The content of this book is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported license. To view the terms and conditions of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
Glycobiology is the study of the structure, biosynthesis, biology, and evolution of saccharides (sugar chains or glycans) that are widely distributed in nature, in all life-forms. Glycobiology is a rapidly growing field in the natural sciences, with broad relevance to many areas of basic research, biomedicine, and biotechnology. The field includes the chemistry of carbohydrates, the enzymology of glycan formation and degradation, the recognition of glycans by specific proteins, roles of glycans in complex biological systems, and glycan analysis or manipulation by various techniques. The fourth edition of this primary textbook in the field continues in the prior tradition to provide a basic overview of Glycobiology, directed toward the advanced undergraduate or the beginning graduate-level student of molecular and cellular biology and biomedicine. This edition includes a broader focus on all lineages of life-forms; a wider range of topics, from biology and medicine to chemistry, bioenergy, and materials science; a more diverse and international group of contributing authors with expertise in specific areas; further expansion of the monosaccharide symbol nomenclature for representation of glycans; and a greater attention to informatics, with relevance to exploring the glycome in relation to the genome, transcriptome, proteome, lipidome, and metabolome.
Contents
- Foreword
- Preface
- Praise for the Previous Editions of Essentials of Glycobiology
- Contributors
- Editors of Earlier Editions
- Consultant Reviewers
- Classic Books and Monographs
- Abbreviations
- General Principles
- 1. Historical Background and OverviewAjit Varki and Stuart Kornfeld.
- 2. Monosaccharide DiversityPeter H. Seeberger.
- 3. Oligosaccharides and PolysaccharidesCarlito B. Lebrilla, Jian Liu, Göran Widmalm, and James H. Prestegard.
- 4. Cellular Organization of GlycosylationKaren J. Colley, Ajit Varki, Robert S. Haltiwanger, and Taroh Kinoshita.
- 5. Glycosylation PrecursorsHudson H. Freeze, Michael Boyce, Natasha E. Zachara, Gerald W. Hart, and Ronald L. Schnaar.
- 6. Glycosyltransferases and Glycan-Processing EnzymesJames M. Rini, Kelley W. Moremen, Benjamin G. Davis, and Jeffrey D. Esko.
- 7. Biological Functions of GlycansPascal Gagneux, Thierry Hennet, and Ajit Varki.
- 8. A Genomic View of GlycobiologyNicolas Terrapon, Bernard Henrissat, Kiyoko F. Aoki-Kinoshita, Avadhesha Surolia, and Pamela Stanley.
- 1. Historical Background and Overview
- Structure and Biosynthesis
- 9. N-GlycansPamela Stanley, Kelley W. Moremen, Nathan E. Lewis, Naoyuki Taniguchi, and Markus Aebi.
- 10. O-GalNAc GlycansInka Brockhausen, Hans H. Wandall, Kelly G. Ten Hagen, and Pamela Stanley.
- 11. GlycosphingolipidsRonald L. Schnaar, Roger Sandhoff, Michael Tiemeyer, and Taroh Kinoshita.
- 12. Glycosylphosphatidylinositol AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W. Hart, Michael A.J. Ferguson, and Taroh Kinoshita.
- 13. Other Classes of Eukaryotic GlycansRobert S. Haltiwanger, Lance Wells, Hudson H. Freeze, Hamed Jafar-Nejad, Tetsuya Okajima, and Pamela Stanley.
- 14. Structures Common to Different GlycansPamela Stanley, Manfred Wuhrer, Gordon Lauc, Sean R. Stowell, and Richard D. Cummings.
- 15. Sialic Acids and Other Nonulosonic AcidsAmanda L. Lewis, Xi Chen, Ronald L. Schnaar, and Ajit Varki.
- 16. HyaluronanMelanie Simpson, Liliana Schaefer, Vincent Hascall, and Jeffrey D. Esko.
- 17. Proteoglycans and Sulfated GlycosaminoglycansCatherine L.R. Merry, Ulf Lindahl, John Couchman, and Jeffrey D. Esko.
- 18. Nucleocytoplasmic GlycosylationChristopher M. West, Chad Slawson, Natasha E. Zachara, and Gerald W. Hart.
- 19. The O-GlcNAc ModificationNatasha E. Zachara, Yoshihiro Akimoto, Michael Boyce, and Gerald W. Hart.
- 9. N-Glycans
- Glycans in Evolution and Development
- 20. Evolution of Glycan DiversityPascal Gagneux, Vladislav Panin, Thierry Hennet, Markus Aebi, and Ajit Varki.
- 21. EubacteriaChris Whitfield, Christine M. Szymanski, Amanda L. Lewis, and Markus Aebi.
