IV,	Fixed	, 95% CI	
Taki 2011	1.2413	0.4299		3.46 [1.49, 8.04]					
					0.01	0.1 Favours WF	NS 4	10 Favours WFNS 1	100

Figure 51: mRS 0 – 2 (6 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
Wang 2019	2.3818	0.5429		10.82 [3.73, 31.37]				
					0.01	0.1	1 10	100
						Favours WENS 5	Favours WENS 4	

Figure 52: mRS ≥3 (3 months). Scale 0-6; high score represents poorer outcome.

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% CI		Odds IV, Fixed	Ratio 1, 95% Cl	
Ozono 2020a Ozono 2020b	2.451 2.269	0.3808 0.3479	45.5% 54.5%	11.60 [5.50, 24.47] 9.67 [4.89, 19.12]				
Total (95% CI) Heterogeneity: Chi ² = Test for overall effect:	0.12, df= 1 (P = 0. Z = 9.16 (P < 0.00)	72); I² = (001)	100.0%)%	10.50 [6.35, 17.38]	⊢ 0.01	0.1 Favours WFNS 4	1 10 Favours WFNS 1	100

Figure 53: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odd	s Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl		
Van Donkelaar 2017	1.7405	0.2205		5.70 [3.70, 8.78]	0.01 0.1 Favours WFNS 4		1 10 Favours WFN	100 IS 1	+

E.19 WFNS 4 – 5

Figure 54:	Mortality							
				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
Orakdogen 2016	4.4865	1.1907		88.81 [8.61, 916.19]				
					0.001 Fa	0.1 1 vours WFNS 4-5	10 Favours WF	1000 NS 1-2

Figure 55: mRS >2 (3 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio			Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI				
Rabinstein 2004	1.2754	0.5248		3.58 [1.28, 10.01]					
					0.01	0.	1 '	10	100
						Favour	s WFNS 4-5	Favours WFNS 1-3	

E.20 WFNS 5

Figure 56: Mortality (60 days)

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Rando	m, 95% Cl	
Dijkland 2016a	1.9459	0.5172	50.8%	7.00 [2.54, 19.29]				
Dijkland 2016b	5.6088	0.7016	49.2%	272.82 [68.97, 1079.13]				→
Total (95% CI)			100.0%	42.38 [1.17, 1534.17]				
Heterogeneity: Tau ² =	6.33; Chi ² = 17.66	, df = 1 (F	° < 0.000′	1); I ² = 94%			10	1000
Test for overall effect: Z = 2.05 (P = 0.04)						Favours WFNS 5	Favours WFN	1000 S1

Figure 57: Mortality (90 days)

Figure 58: Mortality (12 months)

Figure 59: mRS 3-6 (12 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI				
Taki 2011	2.6012	0.4969		13.48 [5.09, 35.70]				
					0.01	0.1	1 10	100
						Favours WFNS 5	Favours WFNS 1	

Figure 60:mRS ≥3 (3 months). Scale 0-6; high score represents poorer outcome.

Study or Subgroup	log[Odds Ratio]	SE \	Weight	Odds Ratio IV, Random, 95% Cl		Odds IV, Rando	Ratio m, 95% Cl	
Ozono 2020b	3.0479	0.3752	51.9%	21.07 [10.10, 43.96]				
Ozono 2020a	3.9038	0.4107	48.1%	49.59 [22.17, 110.91]			-	—
Total (95% CI)	0.21·Chi2-2.27 a	4f - 1 /D -	100.0%	31.80 [13.75, 73.53]	_		-	►
Test for overall effect: $Z = 8.09$ (P < 0.00001)						0.1 Favours WFNS 5	1 10 Favours WFNS 1	100

Figure 61: mRS 4 – 6 (2 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio Od			Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI			
Van Donkelaar 2017	2.4932	0.2578		12.10 [7.30, 20.06]			-+-	
					0.01	0.1	1 10	100
					Favours WFNS 5		Favours WFNS 1	

Figure 62: mRS 4 – 6 (12 months). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio] S	E Weigh	t IV, Fixed, 95% CI		IV, Fixed	I, 95% CI	
Zhao 2017	2.151	8 0.520	6	8.60 [3.10, 23.86]			— — —	
					L	0.1 Favours WFNS 5	10 Favours WFNS 1	100
Figure 63:	Survival ana	lyses	(23.5 r	nonths) Jazard Ratio		Hazard Ra	ntio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight IV	, Fixed, 95% Cl		IV, Fixed, 95	5% CI	
Goldberg 2018	1.0225	0.2539	2	.78 [1.69, 4.57]			+	
				L 0.1	0.2 Favou	0.5 1 rs WFNS grade 5 Fa	2 5 vours WFNS grade 4	10

E.21 WFNS 6

				Odds Ratio			Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI					
Dijkland 2016	1.7492	0.4437		5.75 [2.41, 13.72]				- +		
					-+-			<u>+ </u>	<u> </u>	<u> </u>
					0.1	0.2	0.5	12	5	10
						Favours	s WFNS 6	Favours V	VFNS 1	

E.22 Glasgow Coma Scale 3 – 4

Figure 65: I	n-hospital mo	ortality	y							
				Odds Ratio			Odd	s Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI			IV, Fixe	d, 95% Cl		
Inamasu 2016	0.8215	0.4667		2.27 [0.91, 5.68]					•	
					⊢ 0.1	0.2 Favours	0.5 s GCS 3-4	1 2 Favours	GCS 5-6	10

E.23 Glasgow Coma Scale 8 – 9

Figure 66: mRS 4 – 6 (1 year). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	ed, 95% CI	
Starke 2009	2.6532	1.1468		14.20 [1.50, 134.41]				
					0.005	0.1	1 10	200
					Fav	ours GCS 8-9	9 GCS 10-12	

E.24 Glasgow Coma Scale 5 – 7

Figure 67: mRS 4 – 6 (1 year). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odd	s Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixe	d, 95% Cl	
Starke 2009	3.6507	1.1304		38.50 [4.20, 352.92]			+	
					0.001	0.1	1 10	1000
					Favo	urs GCS 5-7	GCS 10-12	

E.25 Glasgow Coma Scale 3 – 4

Figure 68: mRS 4 – 6 (1 year). Scale 0-6; high score represents poorer outcome.

