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1	 �Introduction

The clinical presentation of Buruli ulcer (BU) is manifold and includes relatively 
unspecific, non-ulcerative manifestations such as nodules, papules, plaques, and 
edema, which may eventually progress to necrotic ulcers [1]. Early case detection and 
adequate treatment are essential to prevent the formation of large cutaneous lesions that 
are often associated with serious morbidity and permanent disability. While surgical 
resection of BU lesions has long been the only treatment option, demonstration of the 
efficacy of rifampicin against M. ulcerans in a mouse footpad model [2, 3] and of a 
combined regimen of rifampicin and streptomycin in a clinical trial [4], have shifted 
first-line treatment recommendations to antibiotic therapy. Routine implementation of 
the drug regimen consisting of rifampicin and streptomycin administered daily for 
8 weeks, has greatly improved specific therapy and reduced the frequency of relapses 
[5–7]. However, considering the history of antibiotic resistance in other bacterial patho-
gens such as M. tuberculosis [8], concerns have arisen that inappropriate use of these 
antibiotics may lead to similar patterns of resistance in M. ulcerans. These concerns 
appear justified, as rifampicin, currently the only highly effective drug available for the 
treatment of BU, is also a major component in the treatment of other often co-prevalent 
mycobacterial infections such as tuberculosis and leprosy. Furthermore, streptomycin 
should be prescribed with caution, as long-term streptomycin toxicity in the form of a 
high incidence of persistent hearing loss has been documented in a follow up study of 
former BU patients who had received the combination therapy [9]. A new combination 
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therapy with rifampicin and clarithromycin is currently being evaluated as first-line 
treatment of BU.  Pre-treatment laboratory confirmation of clinically suspected BU 
cases has thus gained in importance; particularly because the differential diagnosis of 
skin conditions with similar manifestations is broad ([1, 10], http://www.who.int/
neglected_diseases/resources/9789241513531/en/) (Fig.  1) and misclassification of 
clinically suspected cases seems to be more common than previously assumed [11].
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Fig. 1  Differential diagnosis of BU. Infection with M. ulcerans can cause a variety of clinical 
manifestations, including both non-ulcerative and ulcerative forms. The differential diagnosis of 
BU thus comprises a wide spectrum of other skin conditions with a similar appearance. Shown are 
BU lesions (marked by a star) and non-BU lesions ((a) swollen lymph node; (b) lipoma; (c) gan-
glion; (d) cutaneous tuberculosis; (e) sickle cell necrosis; (f) burn; (g) snake bite). Pictures pro-
vided by Markus Schindler, Thomas Junghanss and Moritz Vogel are included
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For a detailed description of the currently available laboratory techniques and 
procedures for the detection of M. ulcerans the reader is referred to the WHO man-
ual “Laboratory Diagnosis of Buruli ulcer” edited by Françoise Portaels [12]. 
Laboratory tests routinely used for the detection of M. ulcerans infections include 
microscopic detection of acid fast bacilli (AFBs) in stained smears from clinical 
specimens and DNA detection by PCR targeting the M. ulcerans-specific insertion 
sequence (IS) element IS2404. Histopathological analysis of sections from the 
affected tissue and primary cultivation of the mycobacteria require sophisticated 
infrastructure and can only be performed by specifically trained personnel [12]. 
Furthermore, cultivation of the extremely slow growing mycobacteria takes several 
weeks to months and is thus impractical to aid pre-treatment diagnosis.

Of the established tests for the detection of M. ulcerans, IS2404 PCR has proven 
to be the most sensitive and specific, if performed according to demanding quality 
assurance schemes [13, 14]. Therefore, it is currently considered the diagnostic gold 
standard. However, data on the sensitivity and specificity of IS2404 PCR as well as 
of the other reconfirmatory tests are difficult to interpret from available comparative 
studies. Indeed, many studies reporting on the test performance of M. ulcerans detec-
tion evaluated sensitivity and specificity by comparing the respective tests to clinical 
diagnosis, which has limited accuracy, even when performed by experienced health 
staff. The sensitivity of microscopy—the only test that can be performed at district 
hospital level—has been reported to be relatively low. In BU endemic countries with 
resource-rich healthcare systems and good laboratory infrastructure, such as Australia 
and Japan, PCR-based diagnosis is routinely done, whereas in resource-poor set-
tings, logistical challenges and high costs often impede rapid PCR-based laboratory 
diagnosis at centralized reference laboratories. As a consequence, the diagnosis of 
BU at remote health facilities is often based on clinical judgment only. A simple and 
rapid point-of-care diagnostic test for BU is therefore of urgent need. Following rec-
ommendations of WHO, a diagnostic test suitable for application in developing 
countries should meet the so called ASSURED [15] criteria of being Affordable, 
Sensitive, Specific, User-friendly, Robust and rapid, Equipment free, and Deliverable 
to the end user. This chapter highlights current approaches as well as future prospects 
for the diagnosis of BU at district hospitals and the primary healthcare level, where 
the majority of BU patients are diagnosed to date.