- 22. ArchaeaBenjamin H. Meyer, Sonja-Verena Albers, Jerry Eichler, and Markus Aebi.
- 23. FungiFrançoise H. Routier, Tamara L. Doering, Richard D. Cummings, and Markus Aebi.
- 24. Viridiplantae and AlgaeMalcolm A. O'Neill, Alan G. Darvill, Marilynn E. Etzler, Debra Mohnen, Serge Perez, Jenny C. Mortimer, and Markus Pauly.
- 25. NematodaIain B.H. Wilson, Katharina Paschinger, Richard D. Cummings, and Markus Aebi.
- 26. ArthropodaKelly G. Ten Hagen, Hiroshi Nakato, Michael Tiemeyer, and Jeffrey D. Esko.
- 27. DeuterostomesMichael Pierce, Iain B.H. Wilson, Katharina Paschinger, and Pamela Stanley.
- 20. Evolution of Glycan Diversity
- Glycan-Binding Proteins
- 28. Discovery and Classification of Glycan-Binding ProteinsMaureen E. Taylor, Kurt Drickamer, Anne Imberty, Yvette van Kooyk, Ronald L. Schnaar, Marilynn E. Etzler, and Ajit Varki.
- 29. Principles of Glycan RecognitionRichard D. Cummings, Ronald L. Schnaar, Jeffrey D. Esko, Robert J. Woods, Kurt Drickamer, and Maureen E. Taylor.
- 30. Structural Biology of Glycan RecognitionJesús Angulo, Jochen Zimmer, Anne Imberty, and James H. Prestegard.
- 31. R-Type LectinsRichard D. Cummings, Ronald L. Schnaar, and Yasuhiro Ozeki.
- 32. L-Type LectinsRichard D. Cummings, Marilynn E. Etzler, T.N.C. Ramya, Koichi Kato, Gabriel A. Rabinovich, and Avadhesha Surolia.
- 33. P-Type LectinsNancy Dahms, Thomas Braulke, and Ajit Varki.
- 34. C-Type LectinsRichard D. Cummings, Elise Chiffoleau, Yvette van Kooyk, and Rodger P. McEver.
- 35. I-Type LectinsTakashi Angata, Stephan von Gunten, Ronald L. Schnaar, and Ajit Varki.
- 36. GalectinsRichard D. Cummings, Fu-Tong Liu, Gabriel A. Rabinovich, Sean R. Stowell, and Gerardo R. Vasta.
- 37. Microbial Lectins: Hemagglutinins, Adhesins, and ToxinsAmanda L. Lewis, Jennifer J. Kohler, and Markus Aebi.
- 38. Proteins That Bind Sulfated GlycosaminoglycansDing Xu, James H. Prestegard, Robert J. Linhardt, and Jeffrey D. Esko.
- 28. Discovery and Classification of Glycan-Binding Proteins
- Glycans in Physiology and Disease
- 39. Glycans in Glycoprotein Quality ControlTadashi Suzuki, Richard D. Cummings, Markus Aebi, and Armando Parodi.
- 40. Free Glycans as Bioactive MoleculesAntonio Molina, Malcolm A. O'Neill, Alan G. Darvill, Marilynn E. Etzler, Debra Mohnen, Michael G. Hahn, and Jeffrey D. Esko.
- 41. Glycans in Systemic PhysiologyRobert Sackstein, Sean R. Stowell, Karin M. Hoffmeister, Hudson H. Freeze, and Ajit Varki.
- 42. Bacterial and Viral InfectionsAmanda L. Lewis, Christine M. Szymanski, Ronald L. Schnaar, and Markus Aebi.
- 43. Parasitic InfectionsRichard D. Cummings, Cornelis H. Hokke, and Stuart M. Haslam.
- 44. Genetic Disorders of Glycan DegradationHudson H. Freeze, Richard Steet, Tadashi Suzuki, Taroh Kinoshita, and Ronald L. Schnaar.
- 45. Congenital Disorders of GlycosylationDirk J. Lefeber, Hudson H. Freeze, Richard Steet, and Taroh Kinoshita.
- 46. Glycans in Acquired Human DiseasesRobert Sackstein, Karin M. Hoffmeister, Sean R. Stowell, Taroh Kinoshita, Ajit Varki, and Hudson H. Freeze.
- 47. Glycosylation Changes in CancerSusan L. Bellis, Celso A. Reis, Ajit Varki, Reiji Kannagi, and Pamela Stanley.
- 39. Glycans in Glycoprotein Quality Control
- Methods and Applications
- 48. Glycan-Recognizing Probes as ToolsRichard D. Cummings, Marilyn Etzler, Michael G. Hahn, Alan Darvill, Kamil Godula, Robert J. Woods, and Lara K. Mahal.