				Odds Ratio		Odds	Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fixed	, 95% CI		
Starke 2009	4.1495	1.2381		63.40 [5.60, 717.76]				- 1	<u> </u>
					0.001	0.1 1	1)	1000
						Favours GCS 3-4	Favours	GCS 10-12	

Appendix F: GRADE tables

Table 33: Clinical evidence profile: Hunt & Hess grade (per grade increase)

			Quality assessm	ent			No of pati	ents	Effect	:		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hunt & Hess grade	Control	Relative (95% Cl)	Absolute	Quality	Importance
mRS 4 - 6 ((3 months)											
1	observational studies	no serious risk of bias	no serious inconsistency	Serious ¹	no serious imprecision	none	-	-	OR 1.8 (1.3 to 2.49)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS 3 - 6 ((6 months)											
1	observational studies	no serious risk of bias	no serious inconsistency	serious ¹	no serious imprecision	none	-	-	OR 2.03 (1.13 to 3.65)	-	⊕⊕⊕O MODERATE	CRITICAL
¹ The majori	ty of the evidence	had indirect outo	omes (outcome per	grade increase	e) and population (non aneurysmal SAI	H)	1		1		I

²Downgraded by 1 increment if the confidence interval crossed the null line

Table 34: Clinical evidence profile: Hunt & Hess grade two

			Quality assessm		No of pati	ents	Effect		Quality	Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hunt & Hess grade 2	Control	Relative (95% Cl)	Absolute	Quanty	Importance
Hunt and H	less grade 1 as refe	erence										

Mortality (1-3 days)											
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 0.6 (0.1 to 3.6)	-	⊕⊕OO LOW	CRITICAL
Mortality (4 - 30 days)						-	-		-		
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 1.4 (0.4 to 4.9)	-	⊕⊕OO LOW	CRITICAL
Mortality (1 - 12 months)	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 0.6 (0.2 to 1.8)	-	⊕⊕OO LOW	CRITICAL
mRS 3 –	6 (follow up 6 mont	hs)					-	-				
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 1.19 (0.13 to 10.89)	-	⊕⊕OO LOW	CRITICAL

¹ Downgraded by 1 increment if the confidence interval crossed the null line ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 35: Clinical evidence profile: Hunt & Hess grade three

	Quality assessment								Effect			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hunt & Hess grade 3	Control	Relative (95% Cl)	Absolute	Quality	Importance

Hunt and	unt and Hess grade 1 as reference												
Mortality (1 - 3 days)												
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 1.1 (0.2 to 6.05)	-	⊕⊕OO LOW	CRITICAL	
			-				-		-	-			
Mortality (4 - 30 days)												
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 3.3 (1 to 10.89)	-	⊕⊕⊕O MODERATE	CRITICAL	
	 			 					, ,				
Mortality (1 - 12 months)												
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 2.8 (0.8 to 9.8)	-	⊕⊕OO LOW	CRITICAL	
							-	-	, 	-			
mRS 3 –	6												
							-	-	OR 1 43	-	AA00	CRITICAL	
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	(0.13 to 15 73)	-	LOW	SHITOAL	

¹ Downgraded by 1 increment if the confidence interval crossed the null line ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 36: Clinical evidence pro	ofile: Hunt &	Hess grade four
---------------------------------	---------------	-----------------

Quality assessment	No of patients	Effect	Quality	Importance
--------------------	----------------	--------	---------	------------

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hunt & Hess grade 4	Control	Relative (95% Cl)	Absolute		
Hunt and	Hess grade 1-3 as	reference										
In-hospita	l mortality											
2	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 5.11 (2.67 to 9.77)	-	⊕⊕⊕O MODERATE	CRITICAL
Hunt and	Hess grade 1 as re	ference					-	-		-		
Mortality ((1-3 days)											
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 6 (1.3 to 27.69)	-	⊕⊕⊕O MODERATE	CRITICAL
Mortality (4-30 days)						-	-		-		
1	observational studies	serious ²	no serious inconsistencv	no serious indirectness	no serious imprecision	none	-	-	OR 10 (3 to 33.33)	-	⊕⊕⊕O MODERATE	CRITICAL
Mortality (1-12 months)						-	-		-		
1	observational studies	serious ²	no serious inconsistencv	no serious indirectness	no serious imprecision	none	-	-	OR 3.4 (1 to 11.56)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS 3 - 6	(6 months)		,				-	-		-		
1		serious ²			serious ¹	none	-	-		-		CRITICAL

	observational studies		no serious inconsistency	no serious indirectness			-	-	OR 6.07 (0.6 to 61.41)	-	⊕⊕OO LOW	
mRS 4 -	6 (12 months)											
	observational	no serious	no serious	no serious	serious ¹	none	-	-	OR 1.1	-	⊕⊕OO	CRITICAL
1	studies	risk of bias	inconsistency	indirectness			-	-	(0.21 to 5.87)	-	LOW	

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MID ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 37: Clinical evidence profile: Hunt & Hess grade five

			No of pati	ents	ents Effect			Importance				
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Hunt & Hess grade 5	Control	Relative (95% Cl)	Absolute	Quanty	importance
Hunt and I	Hess grade 1-3 a	s reference			•							
In-hospita	l mortality											
2	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 42.02 (22.01 to 80.24)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		
Hunt and I	Hess grade 1 as	reference										
Mortality (1-3 days)											
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 92 (21 to 403.04)	-	⊕⊕⊕O MODERATE	CRITICAL
			,				-	-	,	-		

Subarachnoid haemorrhage Severity scoring systems

Mortality (4-30 days)											
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 43 (11 to 168.1)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		
Mortality (1-12 months)											
1	observational studies	serious ²	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 12 (1.8 to 79.99)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-	,	-	-	
mRS 4 - 6	(12 months)											
1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ¹	none	-	-	OR 3.83 (0.61 to 24.01)	-	⊕⊕⊕O MODERATE	CRITICAL
			,				-	-	,	-		

¹ Downgraded by 1 increment if the confidence interval crossed one MID or by 2 increments if the confidence interval crossed both MID ² Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 38: Clinical evidence profile: Hunt & Hess grade four to five

		C	Quality assessment				No of pation	ents	Effect		Quality		
No of studies	Design	Risk of bias	Inconsistency	Other considerations	Hunt & Hess 4 - 5	Control	Relative (95% Cl)	Absolute	Quality	Importance			
Hunt and Hess grade 1-3 as reference													
mRS >3 (12	nRS >3 (12 months)												
1				serious ¹	serious ²	none	-	-		-		CRITICAL	

ĺ	observational studies	no serious risk of bias	no serious inconsistency		-	-	OR 1.76 (1.13 to 2 73)	-	⊕⊕OO	
	3100103	5103	linconsistency				2.73)		LOW	l

¹ The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 4 and 5) ² Downgraded by 1 increment if the confidence interval crossed the null line

Table 39: Clinical evidence profile: Fisher score (per grade increase)

			Quality assessm	ent			No of pa	tients	Effec	Effect		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Fisher grade 1	Control	Relative (95% Cl)	Absolute	Quanty	importance
mRS 4 - 6 ((12 months)											
1	observational studies	no serious risk of bias	no serious inconsistency	serious ¹	no serious imprecision	none	-	-	OR 2.3 (1.5 to 3.53)	-	⊕⊕⊕O MODERATE	CRITICAL