2	 �Currently Available Laboratory Diagnostic Tests

2.1	 �Specimen Collection and Reference Standards

Before the introduction of antibiotic therapy in 2004 [16], the only treatment option 
for BU was surgical excision of the lesions, with or without subsequent skin graft-
ing. Laboratory reconfirmation was often done retrospectively by analyzing speci-
mens excised during surgery [17–19]. After 2004, when the importance of 
pre-treatment reconfirmatory laboratory diagnosis became more broadly recog-
nized, alternative sources for diagnostic specimens included punch biopsies obtained 
from non-ulcerative lesions and swab samples taken from the undermined edges of 
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ulcerative lesions, where the bacterial load is typically higher than in the core of a 
lesion. However, due to the invasiveness of punch biopsies, a consensus has been 
reached that in the interest of the patients, the method should be limited to special 
circumstances such as the establishment of differential diagnosis, investigations on 
paradoxical reactions or the reconfirmation of suspected treatment failure [12, 20]. 
Since 2007, a less invasive technique referred to as fine-needle aspiration (FNA), 
which can be performed at all healthcare levels and on both non-ulcerative lesions 
and ulcers with scarred edges that hinder the collection of swabs, has gradually 
replaced the use of punch biopsies for routine laboratory confirmation. The current 
recommendation for the collection of diagnostic specimens is thus to take swab and 
FNA samples from ulcers and non-ulcerative lesions, respectively. Recommendations 
for storage and transport conditions (e.g. media and optimal temperatures) for dif-
ferent types of samples are detailed in the aforementioned WHO manual “Laboratory 
diagnosis of Buruli ulcer” [12].

IS2404 PCR-based tests performed at reference centres have become a gold stan-
dard for the diagnosis of BU. While the accuracy of new diagnostic tests for M. 
ulcerans infection should therefore be assessed by a comparison to results obtained 
by PCR, the true accuracy of PCR assays is in turn difficult to evaluate, as it can 
only be compared to imperfect reference standards that have both limited specificity 
such as clinical diagnosis [10], or limited sensitivity, such as microscopy [21] and 
culture [22].

2.2	 �IS2404 PCR: The Current Gold Standard

In many mycobacterial species so called insertion sequence (IS) elements have been 
identified, representing suitable targets for PCR-based detection assays [23–26]. IS 
sequences are typically characterized by species-specificity and the presence of 
multiple copies within one genome, facilitating a highly specific and sensitive 
detection of the respective pathogens. In 1997, Ross et al. provided a milestone for 
the PCR-based diagnosis of BU by identifying an M. ulcerans-specific repetitive 
DNA fragment [27], which was later characterized in detail and designated IS2404 
[28]. The high copy number of IS2404 (between 150 and more than 200 copies per 
genome in M. ulcerans isolates from Australia and Africa) and of another IS, 
referred to as IS2606 (63 to 98 copies per genome in M. ulcerans isolates from 
Australia and Africa) [29], predestine their application as targets for sensitive PCR 
amplification tests for M. ulcerans. High specificity of developed PCR assays tar-
geting IS2404 was indicated by the lack of IS2404 PCR positivity among a wide 
range of other mycobacterial species [28, 30, 31]. The design of real-time quantita-
tive PCR (qPCR) assays targeting IS2404 [32, 33] has been another milestone in 
BU diagnostics development and has replaced conventional gel-based PCR as the 
routine method for laboratory confirmation of BU in many diagnostic and research 
laboratories [14]. Besides an increased sensitivity of M. ulcerans detection, major 
advantages of the qPCR assay are the reduced risk of contamination, and an 
improved turnaround time.
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Nevertheless, like any molecular test, the highly sensitive IS2404 PCR—whether 
performed as gel-based test or as a qPCR assay—is prone to contamination leading 
to false positive test results. Cross-contamination of samples with M. ulcerans 
genomic DNA may occur during sample collection or processing. However the 
most common problem is carryover of PCR product from previous amplification 
reactions. For instance, in a study describing histopathological features of BU, spec-
imens obtained from cases with filarial nodules and a keratin cyst without any his-
topathological indication for BU, tested positive in a nested IS2404 PCR [34]. To 
ensure accuracy of PCR assay results, it is thus essential to strictly adhere to the 
three-room principle necessitating one room for preparing the PCR mix, a second 
room for processing the samples and addition of template DNA in a PCR cabinet, 
and a third room for PCR amplification. Moreover, the accuracy of PCR is also 
endangered by false negative test results. In the study mentioned above, IS2404 
PCR was negative for a number of histology-confirmed BU patients [34]. If clinical 
diagnosis of BU appears convincing, but PCR results are negative, it is recom-
mended to collect and test a new set of samples to verify laboratory test results. 
False negative testing can result from a low concentration of M. ulcerans DNA in 
lesion specimens, a poor DNA extraction efficiency, low PCR sensitivity, and/or the 
presence of PCR inhibitors.