- 49. Glycosylation Mutants of Cultured Mammalian CellsJeffrey D. Esko, Hans H. Wandall, and Pamela Stanley.
- 50. Structural Analysis of GlycansStuart M. Haslam, Darón I. Freedberg, Barbara Mulloy, Anne Dell, Pamela Stanley, and James H. Prestegard.
- 51. Glycomics and GlycoproteomicsPauline M. Rudd, Niclas G. Karlsson, Kay-Hooi Khoo, Morten Thaysen-Andersen, Lance Wells, and Nicolle H. Packer.
- 52. GlycoinformaticsKiyoko F. Aoki-Kinoshita, Matthew P. Campbell, Frederique Lisacek, Sriram Neelamegham, William S. York, and Nicolle H. Packer.
- 53. Chemical Synthesis of Glycans and GlycoconjugatesPeter H. Seeberger and Hermen S. Overkleeft.
- 54. Chemoenzymatic Synthesis of Glycans and GlycoconjugatesHermen S. Overkleeft and Peter H. Seeberger.
- 55. Chemical Tools for Inhibiting GlycosylationDavid J. Vocadlo, Todd L. Lowary, Carolyn R. Bertozzi, Ronald L. Schnaar, and Jeffrey D. Esko.
- 56. Glycosylation EngineeringHenrik Clausen, Hans H. Wandall, Matthew P. DeLisa, Pamela Stanley, and Ronald L. Schnaar.
- 57. Glycans in Biotechnology and the Pharmaceutical IndustryPeter H. Seeberger, Darón I. Freedberg, and Richard D. Cummings.
- 58. Glycans in NanotechnologyMartina Delbianco, Benjamin G. Davis, and Peter H. Seeberger.
- 59. Glycans in Bioenergy and Materials ScienceMalcolm A. O'Neill, Robert J. Moon, William S. York, Alan G. Darvill, Kamil Godula, Breeanna Urbanowicz, and Debra Mohnen.
- 60. Future Directions in GlycosciencesGerald W. Hart and Ajit Varki.
- 48. Glycan-Recognizing Probes as Tools
- Online Appendix 1A. Some Important Milestones in the History of GlycobiologyAjit Varki and Stuart Kornfeld.
- Online Appendix 1B. Symbol Nomenclature for Glycans (SNFG)
- Online Appendix 12A. Examples of GPI-Anchored ProteinsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12B-I. Complex and Varied Structures of Glycosylphosphatidylinositol (GPI) AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12B-II. Complex and Varied Structures of Glycosylphosphatidylinositol (GPI) AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12B-III. Complex and Varied Structures of Glycosylphosphatidylinositol (GPI) AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12B-IV. Complex and Varied Structures of Glycosylphosphatidylinositol (GPI) AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12B-V. Complex and Varied Structures of Glycosylphosphatidylinositol (GPI) AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12C updated. The Chemistry of GPI AnchorsSneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 12D. Species-Specific Inhibitors of the GPI Biosynthetic PathwaySneha Sudha Komath, Morihisa Fujita, Gerald W Hart, Michael AJ Ferguson, and Taroh Kinoshita.
- Online Appendix 27A. Glycosylation Genes Essential for Mouse Embryonic DevelopmentMichael Pierce, Pamela Stanley, and Morihisa Fujita.
- Online Appendix 28A. Comparison of Two Major Classes of Glycan-Binding ProteinsMaureen E Taylor, Kurt Drickamer, Anne Imberty, Yvette van Kooyk, Ronald L Schnaar, Marilynn E Etzler, and Ajit Varki.
- Online Appendix 38A. Molecular Dynamic SimulationsDing Xu, Jeffrey D Esko, James H Prestegard, and Robert J Linhardt.
- Online Appendix 45A. Known Human Glycosylation DisordersDirk Lefeber, Hudson H. Freeze, Richard Steet, and Taroh Kinoshita.
- Online Appendix 52A. Organizations and Publications Adopting SNFGNicolle Packer.
- Glossary
- Study Guide
- Errata
Printed in the United States of America
Library of Congress Control Number: 2021950841
Publisher and Acquisition Editor John Inglis
Senior Project Manager Inez Sialiano
Permissions Coordinator Carol Brown
Production Editor Kathleen Bubbeo
Production Manager Denise Weiss
Cover Designers Lorenzo Casalino and Rommie Amaro
Illustrator and Illustrations Coordinator Richard D. Cummings
Front cover artwork: Molecular representation of the full-length, fully glycosylated, all-atom model of the SARS-CoV-2 spike protein in the open state, embedded in the viral membrane. The model of the spike has been developed by Casalino et al. (ACS Cent Sci 6: 1722–1734 [2020]) based on the cryo-EM structure by Wrapp et al. (Science 367: 1260–1263 [2020]) (PDB ID: 6VSB). N-/O-glycans have been modeled according to Watanabe et al. (Science 369: 330–333 [2020]) and Shajahan et al. (Glycobiology 30: 981–988 [2020]).