¹ The majority of the evidence had indirect outcomes (outcome per grade increase)

Table 40: Clinical evidence profile: Fisher score one

			Quality assessme		No of patients		Effect		Quality	Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Fisher grade 1	Control	Relative (95% Cl)	Absolute	Quality	Importance
Fisher grade 4 as reference												

Mortality (6	60 days)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 0.36 (0.09 to 1.44)	-	⊕⊕OO LOW	CRITICAL
			,				-	-	,	-		
Fisher grade 0 as reference												
mk5 4 - 0 (z montris)											
1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 0.8 (0.3 to 2.13)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed the null line

Table 41: Clinical evidence profile: Fisher score one - two

			Quality asse	ssment			No of patients		Effect		Quality	Importonoo
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Imprecision Other Fisher grade 2 Control Relative (95% CI) Absolute				Quanty	importance	
Fisher grac	de 3-4 as referenc	e										
mRS 0-2												
1		serious ¹				none	-	-		-		CRITICAL

	observational studies		no serious inconsistency	serious indirectness ²	no serious imprecision		-	-	OR 12.10 (2.10 to 69.72)	-	⊕⊕⊕O MODERATE	
--	--------------------------	--	-----------------------------	--------------------------------------	---------------------------	--	---	---	-----------------------------	---	------------------	--

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 1 and 2)

Table 42: Clinical evidence profile: Fisher score two

			Quality assess		No of pa	tients	Effec	t	Quality			
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Fisher grade 2	Control	Relative (95% Cl)	Absolute	Quality	Importance
Fisher grad	le 4 as reference											
Mortality (6	0 days)											
1 (observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 0.52 (0.27 to 1)	-	⊕⊕⊕O MODERATE	CRITICAL
Fisher grad	le 0 as reference	<u> </u>	L		<u>,</u>	I				<u> </u>		
mRS 4 - 6 (2	2 months)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 1.1 (0.4 to 3.02)	-	⊕⊕⊕O MODERATE	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed the null line

				No of pa	tients	Effect		0							
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Fisher grade 3	Control	Relative (95% Cl)	Absolute	Quality	Importance			
Fisher grad	de 4 as reference	•		•			•		•						
Mortality (60 days)														
1	$\frac{\text{observational}}{\text{studies}} \text{ serious}^{1} \text{ no serious} \text{ inconsistency} \text{ no serious} \text{ indirectness} \text{ serious}^{2} \text{ none} \frac{-}{-} \frac{-}{-} \frac{\text{OR 0.97 (0.7 to}}{1.34)} \frac{-}{-} \frac{-}{$														
Fisher grad mRS >2 (6	isher grade 1 as reference														
1	observational studies	serious ¹	no serious inconsistency	serious ³	serious ²	none	-	-	OR 0.49 (0.25 to 0.96)		⊕000 VERY LOW	CRITICAL			
mRS 4 - 6 ((12 months)														
1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 1.41 (0.44 to 4.51)	-	⊕⊕⊕O MODERATE	CRITICAL			
Fisher grad	de 0 as reference														
mRS 4 - 6 (2 months)														

1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 1.6 (0.4 to 6.4)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² Downgraded by 1 increment if the confidence interval crossed the null line

³ The majority of the evidence had indirect population (Patients with aneurysms of carotid bifurcation and posterior communicating artery)

Table 44: Clinical evidence profile: Fisher score three to four

			Quality assessm	ent			No of pati	ents	Effect	t	Quality	
No of studies	of ies Design Risk of bias Inconsistency Indirectness Imprecision Other considerations Fisher score 3 - 4 Control Relative (95% CI) Absolute							Quality	Importance			
Fisher grac	de 1-2 as referenc					•						
mRS >3 (12	2 months)											
1	observational studies	no serious risk of bias	no serious inconsistency	serious ¹	no serious imprecision	none	-	-	OR 3.23 (2.43 to 4.3)	-	⊕⊕⊕O MODERATE	CRITICAL

¹ The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 3 and 4)

Table 45: Clinical evidence profile: Fisher score four

			Quality asses	sment			No of pa	tients	Effec	t	Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Fisher grade 4	Control	Relative (95% Cl)	Absolute	Quanty	importance

Fisher gra	de 0 as reference)												
mRS 4 - 6	(2 months)													
1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 4.1 (1.7 to 9.89)	-	⊕⊕⊕⊕ HIGH	CRITICAL		
Fisher gra	her grade 1 as reference													
mRS 4 - 6	her grade 1 as reference RS 4 - 6 (12 months)													
1	observational studies	no serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 1.09 (0.33 to 3.58)	-	⊕⊕⊕O MODERATE	CRITICAL		

¹ Downgraded by 1 increment if the confidence interval crossed the null line

Table 46: Clinical evidence profile: WFNS (per grade increase)

			Quality asse	ssment			No of pa	tients	Effect		Quality	Immontoneo
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 1 - 5	Control	Relative (95% Cl)	Absolute	Quanty	importance
GOS 1 – 3 (at discharge)	•	•							•		
1	observational studies	serious ¹	no serious inconsistency	serious indirectness ²	no serious imprecision	none	-	-	OR 2.06 (1.91 to 2.22)	-	⊕⊕OO LOW	CRITICAL

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

² The majority of the evidence had indirect outcomes (outcome per grade increase)

Table 47: Clinical evidence profile: WFNS 1 – 3

			Quality asse		No of pa	atients	Effect		Quality			
No of studies Design Risk of bias Inconsistency Indirectness Imprecision Other consideration								Control	Relative (95% Cl)	Absolute	Quality	Importance
WFNS grad	e 4-5 as reference			•								
mRS >2 (6 r	nonths)											
1	observational studies	serious ¹	no serious inconsistency	serious indirectness ²	no serious imprecision	none	-	-	OR 9.6 (4.9 to 18.81)	-	⊕⊕OO LOW	CRITICAL
							-	-		-		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 1 to 3)

Table 48: Clinical evidence profile: WFNS 2

			Quality assessr	nent			No of p	oatients	Effec	t	Quality	1
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 2	Control	Relative (95% Cl)	Absolute	Quanty	ттротапсе
WFNS gra	ade 1 as reference				۰ 							
Mortality	(60 days)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 1.94 (1.3 to 2.87)	-	⊕⊕⊕O MODERATE	CRITICAL

							-	-		-		
Mortalit	y (90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 2.07 (0.87 – 4.9)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS ≥3	(90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 1.64 (0.93 to 2.92)	-	⊕⊕⊕O MODERATE	
mRS 4 - 1	6 (2 months)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 1.6 (1.1 to 2.33)	-	⊕⊕⊕⊕ HIGH	CRITICAL
							-	-		-		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed the null line