Thus strict adherence to good clinical laboratory practices and implementation 
of quality assurance protocols are necessary to generate reliable IS2404 PCR results. 
In 2008, the Technical Advisory Group of the WHO Global BU Initiative therefore 
recommended the establishment of an external quality assessment program (EQAP) 
for the PCR-based detection of M. ulcerans in clinical and also in environmental 
samples. This system was implemented and coordinated by WHO Collaborating 
Centres for BU (the Institute of Tropical Medicine (ITM) in Belgium for clinical 
samples and the Victorian Infectious Diseases Reference Laboratory in Australia for 
environmental samples) [14]. For the proficiency testing of clinical samples, coded 
specimens with known content were distributed by ITM to national reference and 
research laboratories that were asked to process the samples using DNA extraction 
and PCR procedures they usually apply for the detection of M. ulcerans DNA. Two 
rounds of clinical EQAP revealed a marked diversity in the quality of M. ulcerans 
DNA detection between laboratories. In the two assessment rounds, only 36% and 
31% of the participating reference laboratories had more than 90% concordant 
results with the proficiency panels. 64% and 38% reported false positive and 55% 
and 81% false negative results, respectively. These data demonstrate the need for 
continued internal and external quality assurance [14]. Transport of samples from 
remote endemic areas to central reference laboratories, ensuring sample integrity 
and timely return of results, represents another major challenge for the African BU 
control programs.

In summary, PCR targeting IS2404 is a sensitive and specific diagnostic labora-
tory test for M. ulcerans, but necessitates a well-equipped laboratory infrastructure, 
specifically trained laboratory staff and strict quality control. Recent advances in 
isothermal amplification and PCR product detection technologies have reduced 
equipment needs, but not staff requirements.
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2.3	 �Detection of AFBs by Microscopy: A Test for the Primary 
Healthcare Level with Limited Sensitivity

At the primary healthcare level, where most of the BU patients are diagnosed to 
date, microscopic detection of AFBs in direct smears from lesion specimens using 
a conventional light microscope is the only available confirmatory test for M. ulcer-
ans infection. This method relies on one of the characteristic properties of mycobac-
teria, namely their ability to form deeply coloured complexes with arylmethan dyes 
in phenol water such as carbol fuchsin, carbol crystal violet or carbol auramine O, 
that usually resist de-colorization by acidic ethanol (acid-fastness) [35]. For tuber-
culosis, sputum smear microscopy has for decades been the most widely used tool 
for the laboratory diagnosis in low- and middle-income countries. The most com-
monly used staining technique for the diagnosis of different mycobacterial infec-
tions is the so called Ziehl-Neelsen (ZN) method based on carbol fuchsin. When 
compared with IS2404 PCR, the reported sensitivity rates of direct smear micros-
copy for the detection of M. ulcerans ranged between 26% and 67%.1 The efficacy 
of the detection of small numbers of AFBs depends strongly on technical skills of 
the microscopist and on quality of the microscopic equipment. While being a simple 
and cost-effective first-line test for BU in resource-constrained settings, limited sen-
sitivity even in the hands of well-trained personnel is a serious drawback. 
Furthermore, misdiagnosis of cutaneous tuberculosis as BU based on microscopy 
may occur [40], as staining is not specific for M. ulcerans.

Although fluorescence microscopy based on auramine O staining has several 
advantages over light microscopy using ZN staining, its widespread use has long 
been hindered by the need for a more expensive fluorescence microscope. However, 
the recent advent of low-cost ultrabright light emitting diodes (LED) has enabled the 
development of simple and affordable fluorescence microscopes [41, 42]. Advantages 
of fluorescence microscopy include not only a simpler, quicker, and cheaper staining 
procedure, but also the possibility to screen slides with a lower power objective lens, 
which may improve sensitivity. For the diagnosis of tuberculosis, fluorescence 
microscopy seems to be as specific and more sensitive than light microscopy [43]. 
However, in a study on the detection of M. ulcerans, no significant difference in sen-
sitivity between the two microscopic detection methods was observed [38].