On the left, the full-length SARS-CoV-2 spike in the open state—that is, with one receptor binding domain (RBD) in the “up” conformation—is shown with a cyan transparent surface overlaid on the cartoon representation of its secondary structure. The conformation of the spike was selected from molecular dynamics simulations performed by Casalino et al. (ACS Cent Sci 6: 1722–1734 [2020]). N-linked and O-linked glycans are depicted using the Symbol Nomenclature for Glycans (SNFG), in which blue filled squares are for N-acetyl-D-glucosamine (GlcNAc), green filled circles for D-mannose, yellow filled squares for N-acetyl-D-galactosamine (GalNAc), yellow filled circles for D-galactose (Gal), red filled triangles for L-fucose (Fuc), and purple filled diamonds for N-acetyl-D-neuraminic acid (Neu5Ac). The lipid bilayer of the viral membrane is depicted with a surface representation, in which the POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) are colored in pink, POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) in purple, POPI (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoinositol) in orange, POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine) in red, and cholesterol in yellow.
On the right, the glycan shield (dark-blue bush-like structures) in the SARS-CoV-2 spike protein (cyan transparent surface) is shown by overlaying multiple conformations of the N-linked and O-linked glycans obtained at multiple, interspersed frames along 1 μsec of molecular dynamics simulations (Casalino et al., ACS Cent Sci 6: 1722–1734 [2020]). For each glycan, each conformation sampled along the dynamics is shown with dark-blue sticks. When multiple conformations of each glycan are overlaid, they form a protective bush-like structure providing a visual representation of the extent of protein surface covered over a specific time frame. When the receptor-binding domain (RBD), located in the apical portion of the spike, is in the “up” conformation, it emerges from the glycan shield (as shown in the image with transparent cyan surface) and becomes available for binding to the angiotensin-converting enzyme 2 (ACE2) receptors located on the host cell. The binding event between the RBD and ACE2 initiates infection.
The cover artwork was designed and created by Dr. Lorenzo Casalino in the Amaro Laboratory (University of California San Diego), based on the all-atom model published in ACS Cent Sci 6: 1722–1734 (2020).
Library of Congress Cataloging-in-Publication Data
Identifiers: LCCN 2021950841 | ISBN 978-1-621824-21-3 (hardcover) | ISBN 978-1-621824-22-0 (ePub3)
10 9 8 7 6 5 4 3 2 1
All World Wide Web addresses are accurate to the best of our knowledge at the time of printing.
Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Cold Spring Harbor Laboratory Press, provided that the appropriate fee is paid directly to the Copyright Clearance Center (CCC). Write or call CCC at 222 Rosewood Drive, Danvers, MA 01923 (978-750-8400) for information about fees and regulations. Prior to photocopying items for educational classroom use, contact CCC at the above address. Additional information on CCC can be obtained at CCC Online at www.copyright.com.
For a complete catalog of all Cold Spring Harbor Laboratory Press publications, visit our website at www.cshlpress.org.
- NLM CatalogRelated NLM Catalog Entries
- Review Essentials of Glycobiology[ 2015]Review Essentials of GlycobiologyVarki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, et al. 2015
- Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).[Phys Biol. 2013]Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).Foffi G, Pastore A, Piazza F, Temussi PA. Phys Biol. 2013 Aug; 10(4):040301. Epub 2013 Aug 2.
- Review Historical Background and Overview.[Essentials of Glycobiology. 2022]Review Historical Background and Overview.Varki A, Kornfeld S. Essentials of Glycobiology. 2022
- Review Historical Background and Overview.[Essentials of Glycobiology. 2015]Review Historical Background and Overview.Varki A, Kornfeld S. Essentials of Glycobiology. 2015
- Implementation of GlycanBuilder to draw a wide variety of ambiguous glycans.[Carbohydr Res. 2017]Implementation of GlycanBuilder to draw a wide variety of ambiguous glycans.Tsuchiya S, Aoki NP, Shinmachi D, Matsubara M, Yamada I, Aoki-Kinoshita KF, Narimatsu H. Carbohydr Res. 2017 Jun 5; 445:104-116. Epub 2017 Apr 19.
- Essentials of GlycobiologyEssentials of Glycobiology
Your browsing activity is empty.
Activity recording is turned off.
See more...