Table 49: Clinical evidence profile: WFNS 3

			Quality assess	ment			No of p	oatients	Effec	t	Quality	Incomentation
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 3	Control	Relative (95% Cl)	Absolute	Quality	Importance
WFNS gra	ade 1 as reference											
Mortality	(60 days)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	serious²	none	-	-	OR 1.82 (0.95 to 3.47)	-	⊕⊕OO LOW	CRITICAL

Mortality	v (90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	serious ²	none	-	-	OR 2.26 (0.8 to 6.34)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS ≥3	(90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none			OR 4.35 (2.29 to 8.27)		⊕⊕⊕⊕ HIGH	CRITICAL
mRS 4 - 6	(2 months)	•										
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 3.2 (1.4 to 7.31)	-	⊕⊕⊕⊕ HIGH	CRITICAL
							-	-		-		1

134

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed the null line

Table 50: Clinical evidence profile: WFNS 4

	f Design Risk of bias Inconsistency Indirectness Imprecision Other consideration grade 1 as reference Grade 1 as reference Grade 1 as reference Grade 1 as reference Grade 1 as reference								Effec	t	Quality	Increation of
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 4	Control	Relative (95% Cl)	Absolute	Quanty	Importance
WFNS gra	de 1 as reference							•				
Mortality	(60 days)											

1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 5.05 (2.91 to 8.77)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		
Mortality (12 months)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 3.71 (1.03 to 13.36)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		
Mortality	(90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 2.54 (1.11 to 5.81)	-	⊕⊕⊕⊕ HIGH	CRITICAL
mRS 3-6 (12 months)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 3.46 (1.49 to 8.04)	-	⊕⊕⊕O MODERATE	CRITICAL
							-	-		-		
mRS ≥3	(90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 10.50 (6.35 to 17.38)	-	⊕⊕⊕⊕ HIGH	CRITICAL
mRS 4 - 6	(2 months)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 5.7 (3.7 to 8.78)	-	⊕⊕⊕⊕ HIGH	CRITICAL
							-	-	,	-		
WFNS gra	de 5 as reference											

mRS 0 - 2												
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 10.82	-	⊕⊕⊕O MODERATE	CRITICAL
					•		-	-	(3.73 to 31.37)	-	-	

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 increment if the confidence interval crossed the null line

Table 51: Clinical evidence profile: WFNS 4 - 5

			Quality assess		No of patients		Effect		Quality	Immortonoo		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 4 - 5	Control	Relative (95% Cl)	Absolute	Quanty	importance
WFNS grade	e 1-3 as reference											
Mortality												
1	observational studies	serious ¹	no serious inconsistency	serious ²	no serious imprecision	none	-	-	OR 88.81 (8.61 to 916.19)	-	⊕⊕OO LOW	CRITICAL
mRS >2		<u> </u>		I			I					
1	observational studies	serious ¹	no serious inconsistency	serious ²	no serious imprecision	none	-	-	OR 3.58 (1.28 to 10.01)	-	⊕⊕OO LOW	CRITICAL
							-	-		-	1	

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² The majority of the evidence had indirect outcomes (outcome included multiple scores – grade 4 and 5)

	Quality assessment						No of patients		Effect		Quality	Importance
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 5	Control	Relative (95% Cl)	Absolute	Quality	Importance
WFNS gra	ade 1 as reference											
Mortality	(60 days)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	serious imprecision²	none	-	-	OR 42.38 (1.17 to 1534.17)	-	⊕⊕OO LOW	CRITICAL
							-	-		-		
Mortality	/ (90 days)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 9.22 (4.35 to 19.52)	-	⊕⊕⊕⊕ HIGH	CRITICAL
Mortality	/ (12 months)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 9.43 (2.5 to 35.57)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS 3-6 ((12 months)											
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 13.48 (5.09 to 35.7)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS ≥3	(90 days)											

1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	serious imprecision ²	none	-	-	OR 31.80 (13.75 to 73.53)	-	⊕⊕⊕O MODERATE	CRITICAL
mRS 4 - 6	i (2 months)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 12.1 (7.3 to 20.06)	-	⊕⊕⊕⊕ HIGH	CRITICAL
mRS 4 - 6	i (12 months)											
1	observational studies	No serious risk of bias	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 8.6 (3.1 to 23.86)	-	⊕⊕⊕⊕ HIGH	CRITICAL
WFNS gra	ade 4 as reference				<u></u>			-				
Survival A	Analyses (23.5 mo	nths)										
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	HR 2.78 (1.69 to 4.57)	-	⊕⊕⊕O MODERATE	IMPORTANT

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² Downgraded by 1 or 2 increments because of heterogeneity, I2>50%, p>0.04, subgroup analysis not possible; <2 studies per subgroup.

Table 53: Clinical evidence profile: WFNS 6

		No of patients		Effect		Quality	Immoutonoo					
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WFNS 6	Control	Relative (95% Cl)	Absolute	Quanty	importance
WFNS grad	e 1 as reference						•	•		-		

Mortality (6	Mortality (60 days)														
1	observational studies	serious ¹	no serious inconsistency	no serious indirectness	no serious imprecision	none	-	-	OR 5.75 (2.41 to 13.72)	-	⊕⊕⊕O MODERATE	CRITICAL			
							-	-		-					

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias

Table 54: Clinical evidence profile: Glasgow coma scale GCS 3 - 4

			Quality assessr		No of patier	nts	Effect	Quality					
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Glasgow Coma Scale	Control	Relative (95% Cl)	Absolute	Quality	mportance	
GCS grade	GCS grade 5-6 as reference												
In-hospital mortality													
1	observational studies	serious ¹	No serious inconsistency	serious indirectness ³	serious ²	none	-	-	OR 2.27 (0.91 to 5.68)	-	⊕⊕OO LOW	CRITICAL	
	d by 1 increment if	the majority	, of the ovidence was a	t high rick of high	and downgrou	lad by 2 incromonta i	-	-		-			
² Downgrade	ed by 1 increment if	the confide	y of the evidence was a ince interval crossed th	e null line	and downgrad	ied by 2 increments i	in the majority of the	evidenc	ce was at very higr	I FISK OF DIA	15		

³ The majority of the evidence had indirect outcomes (outcome included multiple scores – GCS 3 - 4)

Table 55: Clinical evidence profile: Glasgow coma scale 8 – 9

Quality assessment	No of patients	Effect	Quality	Importance
--------------------	----------------	--------	---------	------------