2.4	 �Considerations on the Accuracy of IS2404 qPCR and AFB 
Detection by Microscopy: Direct Comparison of the Two 
Techniques

A comparative analysis of IS2404 qPCR and smear microscopy conducted under 
optimal laboratory conditions using well-characterized lesion specimens from BU 
patients, showed that the amount of M. ulcerans DNA in extracts from the samples 

1  Twenty-six percent (11/43 punch biopsies) [36], 34% (344/1020 swab, FNA and tissue speci-
mens) [11], 56.1% (69/123 swabs) [21], 58.4% (45/77 swab and FNA specimens) [37], 59.4% 
(66/111 tissue specimens) [38], 64.6% (822/1273 tissue specimens) [39], 67% (83/124 swab and 
FNA specimens) [22].
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correlated well with the probability of finding AFBs [21]. While AFBs were detected 
in all IS2404 qPCR highly positive samples, the probability of microscopy-positivity 
decreased for specimens with lower DNA content. Samples with qPCR cycle thresh-
old (Ct) values above 34 were consistently negative (Fig. 2). A reasonable explana-
tion for these results is certainly the higher sensitivity of qPCR as compared to 
smear microscopy. However, failure to detect even a single AFB in 54 IS2404-
positive swab smears after careful screening of entire microscopy slides using a 
high power objective lens [21], may also raise concerns about false positive qPCR 
results. Even if qPCR assays are performed under strict quality control, false posi-
tive results with high Ct values may emerge through cross-contamination of sam-
ples with minimal amounts of M. ulcerans DNA in the process of sample collection 
(such as healthcare workers or other personnel handling several patients and sam-
ples without changing their gloves). In this context, the number of qPCR cycles that 
should be performed and which Ct values should be considered meaningful may 
have to be reconsidered.

2.5	 �Histopathology and Cultivation of M. ulcerans: Research 
Tools Rather than Diagnostic Tests

The pathogenesis of BU is primarily driven by the unique polyketide-derived mac-
rolide exotoxin mycolactone of M. ulcerans, which causes apoptosis in mammalian 
cells [44]. In early non-ulcerative nodular stages of the infection the epidermis 
remains intact, but contiguous coagulative necrosis is found in the lower dermis. If 
mycolactone-mediated destruction of the subcutaneous tissue extends, the dermis 
and epidermis overlying foci of early M. ulcerans infection eventually degenerate. 
This leads to the formation of ulcers with undermined edges and a necrotic slough 
in the base. If mycolactone-mediated progression of tissue necrosis spreads mainly 
laterally, patients may develop extended non-ulcerative plaque or edematous forms 
of the disease [1].

Fig. 2  Correlation between IS2404 qPCR Ct values and microscopic AFB detection. A total of 
123 IS2404 qPCR-positive swab samples from BU lesions were analyzed by smear microscopy 
after ZN staining. While AFBs were detected in 69 (blue dots) of the 123 samples (56%), no 
AFBs were found in 54 (red dots) of the 123 samples (44%). AFBs were detected in all specimens 
having a qPCR Ct <27.8, whereas all specimens having a qPCR Ct >33.8 were microscopy-
negative [21]
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Macroscopic features are thus changing as BU lesions evolve, whereas the pro-
gressive contiguous coagulative necrosis of the dermal and subcutaneous adipose 
tissue with dead adipocytes appearing as characteristic “ghost” outlines [45, 46] are 
considered BU-specific histopathological hallmarks that can be found in both pre-
ulcerative (nodules, plaques, edema) and ulcerative stages. Necrosis of the subcuta-
neous tissue and necrotic collagen in the dermis seem to be the best histopathological 
predictors of M. ulcerans disease [34], while other features, like epidermal hyper-
plasia, destruction of blood vessels and interstitial edema complete the picture. 
Vasculitis and mineral deposits have been observed mainly in specimens from 
African BU patients [46]. In active lesions, extracellular clusters of AFBs are typi-
cally located in deep layers of the necrotic subcutaneous fat tissue [21]. Due to an 
uneven distribution of the clusters [21], AFBs may not be found in all parts of an 
active BU lesion. While there is a remarkable lack of inflammatory leukocytes in the 
necrotic centre of the lesions, a belt of inflammatory cells surrounding the necrotic 
core can be observed already in early lesions [47].