No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Glasgow Coma Scale 8 - 9	Control	Relative (95% Cl)	Absolute				
GCS grade	e 10-12 as referen	ce												
mRS 4 – 6	mRS 4 – 6 (1 year)													
1	observational studies	serious ¹	no serious inconsistency	serious indirectness ²	no serious imprecision	none	-	-	OR 14.2 (1.5 to 134.41)	-	⊕⊕OO LOW	CRITICAL		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² The majority of the evidence had indirect outcomes (outcome included multiple scores – GCS 8 – 9)

Table 56: Clinical evidence profile: Glasgow coma scale 5 – 7

	Quality assessment								Effect				
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Glasgow Coma Scale 5 - 7	Control	Relative (95% Cl)	Absolute	Quality	Importance	
GCS grade	GCS grade 10-12 as reference												
mRS 4 – 6	(1 year)												
1	observational studies	serious ¹	no serious inconsistency	serious indirectness ²	no serious imprecision	none	-	-	OR 38.5 (4.2 to 352.92)	-	⊕⊕OO LOW	CRITICAL	
							-	-		-			

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² The majority of the evidence had indirect outcomes (outcome included multiple scores – GCS 5 – 7)

Table 57: Clinical evidence profile: Glasgow coma scale 3 – 4

			Quality asse	ssment		No of patien	ts	Effect	0	Importance		
No of studies	Design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Glasgow Coma Scale 3 - 4	Control	Relative (95% Cl)	Absolute	Quality	Importance
GCS grade 10-12 as reference												
mRS 4 – 6	(1 year)											
1	observational studies	serious ¹	no serious inconsistency	serious indirectness ²	no serious imprecision	none	-	-	OR 63.4 (5.6 to 717.76)	-	⊕⊕OO LOW	CRITICAL
							-	-		-		

¹ Downgraded by 1 increment if the majority of the evidence was at high risk of bias, and downgraded by 2 increments if the majority of the evidence was at very high risk of bias ² The majority of the evidence had indirect outcomes (outcome included multiple scores – GCS 3 – 4)

Appendix G: Health economic evidence selection

* Non-relevant population, intervention, comparison, design or setting; non-English language

Appendix H: Health economic evidence tables

None.

Appendix I: Excluded studies

I.1 Excluded clinical studies

Table 58: Studies excluded from the clinical review Reference Reason for exclusion Aggarwal 2018² Inappropriate study design – Multivariate

Aggarwal 2018 ²	Inappropriate study design – Multivariate analysis did not consider key confounders
Ahn 2018 ³	Inappropriate study design – Proposed model – unclear analysis within new scoring system
Albertine 2016 ⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Allen 2018 ⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
Anonymous 2018 ⁶	Duplicate study
Asano 2007 ⁷	Inappropriate study design – Multivariate analysis uses unvalidated scale (Japan Coma Scale)
Badalyan 2018 ⁸	Inappropriate study design – No multivariate analysis
Basile-Filho 2018 ⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Baumann 2008 ¹⁰	Inappropriate study design – No multivariate analysis
Bavinzski 1999 ¹¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Benes 2017 ¹²	Inappropriate study design – Multivariate analysis did not consider key confounders
Bian 2015 ¹³	Inappropriate study design – Multivariate analysis did not consider key confounders
Bidzinski 1990 ¹⁴	Inappropriate study design – No multivariate analysis
Bijlenga 2017 ¹⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
Boerboom 2016 ¹⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Bohnstedt 2013 ¹⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Braun 2005 ¹⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
Bretz 2017 ¹⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Cedzich 2005 ²⁰	Inappropriate study design – No multivariate analysis
Cellerini 2008 ²¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Chalouhi 2013 ²²	Inappropriate study design – Multivariate analysis did not consider key confounders
Chalouhi 2015 ²³	Inappropriate study design – No multivariate analysis
Chan 2014 ²⁴	Inappropriate comparison – HASBLED score
Cherian 2011 ²⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
Cheung 2003 ²⁶	Inappropriate study design – Proposed scale – Intracerebral Haemorrhage score
Reference	Reason for exclusion
---------------------------------------	--
Chiang 2000 ²⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Choi 2017 ²⁸	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Chotai 2013 ²⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Claassen 2001 ³⁰	Inappropriate study design – Multivariate analysis did not consider key confounders
Cui 2018 ³²	Inappropriate study design – Multivariate analysis did not consider key confounders
Czorlich 2015 ³³	Inappropriate study design – Multivariate analysis did not consider key confounders
Czorlich 2015 ³⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Dabilgou 2019 ³⁵	Inappropriate study design – no multivariate analysis
Dapaah 2019 ³⁶	Inappropriate study design – abstract
Darflinger 2016 ³⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Daverat 1991 ³⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
De Marchis 2014 ³⁹	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
de Oliveira Manoel 2016 ⁴⁰	Systematic review – references reviewed
De Santis 2007 ⁴¹	Inappropriate study design – Multivariate analysis did not consider key confounders
De Santis 1998 ⁴²	Inappropriate study design – Multivariate analysis did not consider key confounders
Dehdashti 2004 ⁴³	Inappropriate study design – Multivariate analysis did not consider key confounders
Delgado Almandoz 2012 ⁴⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Delgado Almandoz 2010 ⁴⁵	Inappropriate study design / population – Multivariate did not consider key confounders / mixed pathologies
Dengler 2017 ⁴⁶	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Dengler 2018 ⁴⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Deruty 199548	Inappropriate study design – No multivariate analysis
Diaz 2011 ⁴⁹	Inappropriate study design – No multivariate analysis
Diesing 2018 ⁵⁰	Inappropriate Population – shunt dependent hydrocephalus
Dilvesi 2016 ⁵²	Inappropriate study design – Validation of severity scoring system – no multivariate analysis
Dinc 2017 ⁵³	Inappropriate study design – Multivariate analysis did not consider key confounders
Diringer 199754	Inappropriate study design – No multivariate analysis
Dreier 2007 ⁵⁵	Inappropriate Population– migraine compared to no migraine in delayed neurological ischemic deficit (DNID)

Reference	Reason for exclusion
Duan 2017 ⁵⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Dunham 200458	Inappropriate Population – traumatic brain injury
Eagles 2018 ⁵⁹	Inappropriate study design – No multivariate analysis
Egashira 2013 ⁶⁰	Inappropriate Population– Haematoma growth
Eide 2006 ⁶¹	Inappropriate intervention – intracranial pressure monitoring post SAH; no multivariate analysis
Elliott 1996 ⁶²	Inappropriate comparison – predicting length of stay and cost of stay by aneurysm grade
Elsayed 2019 ⁶³	Inappropriate study design – Abstract
Elwatidy 2003 ⁶⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Fauchier 2016 ⁶⁵	Inappropriate Population – risk scoring in atrial fibrillation
Fernandez Perez 201966	Inappropriate study design – Abstract
Fiehler 200867	Inappropriate population – monitoring of cerebral aneurysm therapy
Flores 2020 ⁶⁸	Inappropriate comparison – no relevant outcomes
Foreman 2018 ⁶⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Fountas 2008 ⁷⁰	Inappropriate study design – Multivariate did not consider key confounders
Franke 1992 ⁷¹	Inappropriate study design – unclear analysis (unclear of severity score and outcome measure)
Friedman 2002 ⁷²	Inappropriate comparison – model to predict vasospasm
Frontera 2006 ⁷³	Inappropriate comparison – predicting vasospasm; Multivariate did not consider key confounders
Gallas 2005 ⁷⁵	Inappropriate comparison – durability of Gugliemi coils
Garbossa 2012 ⁷⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Gerber 199377	Inappropriate study design – no multivariate analysis
Ghelmez 2013 ⁷⁹	Inappropriate study design / population– Multivariate analysis did not consider key confounders / hypertension in relation to haemorrhage
Ghosh 2012 ⁸⁰	Inappropriate comparison – correlation of glucose levels to severity scores
Gilsbach 1989 ⁸¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Giraldo 2012 ⁸²	Inappropriate study design – Multivariate analysis did not consider key confounders
Goldberg 2018 ⁸³	Duplicate paper
Greving 2014 ⁸⁴	Inappropriate study design – Proposed score – development of PHASES score; Multivariate analysis did not consider key confounders
Gruber 1998 ⁸⁵	Inappropriate study design – No multivariate analysis
Grunwald 2012 ⁸⁶	Inappropriate comparison – scale for evaluation of intracranial aneurysms treated with flow diverters
Guresir 2008 ⁸⁷	Inappropriate comparison – incidence and impact of intracerebral haematoma on aneurysmal subarachnoid haemorrhage
Ha 2011 ⁸⁸	Inappropriate comparison – surgical factors affecting outcomes of MCA aneurysms
Hamid 2010 ⁸⁹	Inappropriate study design – technical success of coiling aneurysms

Reference	Reason for exclusion
Hanel 200290	Systematic review – references reviewed
Haug 2010 ⁹¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Haupt 1995 ⁹²	Inappropriate study design – no relevant outcomes
Heeley 2015 ⁹³	Inappropriate comparison – modified severity scoring systems for ICH
Hellawell 1999 ⁹⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Hemphill 2001 ⁹⁵	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Heuer 2004 ⁹⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Hijdra 1988 ⁹⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Hilditch 201898	Paper not available
Hong 2016 ⁹⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Hostettler 2018 ¹⁰⁰	Inappropriate study design – Multivariate analysis did not consider key confounders
Huang 1994 ¹⁰¹	Inappropriate population – stroke / TIA
Hutchinson 2000 ¹⁰²	Inappropriate study design – Multivariate analysis did not consider key confounders
Hutter 2001 ¹⁰³	Inappropriate study design – Multivariate analysis did not consider key confounders
Ikawa 2004 ¹⁰⁴	Inappropriate comparison – No relevant outcomes
Inagawa 2018 ¹⁰⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
losif 2014 ¹⁰⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Ironside 2019 ¹⁰⁸	Inappropriate study design – multivariate analysis for severity scores overall (not individualised)
Jabbarli 2015 ¹⁰⁹	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Jain 2004 ¹¹¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Jaja 2013 ¹¹²	Systematic review – references reviewed
Jaja 2018 ¹¹³	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Jamil 2008 ¹¹⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Jamjoom 1993 ¹¹⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
Juvela 1992 ¹¹⁶	Inappropriate study design – no relevant outcomes
Katsuki 2019 ¹¹⁸	Inappropriate comparison – no relevant outcomes
Kazumata 2006 ¹¹⁹	Inappropriate study design – Outcomes unclear
Khandelwal 2005 ¹²⁰	Inappropriate study design – Multivariate analysis did not consider key confounders

Reference	Reason for exclusion
Kikkawa 2017 ¹²¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Kilic 2017 ¹²²	Inappropriate comparison – hydrocephalus in SAH
Koc 1997 ¹²³	Inappropriate study design – Multivariate analysis did not consider key confounders
Kollegger 1989 ¹²⁴	Inappropriate study design – No multivariate analysis
Kranthi 2016 ¹²⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Kremer 2002 ¹²⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
Kulwin 2014 ¹²⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Kumar 2010 ¹³⁰	Paper not available
Kurtz 2019 ¹³¹	Inappropriate study design – abstract
Kusumi 2005 ¹³²	Inappropriate comparison – cerebral aneurysms during angiography
Kutsuna 2018 ¹³³	Inappropriate study design – Multivariate analysis did not consider key confounders
Lagares 2005 ¹³⁴	Inappropriate comparison / study design - Comparison of different severity scores; Multivariate analysis did not consider key confounders
Lagares 2001 ¹³⁵	Inappropriate comparison - Outcomes unclear
Laidlaw 2003 ¹³⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Le Roux 1996 ¹³⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Lee 2012 ¹³⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
Lee 1997 ¹³⁹	Inappropriate comparison – No relevant outcomes
Leira 2007 ¹⁴¹	Inappropriate study design – Proposed modification to NIHSS score for SAH; Multivariate analysis does not match protocol
Leira 2006 ¹⁴²	Inappropriate study design – Abstract only
Lerch 2006 ¹⁴³	Inappropriate study design – Multivariate analysis did not consider key confounders
Liao 2013 ¹⁴⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Liao 2020 ¹⁴⁵	Inappropriate study design – no multivariate analysis
Lin 1998 ¹⁴⁶	Inappropriate study design – no multivariate analysis
Lin 1999 ¹⁴⁸	Inappropriate study design – no multivariate analysis
Lin 1999 ¹⁴⁷	Inappropriate study design – no multivariate analysis
Lin 2016 ¹⁴⁹	Inappropriate comparison – outcome post pipeline embolization
Lindvall 2009 ¹⁵⁰	Inappropriate study design – Multivariate analysis did not consider key confounders
Lip 2013 ¹⁵¹	Inappropriate comparison - Comparison of bleeding risk scores
Lisk 1994 ¹⁵²	Inappropriate comparison – No relevant outcomes
Liu 2013 ¹⁵³	Inappropriate study design – Multivariate analysis did not consider key confounders
Lo 2016 ¹⁵⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
Lo 2016 ¹⁵⁴	Inappropriate study design – Multivariate analysis did not consider key confounders