For routine diagnosis of BU in the endemic African countries, histopathological 
analysis of tissue samples is impractical, as it necessitates sophisticated technology 
as well as specifically trained and highly experienced personnel. Moreover, ade-
quate tissue specimens obtained from the centre of a non-ulcerative lesion or from 
the edge of an ulcer by invasive sampling techniques are required. Therefore, histo-
pathological analyses are not routinely used for diagnosing BU in Africa, but rather 
for the establishment of a differential diagnosis such as for suspected cases of squa-
mous carcinoma secondary to BU [48, 49], or as a research tool to monitor treat-
ment success [50] or paradoxical reactions [51].

Culture of the causative organism of an infectious disease is a mainstay of bacte-
riological diagnosis, not least because it provides information on the viability of the 
pathogen and allows for drug susceptibility  testing. However, the extremely long 
generation time of M. ulcerans—colonies appear only after more than 2 months of 
incubation [18, 39]—excludes the application of cultivation for a pre-treatment con-
firmation of the clinical diagnosis. Moreover, successful cultivation of M. ulcerans 
depends on well-trained personnel and a complex laboratory infrastructure, only 
available at a few reference centres in the BU endemic African countries. Primary 
cultivation of M. ulcerans is thus performed mainly for research purposes, such as 
the monitoring of the efficacy of new treatment modalities [4, 6] as well as the dis-
tinction between paradoxical reactions and treatment failures [52, 53]. In addition, 
M. ulcerans isolates have been used for molecular epidemiological studies [29, 54, 
55] and are used for the surveillance of the potential emergence of drug resistance.

2.6	 �From Theory into Practice: Diagnosis of BU in Resource-
Constrained Endemic Countries

BU mainly affects impoverished populations living in remote, rural areas of West 
and Central Africa with only limited access to health facilities. Patients often have 
to travel long distances to reach a BU treatment facility. Primary or district  level 
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health facilities, where the majority of BU patients present are usually not capable 
of performing PCR-based analyses. At best, direct microscopy of ZN-stained swab 
smears is performed, a test with limited sensitivity yielding a high proportion of 
false negative results. Specimens for PCR reconfirmation are usually stored and 
transported in bulk to reference laboratories, leading to delayed delivery of diagnos-
tic test results. Major delays in diagnosis and late initiation of treatment may on the 
other hand distract patients from returning to facilities of the formal health system. 
To avoid the dropout of patients, antibiotic therapy is often initiated upon the clini-
cal diagnosis.

As the routine use of IS2404 PCR in resource-constrained countries is also lim-
ited by high costs, more cost-effective stepwise approaches starting with the local 
microscopic analysis of swab smears for the presence of AFBs and—if this initial 
test is negative—subsequent testing by PCR at a reference laboratory have been 
proposed [37, 56]. However, the right balance between saving costs and taking the 
risk of false positive microscopy results has yet to be evaluated, as patients with 
cutaneous tuberculosis may receive the short 8 week course of antibiotics, if the 
treatment decision is made only on the grounds of a positive microscopy result [40].

Until the early 2000s clinical specimens from suspected BU patients were pri-
marily analyzed at international reference laboratories for retrospective confirma-
tion of the clinical diagnosis. Although several BU endemic African countries 
including Benin, Cameroon, Central African Republic, Côte d’Ivoire, Democratic 
Republic of the Congo, Ghana and Togo have installed their own reference labora-
tories for the diagnosis of BU [12], the situation has remained very challenging with 
respect to both timely sample transport and quality assurance. Therefore, the devel-
opment of a simple point-of-care diagnostic test for BU remains a major research 
priority [57].

3	 �Development of BU Diagnostics for District Hospital or 
Primary Healthcare Facility Level

In 2013, WHO together with the Foundation for Innovative New Diagnostics (FIND) 
convened a meeting of BU experts to review the need for BU diagnostics in the form 
of low-tech assays to be used in district hospitals and of simple, instrument-free rapid 
diagnostic tests (RDTs) that can be performed at the primary healthcare level. RDTs 
should be low-cost, simple to operate and read, stable, and yield results in a short 
period of time. They are expected to reduce the need for multiple healthcare visits, 
improve the chances that patients receive appropriate treatment, and can be highly 
cost-effective. Most available RDTs for neglected tropical diseases (NTDs) are based 
on immunoassays, including lateral flow, flow-through, agglutination, and dipstick 
test formats for antibody or antigen detection. Current strategies for the development 
of a BU RDT rely on antigen detection assays. For the diagnosis at district hospital 
level, options to detect M. ulcerans DNA by loop-mediated isothermal amplification 
(LAMP), antigens by enzyme-linked immunosorbent assay (ELISA) and mycolac-
tone by fluorescence-based thin layer chromatography (f-TLC) are being evaluated.
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3.1	 �LAMP: An Alternative for the Detection of M. ulcerans DNA

After its first description in 2000 [58], LAMP has gained attention as a rapid and 
cost-effective nucleic acid amplification method for the diagnosis of infectious 
diseases. Advantages of the LAMP technique over conventional PCR-based tests 
are lower technology requirements and simple read-out, as results can be read by 
the naked eye. However, this simple read-out does not allow for a distinction 
between the specific products and products of nonspecific amplification, posing a 
risk of false positive results [59], particularly when performed under suboptimal 
conditions [60]. Major improvements in LAMP test specificity have recently been 
reported by combining the technique with molecular beacons, targeting an inter-
nal sequence of the amplicon, thus allowing for a direct, specific detection of the 
expected product [61]. Nevertheless, significant training and infrastructure devel-
opment is required to achieve acceptable performance of LAMP assays [60], mak-
ing it suitable for district hospital settings, but not for the primary healthcare 
level.

In 2012, three different LAMP assays for the detection of M. ulcerans DNA 
were published. Sensitivity rates targeting either a sequence of the M. ulcerans 
virulence plasmid [62] or the multi-copy sequence IS2404 [63, 64] were deter-
mined to be close to those of conventional IS2404 PCR. No cross-reactivity was 
recorded with DNA of other closely related mycobacterial species [62–64]. 
However, the accuracy of these assays was assessed by testing only a very lim-
ited number of clinical specimens. As the potential occurrence of false positive 
results—compared to the conventional IS2404 PCR gold standard—was 
reported [63] even when performed in well-equipped specialized laboratories, 
LAMP assays will have to be evaluated in decentralized settings, where the 
technique is intended to be applied. Initial results have shown that the extraction 
and purification of M. ulcerans DNA and the generation of isothermal condi-
tions during the LAMP reaction remain major challenges for the application of 
LAMP assays under field conditions. Use of crude, non-purified DNA extracts 
and pocket warmers as heat source were shown to significantly decrease test 
sensitivity [64]. In order to overcome another shortcoming of the technique—
the requirement of cold-chains for transport and storage of reagents—a dry-
reagent LAMP assay targeting IS2404 was developed. Validation of this assay 
with a limited number of qPCR-confirmed lesion specimens in a laboratory 
environment indicated a sensitivity and specificity comparable to that of con-
ventional gel-based PCR [65].

Taken together, the LAMP method has the potential to be developed into a sensi-
tive and simple test for BU at district hospital level. As the technique requires basic 
laboratory infrastructure for template preparation and generation of isothermal con-
ditions, it is at its current stage of development not suitable for an application at the 
primary healthcare level.

K. Röltgen et al.
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3.2	 �Detection of Mycolactone by f-TLC: Struggling 
with the Complexity of Lipid Extracts

As the production of mycolactone appears to be restricted to clinically relevant M. 
ulcerans lineages and some other closely related M. ulcerans ecovars [66], the toxin 
is considered an ideal target for the diagnosis of BU. In addition to their diagnostic 
application, mycolactone-based tests also have the potential to be used for the moni-
toring of treatment success by measuring mycolactone levels as an indicator for the 
presence of viable M. ulcerans bacteria in treated BU lesions [67].

One strategy to detect mycolactone is by staining of mycolactone bands after 
TLC-based separation of lipids extracted from clinical specimens. After demonstra-
tion by TLC and mass spectrometry that mycolactone can principally be detected in 
extracts from tissue samples of patients with ulcerative and non-ulcerative BU 
lesions [68], the TLC method has gradually been optimized to facilitate its applica-
tion in more peripheral laboratory settings. In order to overcome shortcomings of 
the technique such as low sensitivity and limited specificity due to the presence of 
other lipids with similar chromatographic behaviour in the lipid extracts, a boronate-
assisted f-TLC was developed. Staining is based on the formation of cyclic boro-
nates with the 1,3-diols present in the mycolactone variants produced by the human 
pathogenic M. ulcerans lineages [69]. It has been reported that with this technique, 
mycolactone could selectively be visualized using an ultraviolet lamp with a detec-
tion limit of 2 ng [69]. In a preliminary study, f-TLC was applied to a panel of 
IS2404 PCR-positive samples from BU patients, returning 73.2% sensitivity and 
85.7% specificity [70]. Implementation of the f-TLC method in hospital laborato-
ries appears to be non-trivial and specific detection of mycolactone can be challeng-
ing due to background staining of co-extracted human lipids [71].

3.3	 �Serological Tests: Only Suitable for Seroepidemiological 
Studies

For serology-based diagnostic approaches, the identification of appropriate target 
antigens that are M. ulcerans-specific and at the same time capable of mounting 
strong immune responses in BU patients, but not in healthy individuals exposed to 
the pathogen is essential. Different strategies were used to find suitable antigens, but 
none of them led to the development of a diagnostic serological assay. While initial 
studies have reported that BU patients develop antibodies to antigens present in M. 
ulcerans culture filtrate, broad antigenic cross-reactivity among mycobacterial spe-
cies complicated the design of a serological test specific for M. ulcerans infections. 
Thus it is not surprising that the same studies have also shown that sera from healthy 
control individuals living in BU endemic areas, as well as from tuberculosis patients, 
contained antibodies that recognized the M. ulcerans target antigens [72, 73]. 
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Moreover, among M. ulcerans-specific antigens identified by comparative genom-
ics, none enabled a distinction between BU patients and healthy control subjects 
living in the same BU endemic area [74]. Furthermore, from a panel of monoclonal 
antibodies (mAbs) generated against immunodominant M. ulcerans proteins, only 
those specific for the 18 kDa small heat shock protein (shsp)—revealed sufficiently 
limited interspecies cross-reactivity. However, this antigen is not suitable as target 
for a BU-specific serological test, as anti-shsp antibodies are also frequently found 
in sera of healthy individuals living in BU endemic areas [75]. This circumstance 
however has opened up the opportunity for seroepidemiological studies assessing 
the exposure of populations to M. ulcerans [76–78].

3.4	 �Detection of Mycolactone and M. ulcerans Proteins by 
Antigen Detection Assays: Prospects for the Development 
of an RDT

As the development of sero-diagnostic tests for BU has failed, current strategies to 
develop RDTs for BU rely on the detection of M. ulcerans protein antigens or 
mycolactone. The main advantage of assays utilizing antigen-antibody interactions 
is their potential to be converted into test formats that can be deployed at the pri-
mary healthcare level. In fact, for numerous infectious diseases developed ELISAs 
in the form of antigen capture assays have been converted or have the potential to 
be converted into point-of-care (lateral flow) diagnostic assays [79–82].

In the case of mycolactone as a capture assay target antigen, the lipid-like nature 
of this macrolide toxin, as well as its cytotoxic and immunosuppressive properties 
have long hampered the generation of specific antibodies that can be used for its 
detection. Recently, a new strategy to immunize mice with a protein conjugate of a 
non-toxic synthetic truncated mycolactone derivative facilitated the generation of 
mAbs specific for the upper side chain and part of the core structure of mycolactone 
[83]. By using the generated mAbs, a first prototype competition assay was designed, 
in which a mycolactone-specific mAb is used in combination with a mycolactone 
derivative as signaling molecule, to quantify the amount of mycolactone in a sam-
ple. While the assay showed excellent specificity, its sensitivity must be optimized 
to allow for the detection of mycolactone in clinical specimens. If non-competing 
pairs of anti-mycolactone mAbs can be generated, development of an antigen cap-
ture assay may become possible.

An ideal protein target antigen for the development of a diagnostic test for BU 
should (1) be highly expressed by M. ulcerans, (2) have no orthologs in other preva-
lent pathogenic mycobacteria and (3) be easily accessible through a cell surface 
location. These predefined criteria were shown to be met by the M. ulcerans protein 
MUL_3720 [84]. Immunization of mice with the recombinantly expressed 
MUL_3720 facilitated the generation of a panel of high affinity mAbs against this 
antigen. Tandems of non-competing MUL_3720-specific mAbs recognizing differ-
ent epitopes were selected to enable the development of a highly specific MUL_3720 
detection assay in a sandwich-ELISA format [84]. Preliminary analyses comparing 
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qPCR and ELISA results indicate that the MUL_3720 capture assay is highly spe-
cific. Optimization of the ELISA format potentially suitable for district hospitals is 
on-going to reach a sufficiently high sensitivity of antigen detection. As a next step 
towards an RDT, the application of the generated mAbs in a lateral flow assay for-
mat is being evaluated.

4	 �Discussion

In spite of the availability of sensitive and specific IS2404 PCR assays routinely 
performed in resource-rich BU endemic countries and implemented in several 
national reference laboratories in BU endemic African countries, there is still an 
urgent need for simple and accurate point-of-care tests for the diagnosis of BU at 
district hospital and at primary healthcare level. In addition to logistical challenges 
and delays in the transport of clinical specimens to reference laboratories, outcomes 
of external quality assessment programs have demonstrated major shortcomings 
associated with the routine application of the PCR tests [14]. Ideally, the diagnosis 
of BU should furthermore not depend on the availability of laboratory infrastructure 
or of specifically trained laboratory personnel and should be performed directly at 
the point-of-care, so that treatment can be started without delay.

Immunochromatographic detection of antigens or antibodies in a dipstick or lat-
eral flow format constitute currently the core of commercially available point-of-
care RDTs for infectious diseases [85]. Whereas attempts to design an antibody-based 
sero-diagnostic assay for BU have been equivocal [74–76], the recent identification 
of a target protein suitable for antigen-capture test formats, shows great promise 
[84]. In addition, mycolactone—the lipid-like molecule secreted by M. ulcerans—
may represent an optimal target molecule for the development of a sensitive and 
specific antigen detection test [83]. The advantage of antigen-based detection assays 
is that they can be converted to technically simple, robust test formats, easily appli-
cable even at the primary healthcare level. In contrast, prerequisites for most molec-
ular amplification techniques are incompatible with the ASSURED guidelines for 
point-of-care diagnostics [15].

In early 2011, WHO endorsed the first “sample in—answer out” qPCR platform 
with fully integrated sample processing for the diagnosis of tuberculosis in low-
resource settings [86]. The GeneXpert MTB/RIF, a molecular test that can detect 
both M. tuberculosis DNA in sputum samples and rifampicin resistance mutations, 
has been developed for use at district and sub-district levels in tuberculosis endemic 
countries. However, in view of the limited resources available for the control of BU, 
costs for the production and broad introduction of a GeneXpert diagnostic test for 
M. ulcerans would be disproportionate. Several studies have reported attempts to 
develop nucleic acid-based point-of-care tests for the detection of M. ulcerans by 
the LAMP procedure [62–64]. While LAMP amplifies DNA with high sensitivity 
and specificity, its application under field conditions has so far been limited. This is 
mainly due to technology requirements associated with LAMP, such as template 
preparation  in field settings, production of kits with dried-down reagents, and 

Laboratory Diagnosis of Buruli Ulcer: Challenges and Future Perspectives



196

methods for unambiguous detection of amplification products [87]. If these prereq-
uisites are met, the LAMP platform can potentially be progressed into a format for 
the detection of M. ulcerans at district hospital level.

Point-of-care tests are key components to improve global health, but only if they 
are rigorously evaluated, and effectively regulated [88]. Careful pre-implementation 
evaluation of the accuracy of novel diagnostic tests for BU is absolutely essential 
and a consensus has to be reached on the reference standard to which the perfor-
mance of new diagnostic tests is compared. In view of the broad differential diagno-
sis of BU and reported misclassification of cases based on the clinical presentation 
of patients, a comparison to clinical diagnosis—as done in many previous studies—
is not satisfactory. Instead, test performance should be evaluated by a comparison to 
the current qPCR reference standard. However, strict quality assurance of the qPCR 
assay used for evaluation of the tests has to be ensured. Clearly, technological inno-
vation is not sufficient. After successful development and evaluation of a new point-
of-care test for BU, decentralized implementation of the test will involve training 
programs and monitoring of the effectiveness of the new tests in decentralized set-
tings, to ensure the accuracy of test results.

5	 �Outlook

In the past years, the number of BU cases reported annually in many African 
endemic countries has declined. This may partly be attributed to the establishment 
of effective national BU control programs and a reduction in transmission inten-
sity. On the other hand, the intensity of disease surveillance and case search activi-
ties may have declined, resulting in an underestimation of the true disease burden. 
Limited funding for the control of BU can lead to a lack of awareness and a loss of 
local competencies among health workers. For instance, in a recent retrospective 
assessment of the diagnosis of BU in Ghana between 2008 and 2016, a gradual 
decline in the annual laboratory confirmation rate of clinically suspected cases 
from 52% in 2008 and 76% in 2009 to only 15% in 2016 was revealed, reflecting 
both the decline in BU incidence and the loss of clinical expertise [11]. Considering 
this scenario, as well as the broad differential diagnosis of BU, the availability of a 
reliable point-of-care test for the diagnosis of BU is crucially important. Apart 
from BU, several other NTDs present with skin manifestations, either as the pri-
mary or as an associated clinical condition. Many skin diseases have similarities in 
terms of their ability to cause long-term disabilities, reinforcement of poverty and 
geographical distribution. Collectively, these highly disabling and stigmatizing 
diseases constitute a great burden on the affected populations. Major deficiencies 
in our understanding of many of these diseases and a lack of tools to combat them 
necessitate further investment in research and development of control strategies. 
Integration provides an opportunity to leverage funding and to spearhead efforts 
for the development, optimization, and implementation of new diagnostic, thera-
peutic, and preventive tools for the simultaneous control of several co-endemic 
skin NTDs [89].
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