Reference	Reason for exclusion
Lo 2015 ¹⁵⁶	Systematic review – references reviewed
Lo 2013 ¹⁵⁷	Inappropriate comparison – Multivariate analysis does not include severity scores
Luo 2019 ¹⁵⁸	Systematic review – references checked
Mader 1998 ¹⁵⁹	Inappropriate comparison – development of a score to compare haemorrhagic stroke to ischemic stroke
Maragkos 2019 ¹⁶⁰	Inappropriate study design – Multivariate analysis did not consider key confounders
Meling 2008 ¹⁶¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Miyazawa 2002 ¹⁶²	Inappropriate study design – no multivariate analysis
Mortimer 2014 ¹⁶⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Mouchtouris 2020 ¹⁶⁵	Inappropriate comparison – No relevant outcomes
Muengtaweepongsa 2015 ¹⁶⁶	Inappropriate population – SEDAN score for stroke
Murphy 2018 ¹⁶⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Mushtaq 2017 ¹⁶⁸	Inappropriate study design – Descriptive review of patients
Myles 1996 ¹⁶⁹	Inappropriate population – medically induced coma
Nakagawa 2013 ¹⁷⁰	Inappropriate study design – Proposed new subgrouping of WFNS; Multivariate analysis did not consider key confounders
Nanda 2002 ¹⁷²	Inappropriate study design – Multivariate analysis did not consider key confounders
Nanda 2003 ¹⁷¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Nastasovic 2019 ¹⁷³	Paper not available
Naval 2013 ¹⁷⁵	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Navalitloha 2000 ¹⁷⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Neidert 2018 ¹⁷⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Nemoto 2018 ¹⁷⁸	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Niemann 2003 ¹⁷⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Nossek 2016 ¹⁸⁰	Inappropriate study design – Proposed classification ; no clear prognostic data
O'Sullivan 1994 ¹⁸¹	Inappropriate study design – no multivariate analysis
O'Sullivan 1996 ¹⁸²	Inappropriate study design – Multivariate analysis did not consider key confounders
Oder 1991 ¹⁸³	Inappropriate study design – no multivariate analysis
Ogden 2019 ¹⁸⁴	Inappropriate comparison – No relevant outcomes
Ogilvy 1998 ¹⁸⁵	Inappropriate study design – Adapted severity score used; unclear analysis
Ogilvy 2006 ¹⁸⁶	Inappropriate comparison – Unclear outcomes
Oh 2012 ¹⁸⁷	Inappropriate study design – Multivariate analysis did not consider key confounders

Reference	Reason for exclusion
Ois 2019 ¹⁸⁸	Inappropriate study design – Multivariate analysis not clear whether per grade increase or overall score
Olsen 2019 ¹⁸⁹	Inappropriate comparison – no relevant outcomes
Osawa 2001 ¹⁹¹	Inappropriate study design – no multivariate analysis
Oshiro 1997 ¹⁹²	Inappropriate study design – Multivariate analysis did not consider key confounders
Ota 2019 ¹⁹³	Inappropriate study design – Multivariate analysis did not include appropriate grading systems
Otani 2013 ¹⁹⁴	Inappropriate study design – results post craniectomy; no multivariate analysis
Otani 2008 ¹⁹⁵	Inappropriate study design – Multivariate analysis did not consider key confounders
Passier 2011 ¹⁹⁷	Inappropriate study design – Multivariate analysis does not include severity scoring
Payner 2011 ¹⁹⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
Pereira 2007 ¹⁹⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Pisters 2010 ²⁰⁰	Inappropriate study design – no multivariate analysis
Proust 2003 ²⁰²	Inappropriate study design – Multivariate analysis did not consider key confounders
Proust 2020 ²⁰¹	Inappropriate comparison – no relevant outcomes
Raj 2019 ²⁰⁴	Inappropriate study design – No multivariate analysis
Ravindran 2018 ²⁰⁵	Inappropriate study design – no relevant outcomes
Reponen 2016 ²⁰⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Reponen 2014 ²⁰⁷	Systematic review – references reviewed
Risselada 2010 ²⁰⁸	Inappropriate study design – no multivariate analysis
Risselada 2010 ²⁰⁹	Inappropriate study design – no multivariate analysis
Rivero-Arias 2009 ²¹⁰	Inappropriate comparison – investigating Ischemic neurological deficit
Roganovic 2002 ²¹¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Ronne-Engstrom 2014 ²¹²	Inappropriate study design – Multivariate analysis does not match protocol
Rosen 2004 ²¹³	Inappropriate study design – Proposed unvalidated scoring system,
Rosen 2005 ²¹⁴	Systematic review - references reviewed
Rosengart 2007 ²¹⁵	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Rubbert 2018 ²¹⁶	Inappropriate comparison – No useable outcomes
Sacho 2013 ²¹⁷	Inappropriate comparison – No useable outcomes
Salary 2007 ²¹⁸	Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Sandercock 1985 ²¹⁹	Scoring system for stroke
Sano 2010 ²²⁰	Inappropriate comparison – No relevant outcomes
Sasahara 2016 ²²¹	Inappropriate study design – Correction notification
Sasaki 2004 ²²²	Inappropriate study design – Multivariate analysis did not consider key confounders

Reference	Reason for exclusion
Saveland 1992 ²²³	Inappropriate study design – no multivariate analysis
Saveland 1993 ²²⁴	Inappropriate study design – no multivariate analysis
Saveland 1986 ²²⁵	Inappropriate study design – no multivariate analysis
Scharbrodt 2009 ²²⁶	Inappropriate population – comparison of SF 36 to healthy population
Scholler 2013 ²²⁷	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Schuiling 2005 ²²⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
Sharma 2016 ²²⁹	Inappropriate study design – no multivariate analysis
Shen 2019 ²³⁰	Inappropriate comparison – no relevant outcomes
Shimoda 1997 ²³¹	Inappropriate study design – no relevant outcomes
Sloan 1998 ²³²	Inappropriate population – thrombolysis induced haemorrhage
Slusarz 2009 ²³³	Inappropriate study design – Multivariate analysis did not consider key confounders
Slusarz 2012 ²³⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Slusarz 2017 ²³⁵	Inappropriate study design – Severity scoring for levels of consciousness
Smith 2005 ²³⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Solaroglu 2003 ²³⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
St Julien 2008 ²³⁸	Inappropriate study design – Multivariate analysis groups severity score as a single outcome (odds ratio of severity score overall, not individualized grades of scoring system)
Stapleton 2015 ²³⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Starke 2009 ²⁴¹	Inappropriate study design – Multivariate analysis did not consider key confounders
Stienen 2015 ²⁴²	Inappropriate study design – Multivariate analysis did not consider key confounders
Suzuki 1990 ²⁴³	Inappropriate comparison – No relevant outcomes
Szklener 2015 ²⁴⁴	Inappropriate study design – no relevant outcomes
Szydelko 2008 ²⁴⁵	Inappropriate comparison – effect of rehabilitation after SAH
Tai 2019 ²⁴⁶	Inappropriate comparison – no relevant outcomes
Takagi 1999 ²⁴⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Takahashi 2017 ²⁴⁸	Inappropriate comparison – mean transit time to clinical outcomes
Tawk 2015 ²⁵¹	Inappropriate study design – Unclear outcomes
Taylor 2011 ²⁵²	Inappropriate study design – Multivariate analysis did not consider key confounders
Tewari 2015 ²⁵³	Inappropriate study design – Multivariate analysis did not consider key confounders
Thomeer 1994 ²⁵⁴	Inappropriate study design – Multivariate analysis did not consider key confounders
Tjahjadi 2013 ²⁵⁵	Inappropriate study design – Multivariate analysis did not consider key confounders

Reference	Reason for exclusion
Tjahjadi 2016 ²⁵⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Tommasino 2018 ²⁵⁷	Inappropriate study design – Unclear statistical analysis
Towgood 2005 ²⁵⁸	Inappropriate population – unruptured aneurysms in comparison to controls
Ungersbock 1994 ²⁵⁹	Inappropriate study design – no multivariate analysis
van den Berg 2011 ²⁶⁰	Inappropriate study design – Multivariate analysis did not consider key confounders
van Heuven 2008 ²⁶²	Inappropriate study design – Multivariate analysis did not consider key confounders
Vannemreddy 2011 ²⁶³	Inappropriate comparison - No relevant outcomes
Vergouwen 2012 ²⁶⁴	Inappropriate population – stroke
Wang 2019 ²⁶⁵	Inappropriate comparison – no relevant outcomes
Wani 2007 ²⁶⁷	Inappropriate study design – no relevant outcomes
Washington 2014 ²⁶⁸	Inappropriate study design – Proposed prediction model; Multivariate analysis did not consider key confounders
Watcharasaksilp 2013 ²⁶⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Weir 2003 ²⁷⁰	Inappropriate study design – no multivariate analysis
White 2017 ²⁷¹	Inappropriate study design – no multivariate analysis
Wilson 2012 ²⁷²	Inappropriate study design – Multivariate analysis did not consider key confounders
Witsch 2016 ²⁷³	Inappropriate study design – Development of FRESH score
Witsch 2019 ²⁷⁴	Inappropriate comparison – no relevant outcomes
Witsch 2019 ²⁷⁵	Inappropriate study design – Abstract
Woertgen 2003 ²⁷⁶	Inappropriate study design – Multivariate analysis did not consider key confounders
Wong 2013 ²⁷⁷	Inappropriate study design – Multivariate analysis did not consider key confounders
Wong 2015 ²⁷⁸	Inappropriate study design – Multivariate analysis did not consider key confounders
Wong 2004 ²⁷⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Wong 1999 ²⁸⁰	Inappropriate study design – Multivariate analysis did not consider key confounders
Wostrack 2013 ²⁸¹	Inappropriate study design – Unclear outcomes
Xu 2011 ²⁸²	Inappropriate study design – no relevant outcomes
Yahia 2011 ²⁸³	Inappropriate comparison - No relevant outcomes
Yanaka 1993 ²⁸⁴	Inappropriate study design – Proposed model to predict outcome after subdural haematoma
Yang 2015 ²⁸⁵	Inappropriate study design – no multivariate analysis
Yilmaz 2017 ²⁸⁶	Inappropriate study design – demographic and clinical features of aneurysmal subarachnoid haemorrhage
Yousef 2019 ²⁸⁷	Paper not available
Zapata-Wainberg 2015 ²⁸⁸	Incorrect comparison – epidemiology of ICH with Vitamin K
Zeiler 2017 ²⁸⁹	Inappropriate study design – Multivariate analysis did not consider key confounders
Zhang 2016 ²⁹⁰	Inappropriate study design – no relevant outcomes
Zhao 2014 ²⁹¹	Inappropriate study design – no relevant outcomes

Reference	Reason for exclusion
Zheng 2011 ²⁹³	Incorrect comparison – effects of hyponatraemia on aneurysmal subarachnoid haemorrhage
Zheng 2019 ²⁹⁴	Inappropriate study design – risk score development
Zijlmans 2018 ²⁹⁵	Inappropriate study design – no multivariate analysis
Zou 2020 ²⁹⁶	Inappropriate study design – no relevant outcomes

I.2 Excluded health economic studies

Published health economic studies that met the inclusion criteria (relevant population, comparators, economic study design, published 2003 or later and not from non-OECD country or USA) but that were excluded following appraisal of applicability and methodological quality are listed below. See the health economic protocol for more details.

Table 59: Studies excluded from the health economic review

Reference	Reason for exclusion
None.	

Appendix J: Research recommendations

J.1 Prognostic factors

Research question: What variables predict death or disability for people with aneurysmal subarachnoid haemorrhage?

Why this is important:

Timely and reliable prediction of outcome is important in clinical practice for treatment decision-making and also for providing information to patients with aneurysmal subarachnoid haemorrhage and their relatives.

interne for oorooting in	
PICO question	Population: Adults (16 or over) who have had aneurysmal subarachnoid haemorrhage.
	Exposure(s): any baseline factors/parameters that are thought to have prognostic value (either based on clinical experience or on previous evidence), for example gender, blood pressure/history of hypertension, smoking history, weight, alcohol consumption, family history, presenting symptoms, clinical findings including level of consciousness, CT findings, etc.
	Confounding factor(s): other characteristics that could affect the outcome, for example age.
	Outcome(s): Death or disability.
Importance to patients or the population	The ability to predict outcome following SAH would allow patients and their families to better understand the risk of mortality or long-term disability and may support associated decision making. Better understanding of the prognostic variables predicting poor outcome in people with aSAH would allow for the development of an accurate and useful risk prediction tool.
Relevance to NICE guidance	Factors that predict outcome and/or any predictive score will contribute to updates of this guideline.
Relevance to the NHS	The ability to predict outcome following SAH would assist clinicians in decision making and utilisation of resources.
National priorities	None
Current evidence base	Clinical condition at the time of presentation following SAH varies and several scoring systems based on conscious level and radiographic findings are used to assess severity. Studies have shown some association between these scoring systems and mortality/morbidity but have limited validity in contemporary practice due to the low quality and often small sample size. Larger studies to formally identify factors that predict outcome may inform the development and validation of an accurate prognostic tool.
Equality	None
Study design	Prognostic Prediction Modelling Study (TRIPOD) combining multiple variables to estimate the probability of a particular outcome occurring within a certain time period.
Timeframe	A minimum of 12 months post-discharge, ideally 3 years – it will take time to see outcomes.
Feasibility	This study is feasible and could be delivered in a reasonable timeframe.
Other comments	None
Importance	 High: the research is essential to inform future updates of key recommendations in the guideline.

Criteria for selecting high-priority research recommendations: