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Foreword vii

FOREWORD

Alzheimer’s disease (AD) is the sixth leading cause of death in the USA. Globally 
about 50 million individuals have AD or related dementias. With the increasing 
average age of humans worldwide, the total number of people with dementia is 
projected to reach 82 million by 2030 and 152 million by 2050. Despite its 
prevalence, AD is the only cause of death among the top 10 causes of death 
globally for which no effective pharmaceutical agents exist to halt or slow down 
the disease progression. By some estimates, AD and related dementias are the 
single most expensive medical condition. In 2019, direct costs of AD in the USA 
will be ~$290 billion, which is expected to rise to ~$1.1 trillion by 2050 if no 
treatments are developed. Hence, there is a tremendous imperative to gain a bet-
ter understanding of the pathogenesis of AD and to develop effective treatments. 
AD is a complex, multifactorial disease, which is unique to humans. AD is 
defined neuropathologically by the accumulation of amyloid β (Aβ) into extra-
cellular plaques in the brain parenchyma and in the vasculature (known as con-
gophilic amyloid angiopathy [CAA]), and abnormally phosphorylated tau that 
accumulates intraneuronally forming neurofibrillary tangles (NFTs). Pathological 
aggregation of phosphorylated tau and Aβ occurs in a sequential process. 
Monomers first aggregate into oligomers intraneuronally that then further aggre-
gate into the fibrils observed in amyloid plaques and NFTs. This pathology then 
spreads in a characteristic brain topography that is distinct for NFTs and plaques. 
This process develops over many years, with a preclinical period of two to three 
decades, the onset of which is modulated by apolipoprotein E (apoE) genotype, 
as well as other genetic and environmental risk factors. 

This book integrates considerable expertise from a wide range of authors 
from different disciplines. It includes clinicians through to translational and 
basic scientists. In aggregate, this book provides a comprehensive and up-to-
date overview of AD. It covers the heterogeneous underlying AD pathology, 
with a review of genetic and proteomic approaches to better understand the 
disease. In addition, there is an extensive review of various potential contrib-
uting factors to the emergence of AD, as well as a discussion of novel biomark-
ers and potential effective therapeutic approaches. I trust that these reviews 
will be of value to clinicians and health professionals caring for patients with 
AD, and will provide a comprehensive and thought-provoking introduction to 
young investigators interested in translational aspects of the AD and related 
dementias field.

Fernando Goni, PhD
Associate Professor

Department of Neurology, New York University School of Medicine
New York, USA
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Preface ix

PREFACE

Alzheimer’s disease (AD) is the most common cause of dementia. The term 
“dementia” is derived from the Latin word demens, meaning “being out of one’s 
mind,” and has been used since the 13th century. AD has been recognized as a 
distinct entity since the publication of Alzheimer’s description of a patient with 
presenile dementia in 1906. The first biochemical identification of amyloid beta 
(Aβ) as the major component of amyloid plaques, a key neuropathological lesion in 
AD, was published in 1984 with the seminal work of Dr. George Glenner. The latter 
discovery led to the amyloid cascade hypothesis of AD, with a focus on developing 
amyloid directed therapeutic approaches. The latter have all failed in clinical trials 
thus far. More recently, there is growing body of genetic, transcriptomic, and 
proteomic data pointing to the complexity of AD pathogenesis. This has resulted in 
a greater diversity of therapeutic approaches being attempted—in effect, resulting 
in “more shots on goal,” with the prospect that at least some of these approaches 
will be efficacious. Hence, despite the many failures of AD therapeutic clinical 
trials, this is a hopeful time in AD research. There is a growing anticipation that our 
greater understanding of the underlying multifactorial pathogenesis of AD will 
result in effective therapeutic interventions in the near future. 

In this book, we present reviews with the most current information on several 
critical aspects of AD, providing the readers with a broad picture of the underlying 
neuropathology, genetics, proteomics, risk factors, novel biomarkers, and potential 
interventions. Chapters 1–5 discuss the underlying AD pathogenesis using 
genomic and proteomic approaches, linking diverse pathways that can lead to 
complex metabolic dysfunction. Chapter 6 reviews the potential role of trace 
metals in AD, while Chapter 7 examines the diversity of Aβ species involved in 
AD pathology. Chapter 8 discusses the contributions of white matter degeneration 
in AD. Chapter 9 examines the potential intriguing role of the brain-gut-microbiota 
axis in mediating AD. Chapters 10 and 11 discuss potential biomarkers for AD, 
such as deficits in ocular exploration and early language impairments, respectively. 
Chapters 12–15 examine possible novel preventative and/or therapeutic 
methodologies such as exercise, optimizing depression therapy, and diverse 
psychosocial interventions. 

We would like to thank all the authors for their diligent work in contributing 
toward this book. The 15 chapters review diverse facets of AD, which together 
paint a comprehensive picture of the pathogenesis, associated risk factors, novel 
biomarkers, and potential therapeutic targets. We believe that this book will 
encourage readers to delve deeper into this field and take up the critical challenge 
of working toward effective treatments for AD and related dementias. 

Thomas Wisniewski, MD
Gerald J. and Dorothy R. Friedman Professor  

at the New York University Alzheimer’s Disease Center 
Professor of Neurology, Pathology and Psychiatry

New York University School of Medicine
New York, USA
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Abstract: Alzheimer’s disease (AD) is an irredeemable chronic neurodegenerative 
disorder and the predominant cause of dementia. The disease progression is asso-
ciated with the deposition of amyloid plaques and formation of neurofibrillary 
tangles in the brain, yet clinical dementia is the end and culminating stage of the 
enduring pathology. Recent evidence suggests that AD is characterized by dis-
tinctive abnormalities apparent on systemic, histological, macromolecular, and 
biochemical levels. Besides the well-described characteristic profuse neurofibril-
lary tangles, dystrophic neurites, and Aβ deposits, the AD pathology includes 
substantial neuronal loss, inflammation, extensive DNA damage, considerable 
mitochondrial malfunction, impaired energy metabolism, and chronic oxidative 
stress. Moreover, severe metabolic dysfunction leading to oxidative stress is a 
possible cause and hallmark of AD that is apparent decades before the disease 
manifestation. State-of-the-art metabolomics studies have proved that arginine 
and branched-chain amino acids metabolism disturbances accompany AD and 
contribute to its pathogenesis. Repetitive failures to find an efficient anti-amyloid 
or anti-Tau treatment, which would face the challenges of the complex 
AD pathology, led to the hypothesis that hyperphosphorylated Tau and deposited 
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Aβ proteins are hallmarks, not the ultimate causes of AD. Accordingly, the 
modern scientific vision of AD etiology and pathogenesis must reach beyond 
the hallmarks and look for alternative strategies and areas of research.

Keywords: Alzheimer’s disease; arginase; arginine; branched-chain amino acids; 
oxidative stress; urea cycle

INTRODUCTION

Alzheimer’s disease (AD) is a severe chronic neurodegenerative disorder and the 
leading cause of dementia (1). The gradual progression of cognitive decline is 
associated with characteristic brain atrophy, amyloid plaques deposition, and 
neurofibrillary tangles (NFT) formation (2). More than 100 years ago, AD has 
been described as an extremely rare pathology and, in fact, it was uncommon 
before the baby-boomers began to reach retirement age. Nowadays, it looks like 
one of the most significant medical, social, and economic challenges that faces the 
21st century. Growing life-expectancy, high sugar and fat diet, and sedentary life-
style have led to an epidemic-like and exponential dissemination of the disease 
within various social and national strata. Today, more than 50 million individuals 
suffer from the stage of AD that we refer to as dementia worldwide, and this num-
ber is expected to triple by 2050 (3).

Despite a century-long rigorous investigation, there is no complete scientific 
consensus regarding the causes of AD. The prevailing current view among scien-
tists centers upon the amyloid cascade hypothesis (4, 5). However, growing 
clinical and empirical evidence points to extremely complex systemic patho-
physiology accompanying AD-associated cognitive impairment and even con-
tributing to its development decades prior to the clinical manifestation (6, 7).

The recent introduction of novel biomarkers for early detection and clinical 
management of AD has improved the diagnostic precision and qualification of 
neuropathology. The new techniques provide practical tools for more objective 
assessment of the treatment outcomes and early therapeutic strategy correction, 
with emphasis on the molecular mechanisms of the disease. Moreover, this 
systems-level approach identifies sex and age-specific differences and further 
advances the development of personalized medicine.

AD is an incredibly complex illness, which constitutes a combination of 
numerous interrelated pathological events that include neurovascular, inflamma-
tory, bioenergetic, and systemic metabolic processes. In addition to the classic, 
distinctive hallmarks, the disease is characterized by systemic abnormalities and 
brain metabolic aberrations, which are evident at molecular and biochemical 
levels. Accordingly, the typical contemporary description of AD-related pathology 
includes neuroinflammation, activation of apoptosis, mitochondrial dysfunction, 
metabolic impairment, and chronic oxidative stress.

Notably, oxidative damage is considered to be the earliest event in AD 
pathology. Reliable data demonstrate an inverse correlation between levels of 
oxidative damage and both beta-amyloid (Aβ) deposition and duration of 
dementia  (8). Moreover, the formation of intraneuronal NFT is associated 



Alzheimer’s is a Brain Expression of a Metabolic Disorder 3

with reduced oxidative damage as well, which further supports the view that the 
onset of oxidative damage is an early event in AD pathogenesis.

Causes of brain oxidative stress include brain hypoperfusion due to advanced 
atherosclerosis or endothelial dysfunction, traumatic brain injury (TBI), infec-
tions, autoimmune disorders, insulin resistance (IR), and other diseases leading to 
neuroinflammation. Of note, the very first AD patient autopsy disclosed substan-
tial brain atrophy and apparent arteriosclerosis (9). Recent converging evidence 
suggests that chronic cerebral hypoperfusion follows progressive aging due to 
cerebral atherosclerosis and endothelial dysfunction (10). These two interrelated 
pathological processes lead to brain energy crisis and trigger the characteristic 
neurodegeneration (11) (Figure 1).

Initial studies with focal ischemic insults and chronic cerebral hypoperfusion 
in rats have shown increased amyloid precursor protein (APP) translation levels 
followed by local Aβ deposition in the brain parenchyma (12). Furthermore, 
chronic vascular insufficiency induces cleavage of the APP into Aβ-sized fragments 
in a rodent model (13). The used model of chronic blood-vessel occlusion dem-
onstrated progressive accumulation of Aβ peptide in the aged  rats. Of  note, 

Figure 1  Main pathogenic factors of AD development. Cerebral hypoperfusion, metabolic 
stress, traumatic brain injury (TBI), and insulin resistance (IR) are the main causes of AD 
development.
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Aβ deposition pattern displayed a gradual shift from neurons to the extracellular 
matrix, mimicking the characteristics of sporadic AD. The described hypoxia-
induced response is attributed to a significant increase in the activities of APP 
amyloidogenic proteases (β- and γ-secretases), although nonamyloidogenic 
α-secretase activity declines (14). Additionally, proinflammatory cytokines, and in 
particular tumor necrosis factor (TNF), prompt transcription of the APP gene via 
direct regulation of its promoter, which leads to overproduction and deposition of 
Aβ (15).

Brain tissue dreprivation of arginine has been suggested as a possible patho-
genic mechanism leading to oxidative damage (16). Arginine deprivation leads 
to endothelial nitric oxide synthase (NOS3) substrate deficiency and enzymatic 
“uncoupling” due to induced arginase activation (16, 17). Uncoupling changes 
NOS3 enzymatic profile radically. As an alternative to oxidizing arginine to 
citrulline and NO, uncoupled enzyme reduces molecular oxygen to superoxide 
anion, which leads to neuronal oxidative stress (18).

Additionally, recent metabolomics studies have indicated characteristic 
branched-chain amino acids (BCAAs) deficiency as a metabolic signature of AD 
(19). BCAAs play an important role in glutamine/glutamate brain metabolism 
and provide nitrogen for at least one-third of the cerebral glutamate (20). 
Therefore, perturbations of BCAAs levels have a substantial impact on brain func-
tion and tip the scale between excitation and inhibition. Of note, BCAAs supple-
mentation has been intensively investigated preclinically, demonstrating a 
therapeutic potential in different animal models of atherosclerosis (21), obesity 
(22), metabolic syndrome (23), and AD (24).

According to our model (Figure 2), AD is a spectrum of disorders, which has 
a mutual downstream pathway and pattern of manifestation with deviant biologi-
cal reactions that eventually culminate in clinical dementia. We comprehend brain 
amyloidogenesis as a natural evolutionary conserved reaction to oxidative and 
metabolic stresses, which can be induced by numerous factors including nutrient 
imbalances. This view corresponds with the notion of Aβ antioxidant functions in 
the aging and AD brain (27) and an influential concept, which deals with intra-
neuronal accumulation of Aβ, is a protective cellular mechanism to cope with 
oxidative insults (28). Moreover, amyloid aggregation and formation of extracel-
lular amyloid plaques, where amyloid is in an insoluble form, are also an adaptive 
mechanism of the brain (29). This bioprocess reduces the concentration of the 
soluble toxic oligomeric and fibrillar species, which impair synaptic function and 
induce an inflammatory response. For that reason, there is a gradual reduction of 
Aβ concentration in the cerebrospinal fluid (CSF) of AD patients (30), the index 
that is inversely correlated with the cognitive decline (31).

EARLY- AND LATE-ONSET AD ARE TWO DIFFERENT ENTITIES

Advanced age is the main risk factor of AD (32). Nevertheless, its early onset is 
relatively common, representing about 5% of all cases (33). The very first case 
described by Alois Alzheimer was a woman who died at just 55 years from the 
disease. In fact, this case should be classified as an early-onset AD (EOAD) 
incident. This form is defined in the literature by clinical symptoms appearing 
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before the age of 61 years (34). Generally, EOAD is inherited following dominant 
Mendelian fashion, although it represents a genetically heterogeneous group (35). 
Epidemiological data suggest that autosomal dominant familial AD (FAD) with 
PSEN1, PSEN2, and APP mutations accounts for about 0.5% of all AD cases (36); 
yet, the share of familial form in the group of EOAD rises to 13% (34). Late-onset 
AD (LOAD) demonstrates a high heritability, with much more genes implicated in 
its development; however, the progression of LOAD is believed to be driven by a 
combination of genetic and environmental factors (37), and thus it remains to be 
principally idiopathic.

EOAD frequently manifests with distinguishable cognitive profile from LOAD. 
No evident amnesia characterizes the disease course, sometimes presenting 
just with language discrepancies, apraxia, and other uncommon functional 

Figure 2  Proposed model of AD pathogenesis. The diagram presents oxidative stress induced 
by mitochondrial dysfunction, inflammation, or metabolic stress as the principal pathogenic 
AD event. Oxidative stress leads to an elevation in ROS levels and accumulation of oxidation 
products in neurons, which results in overexpression and increased processing of APP gene 
and eventually plaque formation (25), hyperphosphorylation of Tau and NFT pathology, 
which in turn produces more ROS and results in neurodegeneration and cellular death (26). 
Aβ directly induces the production of ROS and further exacerbates oxidative stress and 
impairs endogenous antioxidant system including the activity of SODs.
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deficits  (38). Moreover, a specific memory impairment itself presents distinct 
patterns in EOAD and LOAD cases, with significantly more impaired semantic 
memory in LOAD than in EOAD patients (39). Recent objective data have dem-
onstrated that EOAD CSF and fludeoxyglucose F 18 (18F-FDG) positron emission 
tomography (PET) features substantially contrast with LOAD. CSF t-Tau shows 
significantly higher levels in EOAD patients (40). Moreover, 18F-FDG PET scans 
of EOAD patients present the asymmetric patterns of hypometabolism with a 
localization that prominently differs from LOAD. Likewise, dementia severity in 
relatively young patients strongly correlates with amyloid plaques burden, but 
this direct relation progressively weakens with age and even disappears in the 
ninth decade of life (41). Of note, the term “dementia” itself is an umbrella term 
for cognitive impairment that interferes with one’s ability to conduct routine daily 
affairs, and therefore extremely varies between different social groups.

Remarkably, at a molecular level, the Aβ oligomeric subtypes show a distinct 
pattern in each of AD forms. Amyloid pentameric species in the insoluble fraction 
are more abundant in EOAD than in LOAD (42). Additionally, elevated inflamma-
tory markers, together with impaired renal function, distinguish LOAD, which 
points to substantial differences in pathogenesis and development between the 
two clinical forms of the disease (43).

These observations indicate that EOAD afflicting presenile populations repre-
sents a categorically separate pathological entity, which is characterized by dis-
tinctive pathophysiological mechanisms accountable for its unambiguous genetic 
background and uncommon clinical manifestation. In our opinion, only this form 
presents classic AD or presenile dementia of Alzheimer type.

In opposition to presenile form, the etiology of LOAD disease is much more 
heterogeneous, with a combined contribution of numerous genetic, age-related, 
and environmental factors. Unlike EOAD, LOAD often presents in comorbidity 
with diabetes and hypertension (44). Of note, no two patients have the same 
combination of the disease-related factors; therefore, the clinical appearance and 
the treatment strategies for this form have to be accurately personalized. Moreover, 
despite the apparent differences between presenile and senile forms of AD, taxo-
nomically they are still the same illness. In our opinion, LOAD is a syndrome, but 
not a stand-alone disease. It is a concurrence of correlated with each other con-
vergent symptoms, and concurrence literally means syndrome (45). Thus, we 
suggest that the presence of the same confluent hallmarks, which characterize the 
EOAD and LOAD, does not reflect their mutual etiology and pathogenesis; there-
fore, attempts to link these two forms of AD to a single common causative agent 
are futile. For that reason, this chapter deals only with more common LOAD, 
which has a distinct metabolic signature.

LOAD AS A SYSTEMIC METABOLIC DISORDER

Converging evidence points to severe metabolic dysfunction as a leading cause 
and hallmark of AD (46). State-of-the-art metabolomics and imaging studies 
dealing with the immense complexity of the AD phenotype have disclosed this 
aspect of the disease. Gradual decline in cerebral metabolic rate is one of the earli-
est indicators that distinguish patients with mild cognitive impairment (MCI) and 
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poses the clinical suspicion of prodromal AD (47), which suggests a key role of 
metabolic dysfunction in initial mechanisms of AD development. Likewise, 
advanced analyses of the brain tissue could detect explicit metabolic perturba-
tions associated with AD, both in humans (48) and mice (49).

A recent human postmortem unbiased lipidomics and metabolomics study 
has disclosed 34 metabolites, which distinguish frontal cortices’ composition of 
AD patients from healthy controls (50). The authors identified six biochemical 
pathways, which are significantly altered in AD brains. The list of the pathways 
by their significance rate includes alanine, aspartate, and glutamate metabolism; 
arginine and proline metabolism; cysteine and methionine metabolism; glycine, 
serine, and threonine metabolism; purine metabolism; and pantothenate and 
CoA biosynthesis (50).

Metabolomics profiling of human plasma, which combines high-resolution 
mass spectrometry and advanced chemometrics and pathway enrichment analy-
sis, indicates differentially affected polyamine and arginine metabolism in MCI 
subjects converting to AD (51).

Animal studies support and advance these findings. Multivariate statistical 
analysis of metabolite profiles of the brain, liver, and kidney tissues from APP/PS1 
and wild-type (WT) mice indicates systemic nature of AD-associated pathophysi-
ology (52). Liver and kidney samples from 6-month-old mice were fingerprinted 
using a high-throughput multi-platform metabolomics approach based on gas 
chromatography/mass spectrometry and reversed-phase liquid chromatography. 
Several observations pointed to the systemic character of the disorder with 
severely impaired glucose metabolism, mitochondrial dysfunction, and abnormal 
metabolism of BCAAs (52). Another longitudinal research performed in APP/PS1 
transgenic and wild-type mice (6, 8, 10, 12, and 18 months of age) with deep 
profiling of the brain and plasma metabolome proved severely disturbed poly-
amines and BCAAs metabolism (53).

Growing clinical evidence points to a widespread AD-related systemic disorder 
characterized by severely affected peripheral parenchymal organs and blood in 
similar magnitude as the brain (54). Remarkably, the scope and features of 
AD-associated metabolic abnormalities resemble advanced pathology observed in 
obese and diabetic patients (55). These common aberrations led to the hypothesis 
that AD represents a unique form of diabetes. A novel term “type 3 diabetes” has 
been coined and accepted in the scientific literature (56). This term reflects a 
substantial overlap at molecular and biochemical levels between AD and diabetes 
mellitus type 2 (57). Diabetic elderly patients were shown to develop extensive 
vascular abnormalities, which are associated with classic AD pathology (58). 
Likewise, recent data evidently and causatively relate obesity and AD (59).

Remarkably, several common treatment strategies for the abovementioned 
metabolic diseases are extremely effective, which proves mutual pathophysiology. 
Various preclinical and clinical studies have verified that a long list of drugs that 
are conventional in the treatment of diabetes, atherosclerosis, and other metabolic 
disorders improves the overall status, behavioral and cellular functions of AD 
patients. For instance, insulin-based therapy has emerged as a promising approach 
to halt AD-associated cognitive decline (60). Wang et al. evidenced a substantial 
effect of metformin upon neurogenesis and spatial memory acquisition in 
mice (61). A significant neuroprotective effect of metformin was demonstrated in 
rodents on a high-fat diet (HFD) (62). A recent meta-analysis study has proved 
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that metformin use is associated with reduced risk of dementia in patients with 
diabetes (63). In order to evaluate the potentials of the drug as a disease-modifying 
medicine in AD, a randomized 2-month-long placebo-controlled crossover study 
was performed, verifying the metformin-associated improvement in executive 
functioning (64).

Additionally, animal and human studies with thiazolidinediones have shown 
the potential to treat AD and diabetes. The treatment improves memory via facili-
tation of synaptic transmission and reduction of neurodegeneration (65, 66). 
Likewise, a broad variety of antioxidants are shown to be promising in atheroscle-
rosis, AD (67), and diabetes mellitus (68). It is worth mentioning that chronic 
curcumin treatment improves the function of insulin-producing β-cells, reduces 
Aβ-associated cytotoxicity, mitigates Tau protein hyperphosphorylation, and alle-
viates neurodegeneration (69, 70).

Curiously, despite the lack of consensus about the AD etiology and patho-
genesis, and absence of disease-modifying therapy, the disease prevalence in 
the western world has declined gradually over the last two decades (71). 
Several population-based studies have suggested that despite the growing 
absolute number of elderly people with dementia, age-specific risk of dementia 
is declining (72). In the USA alone, the proportion of elderly people with 
dementia has decreased by about 24% between 2000 and 2012 (73). A similar 
trend was observed in England between 1991 and 2011 (74).

One possible explanation for the phenomenon might be recent considerable 
achievements in treatments of cardiovascular diseases and diabetes. The innova-
tive widespread prevention and treatment strategies for these disorders include 
intensive medication with novel effective medicines. Therefore, the progress in 
the control of main dementia risk factors substantially assisted in reducing the 
prevalence of dementia among the target age groups.

Recent evidence suggests that AD-associated cognitive impairment is the out-
come of extremely complex pathophysiology. In the light of new findings, more 
thorough consideration of the complexity of AD as a syndrome is required. 
Moreover, strategies targeting β-amyloid or Tau protein are not adequate to cure 
the disease; therefore, attempts to treat single hallmarks of AD, such as plaques 
and tangles, are futile.

A CONTRIBUTION OF THE UREA CYCLE AND POLYAMINE 
METABOLIC PATHWAY IN THE DEVELOPMENT OF AD

The human brain weighs just 2% of the entire body weight but consumes about 
a fifth of the total glucose-derived energy, and consequently is highly vulnerable 
to oxidative stress (75). Neurons particularly are strongly dependent upon oxi-
dative phosphorylation as an energy source, compared to other cells. As a gen-
eral rule, oxidative stress increases with aging (76), which is followed by 
escalation of protein oxidation and extensive lipid peroxidation in susceptible 
organs and, particularly, in the brain. In the course of the progression of age-
related or AD-related neurodegeneration, neurons gradually lose their capacity 
of maintaining an appropriate redox balance. This imbalance leads to progressive 
accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and, 
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eventually, to neuronal injury (77). Moreover, Aβ deposits are directly associated 
with the free-radical generation, forming a vicious circle of AD pathogenesis 
(78, 79) (Figure 2).

Antioxidants are capable of transferring electrons to and from oxidizing 
agents, inhibiting free radicals production and reducing potential cell damages 
(80). Generally, antioxidants are classified into enzymatic agents (superoxide 
dismutase [SOD], catalase, glutathione peroxidase, glutathione reductase, etc.) 
and non-enzymatic agents (coenzyme Q10, carotenoids, vitamins E and C, and 
arginine) (81).

Arginine is a potent free radical scavenger (82) and protects neurons against 
oxidative stress through its antioxidant potentials (83). Its cationic nature contrib-
utes to the unique protonative properties and ability to react directly with the 
superoxide anion radical (84). Thus, arginine and its derivatives regulate mem-
brane peroxidation processes (85). Although the human cells are capable of syn-
thesizing arginine, its external supplementation is necessary for infants and the 
elderly, making arginine conditionally essential (86). Moreover, some clinical con-
ditions lead to depletion of endogenous arginine resources, which escalates the 
demand for it. Among these conditions are severe infections, burns, wounds, 
intensive physical activity, and sterility (87).

Several recent studies have explored the association between age-related 
cognitive function decline and aberrations in brain arginine metabolism. An 
animal study has disclosed altered arginine metabolic profile even prior to any 
memory deficit (88), which proves the parallel development of brain arginine 
metabolism aberrations and behavioral deficits in AD mice. Moreover, behav-
ioral deficits and brain profile alternations follow the changes in plasma arginine 
metabolic profile, which advocates the use of arginine-centric antemortem bio-
markers for the early diagnosis of AD (88). More recent data from the same 
laboratory have demonstrated a significantly altered brain arginine metabolism 
in a mouse model of tauopathy (89). Noticeable changes were observed in orni-
thine, polyamines, and glutamate concentrations, which further suggest a shift 
of arginine metabolism to the direction of arginase–polyamine pathway in AD 
rodent models brain.

Additional evidence indicates severe arginine metabolism disturbances in vari-
ous brain areas and points to significantly escalated arginase activity in the hip-
pocampi of AD patients (90). Another study has reported decreased levels of 
arginine in the cortices of AD patients (91). Moreover, innovative capillary elec-
trophoresis–mass spectrometry metabolomics investigations of AD patients’ CSF 
detect a decline in arginine levels (92, 93). Remarkably, urine levels of arginine in 
amnestic MCI patients are also significantly lower than in normal controls (94). 
Additionally, these patients demonstrate a reduced global arginine bioavailability 
ratio, the index, which is positively correlated with the Mini-Mental Status 
Examination score, making urinary arginine levels a potential diagnostic bio-
marker for MCI. Of note, numerous animal studies have further implicated altered 
arginine metabolism in the pathogenesis of AD (95, 96).

Arginine was shown to mitigate hydrogen peroxide-induced apoptosis and 
protect against Aβ(25-35)-induced toxicity in cultured PC-12 cells (97). The amino 
acid supplementation improves cognitive function in demented elderly (98). 
Additionally, its administration within 30 min of a stroke significantly decreases 
the frequency and severity of symptoms (99).
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Arginine overcomes biological barriers via ubiquitously expressed high-affinity 
permeases or cationic amino acid transporters (CATs), which are involved in the 
transport of the cationic amino acids (arginine, lysine, histidine, etc.) (100). 
Arginine is generally transported from the circulating blood into the brain via 
CAT1, which is excessively expressed at the blood–brain barrier (BBB) (101, 102). 
The amino acid influx transport in the rat model has been proven to be saturable 
with a Michaelis–Menten constant (Km) value of 56 μM. Of note, the physiologi-
cal serum concentration of arginine is about 170 μM in rodents and about 100 μM 
in men (103). Consequently, the capacity of its transport system is substantially 
limited (104) that makes traditional arginine supplement insufficient to demon-
strate all of its possible effects. Therefore, the pharmacological targeting of 
enzymes that metabolize arginine in order to improve its availability is a likely 
beneficial method to treat neurological conditions (17).

Arginase cleaves arginine to produce urea and ornithine at the last step of the 
urea cycle, which generally protects the cells against ammonia toxicity, while 
ornithine and its downstream derivatives participate in collagen formation, 
induce cell proliferation, and influence other vital physiological processes 
(Figure 3). A substantial increase in arginase activity contributes to vascular dys-
function in the atherosclerotic (apolipoprotein E deficient) mice by interfering in 
the function of the neurovascular unit, which leads to BBB leakage and neuroin-
flammation (105).

Arginine is the immediate precursor of NO and other bioactive molecules 
(Figure 3). Nitric oxide synthases (NOSs) utilize arginine as a substrate to produce 
NO and citrulline (106). Consequently, the bioavailability of arginine is a regulat-
ing factor for NO synthesis (107). Arginine-derived NO serves as a potent antioxi-
dant agent protecting cells from damage caused by ROS (108). It causes 
vasodilation and improves blood supply to neurons, which reduce their suscepti-
bility to oxidative stress (109). Likewise, NO moderates Ca2+ influx into the neu-
rons, protecting them from excitotoxicity (110). Remarkably, under physiological 
conditions, the molecule represents a key endothelium protective factor (111) but 
becomes detrimental under oxidative stress. Substrate deficiency leads to NOS3 
uncoupling and deviation from NO synthesis, converting it to a superoxide-

producing enzyme (112). A significant reduction of NOS activity in AD brains, 
with a decrease in the levels of NOS1 and NOS3 proteins, has been reported (90). 
Moreover, AD-associated arginase overactivation substantially limits mutual sub-
strate availability, and is followed by a decrease in NO production (113). This 
mechanism is particularly important in the statuses with limited extracellular 
resources of arginine, like advanced age, for example.

The arginase expression is induced by various stimuli, including cytokines, 
catecholamines, lipopolysaccharide, TNF, oxidized low-density lipoprotein, and 
hypoxia (114, 115). In the brains of the AD model mice, arginase 1 (Arg1) was 
shown to be not only localized in the cells but also distributed in the extracel-
lular space. In the hippocampus, it displays a spatial correlation with Aβ deposi-
tion, and Iba1 expression (16). In addition, activation of arginase 2 (Arg2) is 
associated with translocation from the mitochondria to the cytosol (116, 117) 
(Figure 3).

Recent evidence points to escalated Arg2 gene expression in AD brains (118). 
Moreover, Arg2 deficiency reduces the rate of hyperoxia-mediated retinal neuro-
degeneration (119), suggesting the contribution of arginase in the neuronal 
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degeneration via overactivation of the N-methyl-D-aspartate receptors (120). 
Accordingly, targeting Arg2 has been proposed as a means of decelerating 
age-related diseases treatment (121).

Inhibition of ornithine decarboxylase (ODC) with α-difluoromethylornithine 
has been proved to be neuroprotective in a rodent model of AD (16). The authors 
speculated that arginine deprivation is a critical AD pathogenic factor, which 
eventually leads to neuronal death and cognitive deficits. We have hypothesized 

Figure 3  Arginine metabolic pathways and their deviations in AD brain. Arginine is primary 
substrate metabolized by nitric oxide synthases (NOS1 and NOS3 under physiological 
conditions), arginase 1 (Arg1) and arginine decarboxylase (ADC). Arginase 2 (Arg2) plays a 
role in extra-urea cycle arginine metabolism. Arginine is cleaved by arginase to form urea 
and ornithine at the final step of the urea cycle. The urea cycle consists of N-acetylglutamate 
synthase (NAGS), which is an allosteric cofactor for catalytic enzyme carbamoyl phosphate 
synthase (CPS1), and other four catalytic enzymes: ornithine transcarbamylase (OTC), 
argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (Arg1). 
NAGS, CPS1 and OTC are localized in the mitochondria, while ASS1, ASL, and ARG1 are in 
the cytosol. Two enzymes: OTC and CPS1 are present in very low concentrations in the 
human brain. As a result, the brain urea cycle is not efficient and to remove ammonia and 
relies on alternative glutamine synthesis by glutamine synthetase (GS). Glutamine 
concentration rises in AD brain. Glutamate dehydrogenase (GDH) catalyzes the deamination 
of glutamate to α-ketoglutarate (α-KG), which concentrations also increase in AD brain, and 
ammonia (NH3). The mitochondrial ornithine transporter (1), citrin (2), and the 
mitochondrial cationic amino acid transporter type 1 (3). Red arrows indicate elevated levels; 
blue arrows designate reduced ones. The intensity of the circles’ color reflects the level of 
activation (arbitrary scale). Argininosuccinate lyase (ASL), argininosuccinate synthetase (ASS), 
nitric oxide (NO), ornithine decarboxylase (ODC), spermidine synthase (SPDS), spermine 
synthase (SPMS), agmatinase (AGM), ornithine aminotransferase (OAT).
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that upregulation of arginase activity and consequent arginine and NO deficiency, 
in the brain areas characterized by excessive amyloid deposition, contribute to the 
clinical manifestation of AD (17). Accordingly, we targeted arginase, but not ODC, 
with its uncompetitive inhibitor, norvaline, to ameliorate the symptoms of the 
disease (117).

Norvaline has been proven to be a potent inhibitor of urea synthesis in iso-
lated rat liver cells (122). It also inhibits arginase in vivo via negative feedback 
inhibition mechanism due to its structural similarity with ornithine (123). 
Moreover, the inhibition process is enantiomer dependent because its stereoiso-
mer, D-norvaline, does not affect NO production (113). The potency of norvaline 
to amplify the rate of NO production has been evidenced in vitro (113). In addi-
tion, the substance was effectively used in a rat model of artificial metabolic 
syndrome (23).

Remarkably, norvaline also effectively inhibits ornithine transcarbamylase 
(OTC) activity, the mitochondrial enzyme converting ornithine to citrulline 
(124) (Figure 3). OTC is extensively expressed in AD brains, but not in controls, 
which is followed by about ninefold increase in OTC activity in the CSF (125). 
Epidemiological studies have revealed that single nucleotide polymorphism of 
the OTC gene promoter is associated with AD morbidity, suggesting that the 
OTC gene is a minor genetic AD determinant (126). OTC activation leads to 
apparent ornithine deficiency (90) and, in turn, arginase activation via product 
inhibition insufficiency. Thus, the vicious circle of metabolic changes acts in the 
AD brain (Figure 3). Accordingly, norvaline is capable of correcting the 
AD-related arginine metabolism aberrations by inhibiting two central enzymes 
of the urea cycle.

A PUTATIVE ROLE OF BCCAS IN THE DEVELOPMENT OF AD

BCAAs are the amino acids possessing branched aliphatic side-chains. There are 
three proteinogenic BCAAs—valine, leucine, and isoleucine, which are essential 
amino acids—and several non-proteinogenic BCAAs, including 2-aminoisobutyric 
acid and 2-aminopentanoic acid (norvaline) (127). It is worth mentioning that the 
vast majority of essential amino acids are metabolized in the liver; however, 
BCAAs escape the first-pass hepatic catabolism and are mainly oxidized in skeletal 
muscles, adipose tissue, and the brain (128).

BCAAs catabolism initiates with a transamination reaction catalyzed by the 
branched-chain aminotransferases (BCATs). The family of BCATs consists of two 
isoforms: mitochondrial BCAT2 and cytosolic BCAT1. BCATs are mutual to all 
three BCAAs, and transamination by BCATs is the exclusive reaction for BCAAs 
only. The products of the reaction are glutamate and three different branched-
chain α-ketoacids (BCKAs). Of note, other non-proteinogenic BCAAs (for instance, 
norvaline) are competent to be substrates for BCAT in rodents and humans (129).

There are indications that BCAAs play a different role in the brain compared to 
other tissues. BCAT1 and BCAT2 are expressed prominently in the brain cells, 
where the enzymes maintain the continuous supply of the principal excitatory 
neurotransmitter glutamate. Remarkably, BCAT1 is present predominantly in neu-
rons, while the appearance of BCAT2 is limited to astrocytes (130, 131).
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In the mammalian brain, BCAAs are involved in several vital processes. Among 
them are key neurotransmitters’ metabolism, protein synthesis, and energy 
production (132). Glutamate is the principal excitatory neurotransmitter of the 
mammalian brain (133), and its concentrations are substantially higher in brain 
than in plasma (134). Glutamate does not cross the BBB in considerable quanti-
ties, except in regions with fenestrated capillaries (135); therefore, neuronal 
glutamate has to be continually synthesized from constantly accessible and reli-
able precursors. Its synthesis requires an efficient amino group donor, which is 
transported rapidly into the brain and is readily transaminated. BCAAs meet these 
needs optimally. Their unique properties and availability allow them to play a 
central role in glutamate metabolism. It was estimated that at least one-third of the 
cerebral glutamate contains nitrogen derived from the BCAAs (20). Consequently, 
perturbations in the levels of BCAAs meaningfully influence the whole function of 
the central nervous system, and the balance of excitation and inhibition, in 
particular.

González-Domínguez et al. utilized gas chromatography coupled with mass 
spectrometry to profile low-molecular-weight metabolites in serum of newly diag-
nosed sporadic AD patients who had not received any medication yet (136). 
Alterations of 23 metabolites were detected, including significantly decreased 
valine levels. In a more recent study including hundreds of participants conducted 
by Toledo et al., lower plasma valine levels were shown to correlate with the rate 
of cognitive decline. Likewise, the coefficient for valine was negatively associated 
with actual ventricular volume changes. Accordingly, an increase in valine con-
centration was associated with a significantly decreased risk of AD (137). Another 
study by Tynkkynen et al. utilized innovative profiling of blood metabolites via 
nuclear magnetic resonance and mass spectrometry (19). Remarkably, lower lev-
els of all three BCAAs were strongly associated with an increased risk of dementia 
and AD in a combined meta-analysis with a replication sample.

In our original studies in a rodent model of AD, we provided the mice with 
arginase inhibitor non-proteinogenic BCAA norvaline, which is an isoform of 
valine (117). The animals treated with norvaline demonstrated significantly 
improved spatial memory acquisition, associated with an increase in hippocampal 
spine density, and reduced neuroinflammation. Moreover, the rate of the brain 
amyloidosis was significantly diminished due to a reduction in the expression 
levels of the APP, which was followed by a significant increase in [Cu-Zn] super-
oxide dismutase levels, suggesting improvement of the internal antioxidant mech-
anisms (24). Further investigations will shed light on the potential of BCAAs to 
halt AD progression.

CONCLUSION

Scientific society has already sought a potent AD-modifying medication for more 
than a century. Unfortunately, its best efforts have been to no avail. A cornucopia 
of agents has been trialed, hoping to preclude the impending calamity, but with 
no conclusive results. The primary cause of the continual failures is the mislead-
ing and highly controversial hypothesis, which besets the development of ade-
quate AD therapy.



Polis B and Samson AO14

The chronic absence of an AD-modifying drug, despite multibillion dollar 
research and development investment, puzzles the best scientific minds and 
enigmatizes the entire field of knowledge. Continual failure to rise to the 
challenges of the multifaceted AD pathology and offer an efficient disease-
modifying therapy  predicated upon the dominant during the last 30 years 
amyloid cascade hypothesis, with aggressive anti-amyloid or anti-Tau treat-
ments, led to the suggestion that hyperphosphorylated Tau and deposited Aβ 
proteins are just hallmarks and not the ultimate causes of AD (139, 140). 
Accordingly, treatment strategies targeting beta-amyloid or Tau protein are not 
competent to cure the disease (140). As a result, a novel trend in academic 
research and preclinical drug development is directed toward the discovery of 
therapeutic agents targeting altered brain metabolism and energetics (141). 
Recently proposed novel strategies based on a universal approach to the prob-
lem of AD and a progressive vision of the disease etiology and pathogenesis 
reaching beyond the conventional hallmarks provide a hope to halt the loom-
ing epidemic.

Current metabolomics techniques are based on a comprehensive understand-
ing of AD pathophysiology, which is predicated upon the detailed knowledge of 
its peculiarities, the disease onset coincidences, and the precise order of the 
pathology development. In this context, an emerging metabolic hypothesis of AD, 
which is strongly supported by empirical evidence, and treats the classic hall-
marks of the disease as the epiphenomena of the major complex pathology, has 
promising potential to offer a competent therapeutic solution.

Moreover, this new concept proposes a novel approach to the clinical classifi-
cation and the treatment strategy for two distinct forms of AD. There is a consen-
sus about the considerable differences between EOAD and LOAD. These two 
forms of AD have dissimilar courses, different genetic backgrounds and clinical 
manifestations, and are followed by unrelated metabolic impairments. Therefore, 
they have to be treated as separate entities.

In categorizing LOAD as a brain expression of a systemic complex metabolic 
disorder, which shares similarities and pathogenic pathways with diabetes melli-
tus, obesity, and atherosclerosis, we suggest common treatment and preventive 
strategies for all these pathologies. Therefore, regular physical and mental activity, 
diet, blood glucose, cholesterol levels monitoring and regulation, and antioxi-
dants supplementation have particular importance in AD prevention and 
treatment. Moreover, novel emerging potent medicines, which have been success-
fully trialed in patients with various systemic metabolic diseases, might be 
extremely effective in AD patients as well.

We suggest that inclusive AD treatment strategies, targeting both brain and 
systemic abnormalities, are more effective than strategies that target CNS abnor-
malities alone. Such approaches should include an auxiliary intervention into the 
metabolic pathways and personalized correction of misbalances. Likewise, the 
systemic management of AD comorbidities and mutual risk factors is a central 
part of preventive AD therapy.

In addition, we argue that, in the case of LOAD, early prevention is the best 
healthcare salutary strategy. Consequently, the most critical current objectives 
are the empowerment of people with the ability to change their lifestyle, and the 
arming of doctors with the appropriate tools and medicines to halt the AD 
development.
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Abstract: Gene Ontology (GO) is a universal resource for analyses and interpre-
tation of high-throughput biological datasets. GO is developed and curated by 
several different groups, based at scientific institutions around the world, work-
ing together under the auspices of the GO Consortium. GO annotations capture 
biological functional knowledge by associating gene products with GO terms. GO 
term and gene product records all have computer-readable accession numbers; 
therefore, these annotations can be easily used for analyses of large datasets while 
retaining human-readable labels. The UCL Functional Gene Annotation group 
focuses on GO annotation of human gene products. Our group has led initiatives 
to systematically annotate proteins and microRNAs across specific biomedical 
fields, and our current biocuration effort, funded by the Alzheimer’s Research UK 
foundation, is focused on dementia and Alzheimer’s disease. Our group has also 
contributed to the development and revision of the ontology describing neuro-
logical domains of biology. Here we present an overview of GO and explain how 
our work, as well as the work of other members of the GO Consortium, is improv-
ing the neurological domains of the GO resource. These biocuration efforts will 
benefit the dementia and Alzheimer’s research community by rendering GO more 
suitable for analyses of neurological datasets.
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INTRODUCTION

Several genes associated with monogenic Alzheimer’s disease (AD) have been 
identified (1); however, the disease can also be caused by polygenic and environ-
mental risk factors (1, 2). To understand the cellular processes and risk factors 
associated with AD, numerous transcriptomic, proteomic, and genome-wide 
association (GWA) studies have been conducted (3–5). Researchers are now turn-
ing to pathway-based GWA analysis and Next Generation Sequencing (NGS) to 
identify the genes contributing to the “missing heritability” (6, 7).

The process of finding gene variants that are causative, or modifiers, of dis-
ease is often time-consuming. Bioinformatics-based analyses can aid the identifi-
cation of AD risk variants, based on the variant’s association with a gene product 
implicated in neurobiological processes and pathways impaired in dementia. 
Such approaches are reliant on bioinformatics resources, including Gene 
Ontology (GO) (8, 9), KEGG (10), Reactome (11), and molecular interaction 
databases (12, 13). These resources provide connections between gene products 
and biological pathways or networks, which are relevant to AD. The end result 
of these analyses is the identification of both the risk variant and the candidate 
gene associated with the risk (14, 15). In addition, considerable research is now 
focused on the selection of biomarkers for AD (16), and the creation of bio-
marker panels is likely to be more successful if it is known what biological path-
ways the candidate biomarkers have in common.

GENE ONTOLOGY

The majority of analyses of high-throughput approaches rely on high-quality 
annotation data (4, 5) because these bridge the gap between data collation and 
data analysis (4, 17). Gene annotation datasets provide functional knowledge 
about gene products, such as proteins or microRNAs, in a computationally acces-
sible format, thus these data can be exploited by systems biology investigators. 
The main resources used to identify significantly enriched pathways in “omics” 
studies are those provided by GO (8, 9), KEGG (10), Reactome (11), and protein 
interaction databases (12, 13). GO annotation data are frequently used because it 
can describe a gene product’s role in a process or its location in a cell, even when 
the basic molecular activity of this gene product is still under investigation 
(Figure 1) (18). In contrast, Reactome and KEGG provide very specific informa-
tion about the molecular function of a gene product within a pathway, with the 
“reaction” catalyzed or facilitated by each gene product clearly identified within a 
pathway diagram. Consequently, gene products whose role has not been fully 
elucidated cannot be included in these resources. Furthermore, although the 
human and mammalian phenotype ontologies (HPO, MP) (19) are being used to 
interpret NGS data, understanding how multiple genes contribute to a single 



Gene Ontology of Alzheimer’s Disease Data 25

Figure 1  A selection of Gene Ontology annotations. This list of Gene Ontology annotations 
was downloaded from the QuickGO browser (37). All of these annotations, based on the 
experimental data presented by Zhao et al. (20), were created by the UCL Functional Gene 
Annotation group. The annotations were filtered by ‘PMID:26005850’. The columns, in order 
from left to right, are as follows: Symbol, HGNC-approved gene symbol; GO term, GO term 
identifier and name; Evidence, one of the many Evidence and Conclusion Ontology (ECO) 
codes (38) associated with each GO annotation to indicate the type of experiments that 
support the annotation (IDA, Inferred from Direct Assay; IMP, Inferred from Mutant 
Phenotype; IPI, Inferred from Physical Interaction); Annotation Extension, additional 
information about the annotations, for example, the location of the function (occurs_in 
CL:0002144, capillary endothelial cell), or the entity that activates the function (activated_by 
CHEBI:64646, amyloid-beta polypeptide 40).

disease or phenotype will require resources, such as GO, that describe the cellular 
roles of these genes.

The GO resource (8, 9) is maintained, curated, and made available through the 
concerted efforts of the GO Consortium, whose aim is to provide both an ontol-
ogy of terms and gene product annotations. Consequently, the GO Consortium 
includes skilled biocuration scientists, ontology editors, and software engineers. 
The ontology enables the description of attributes of gene products, including 
proteins, macromolecular complexes, and noncoding RNAs, in three key domains: 
molecular function, biological process, and cellular component. Fully defined com-
puter-readable GO terms are used by the GO Consortium annotation groups, 
including our Functional Gene Annotation group at UCL, to create links (annota-
tions) between GO terms and gene products across many species, based on pub-
lished scientific findings, providing a computable and traceable summary of 
individual experiments. GO terms are used to describe gene products by their 
molecular functions (e.g., scavenger receptor activity), the biological processes they 
contribute toward (e.g., microtubule cytoskeleton organization), and their subcellu-
lar locations (e.g., extracellular region). For instance, GO curators have contrib-
uted 46 GO annotations based on experimental evidence presented by Zhao et al. 
(20), of which a selection is presented in Figure 1.

The gene product annotations contributed by GO biocurators are regularly 
submitted to the GO knowledgebase, where the most current and complete 
collection of GO terms and annotations is publicly available to all users (9). 
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Providers  of bioinformatics tools, such as g:Profiler (21), Cytoscape (22), or 
DAVID (23), import GO data into their tools for use in enrichment analyses of 
large datasets. Therefore, the association of GO terms with gene product records 
(to create annotations) and the use of GO annotation data in analysis tools 
together enable groups of similarly annotated gene products, within an “omics” 
dataset, to be identified as significantly enriched (18, 24, 25). Thus, dysregulated 
pathways, functions, and macromolecular complexes can be identified within 
high-throughput datasets. However, GO annotation is a continuously ongoing 
initiative with certain biological aspects annotated more thoroughly than others. 
Insufficient annotation of key biological processes and pathways relevant to 
dementia can hinder the interpretation of outcomes from GWA studies, microar-
ray, and proteomic approaches to dissect AD and other AD-relevant diseases (26). 
Consequently, these analyses may identify partial protein networks or only gen-
eral GO terms as enriched in the dataset, for example mitochondrion (27) and 
calcium-mediated signaling (4). Having recognized this deficit, the Functional Gene 
Annotation group at UCL have, for the last 5 years, focused on the annotation 
of gene products relevant to Parkinson’s and Alzheimer’s diseases (26, 28, 29). 
This has led to substantial improvements in the representation of processes such 
as mitophagy, amyloid precursor protein processing, oxidative stress, and tau-
associated processes.

Improving the GO to represent dementia-relevant processes

The GO is structured as directed graphs, with each GO term having a unique term 
name, for example, phosphatidylcholine-sterol O-acyltransferase activity, proteasomal 
protein catabolic process, or high-density lipoprotein particle, and a definition 
(Figure 2) as well as a computer-readable numerical identifier. In addition, the 
ontology is a dynamic resource, with the ontology itself continually being 
expanded and refined to capture current knowledge. Although GO terms exist 
which describe most gene products’ processes, functions, and locations, many of 
these terms are very general and are not specific enough to fully describe the role 
of AD-associated gene products. The UCL Functional Gene Annotation group has 
begun to address this issue through the development of the ontology to provide 
more specific and descriptive GO terms, by improving the existing term defini-
tions and by revising the existing ontology structure (26, 28, 29). The association 
of these more specific GO terms prevents the loss of valuable descriptions of gene 
products, based on experimental information, that would have been unavailable 
if the more general GO term had been applied. For example, we have improved 
the ontology domains describing the unfolded protein response (UPR) (28), 
autophagy (29), and neuron projection development (26). These improvements 
have led to an expansion of the number of GO terms describing these processes, 
as well as revision of relationships between terms within the ontology. All of these 
biological processes have relevance to AD as well as Parkinson’s disease and other 
neurological conditions.

Although GO terms are categorized into three key domains, as introduced 
above, revisions in one domain are often done in conjunction with another 
domain describing the same biological niche. For instance, our work on neuron 
projection development (26), a biological process GO term, resulted, first, in 
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Figure 2  A selection of the dendrite Gene Ontology graph. This figure was generated by the 
QuickGO browser (37) and shows the is_a (black arrows) and part_of (blue arrows) hierarchy 
of just a small number of terms within the dendrite branch of the ontology; currently, the 
dendritic GO domain has 36 terms. The general term dendrite is used to group different 
types of dendrites, for example, primary dendrite and distal dendrite are both more 
descriptive child terms of dendrite. The definition (as displayed in QuickGO) of one of the 
GO terms, dendritic branch, is also included. The yellow highlighted terms were contributed 
by the UCL Functional Gene Annotation group.

contribution of new, more descriptive, GO terms, such as neuron projection arbo-
rization, dendrite morphogenesis, or dendrite arborization. Yet, simultaneously, we 
also improved the dendrite branch of the cellular component GO aspect, as 
shown in Figure 2. Similarly, curation of the autophagy (29) processes led to not 
only generation of highly specific biological process GO terms, but also resulted in 
revisions of related cellular component terms, such as autophagosome, amphisome, 
or late endosome. Thus, enhancing one ontology branch within a specific domain 
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of GO is often done in conjunction with improvements in other branches and 
domains, consequently enriching the ontology resource more broadly.

The neuroscience research community will also have benefited from curation 
work of the SYSCILIA research Consortium, which involved revisions and 
improvements to cilia-related biology in GO, resulting in contribution of 50 new 
GO terms (30). Among others, ciliary dysfunction has been shown to affect Sonic 
hedgehog signaling in the brain, a pathway with demonstrated implications in 
Alzheimer’s (31), Parkinson’s (32), and Huntington’s (33) diseases. Consequently, 
revisions and new contributions to the ciliary niche will have improved the repre-
sentation of cilia biology in GO and, therefore, resulted in more informative anal-
yses of neurological datasets with changes in ciliary proteins.

Another ongoing biocuration initiative with direct relevance to elucidation 
of Alzheimer’s data is the SynGO project and the associated synaptic GO por-
tal  (34). SynGO is a collaboration between the Stanley Center for Psychiatric 
Research at the Broad Institute (Cambridge, MA, USA), the Center for 
Neurogenomics and Cognitive Research at the Vrije Universiteit (Amsterdam, 
The Netherlands), and the GO Consortium, thus combining the efforts of experts 
in synapse biology and GO biocurators to generate the best possible representa-
tion of synapse biology in GO.

The UniProt Knowledgebase (EMBL-EBI, Cambridge, UK) has also been 
improving the representation of Alzheimer’s data in their resource, an initiative 
which includes GO annotation as well as IntAct (13) curation of protein–protein 
interaction and/or curation of disease variants, as a part of a project funded by the 
National Institutes of Health (USA). The ultimate goal of this project is to create 
an online AD portal with thoroughly annotated and easily searchable information 
on the disease and biological pathways impaired in dementia (35). Importantly, 
all biocuration scientists, aiming to improve the representation of dementia-
relevant biology in GO, work together under the auspices of the GO Consortium, 
thus ensuring GO annotation consistency and quality.

The creation of GO annotations

There are two major approaches that rely on concerted efforts of skilled biologists 
and software engineers (36), which result in high-quality GO annotations: man-
ual techniques that depend on the knowledge and expertise of biocuration scien-
tists and computational methods that generate annotations, for instance, based 
on sequence similarity algorithms. Every annotation is attributed to an identified 
reference, often a publication identifier, such as PMID, and each annotation must 
indicate what kind of evidence supports the association between the gene prod-
uct and the GO term (Figure 1).

The computational annotation approach is a high-throughput and efficient 
method of associating high-level terms to a large number of gene products across 
all genomes. These annotations are often assigned, based on specific protein 
domains with known functions or cellular locations, or based on orthology to a 
manually curated gene product. However, to provide more specific annotations, 
GO biocurators read the published scientific literature and use the published 
data  to manually associate highly descriptive GO terms to gene products. 
Consequently, complete, highly detailed annotation of the processes and networks 
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that a single gene product is involved in may take a considerable time. Depending 
on the number of published papers describing the gene product, a curator will 
annotate an average of 1–3 experimental papers per day.

Furthermore, as there is no limit to the number of GO annotations that can 
be assigned to a gene product record, it is possible to describe the many different 
roles that the gene product may have, depending on the cell type it is expressed 
in, the developmental stage of the organism, and the environmental stimuli the 
cell is responding to. The UCL Functional Gene Annotation group takes an 
unusual approach to annotation, in that we usually focus on annotation of a 
specific process involving a number of gene products, such as amyloid precursor 
protein processing, rather than working through an unrelated set of gene 
products. This enables us to develop a better understanding of the biology and 
apply a consistent annotation approach to all gene products involved in the pro-
cess, thus providing depth to the annotations. In addition, at UCL we annotate 
full papers, whereas some groups will curate only the information in a paper that 
is relevant to a specific prioritized gene. This approach enables us to provide 
annotations to a large number of relevant gene products, involved in a specific 
process, which may not be included in the list of annotation priorities. For 
example, after completing the annotation of 84 proteins and protein complexes, 
prioritized for annotation as part of the amyloid-beta or tau projects, we had, in 
total, annotated 526 proteins and complexes (26).

Furthermore, in response to the research community’s needs (39), at UCL our 
annotation procedure involves inclusion of annotation extensions (40) to capture 
information about the cell and tissue types in which a particular gene product is 
active, as well as the specific target of a protein or a microRNA. These detailed 
annotations provide critical knowledge for biomarkers, diagnostics, and drug dis-
covery and will be of considerable value to the research community and allow 
users of GO to query a variety of data. For example, a GO user could investigate 
all targets of a particular protein ubiquitin ligase, or, more specifically, search for 
all proteins involved in catabolic pathways in microglial cells. Unfortunately, 
although biocurators have been contributing the annotation extension data for 
over 6 years, there are no tools that are using this data, and only a few browsers 
display it (9, 41). In the near future, the annotation extension information will be 
ported to Gene Ontology Causal Activity Modeling (GO-CAM) (42).

Gene products annotated using GO

Historically, GO was used specifically for annotation of proteins. Recently, the GO 
Consortium has extended the range of gene products that are annotated; rather 
than only annotating proteins some members of the GO Consortium are now 
annotating protein complexes (43) and microRNAs (26, 44, 45). To curate these 
entities, it has been necessary to create new identifiers (43, 46) and develop strict 
guidelines to ensure that a consistent annotation approach is applied. For exam-
ple, there are many papers describing the coregulation of a microRNA or a set of 
microRNAs with the transcription of a panel of mRNAs and implying that these 
microRNAs therefore regulate the coregulated mRNAs. Such data do not comply 
with quality standards implemented by the GO Consortium and are not being 
captured as GO annotations (44). Instead microRNA GO annotations are 
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contributed based on more precise low-throughput functional experiments, 
involving microRNA mimics or knockdown, followed by an assessment of the 
expression of a panel of specific mRNAs. In addition, reporter assay data, confirm-
ing a direct interaction between a microRNA and an mRNA, are being captured 
using specific GO terms (e.g., mRNA binding involved in posttranscriptional gene 
silencing). Furthermore, in these cases the annotation extension will be used to 
capture the identifier of the targeted mRNA. The resulting interaction data are not 
only available in the GO annotation files, but also within the EBI-GOA-miRNA 
dataset from the PSICQUIC web server (45).

The impact of improving the GO resource on data interpretation

By creating an open access dataset of high-quality annotations, which describe the 
cellular role of those proteins and microRNAs that contribute to pathways dysregu-
lated in AD, the GO provides an invaluable resource for researchers. GO annota-
tions are incorporated into over 50 functional analysis tools, the majority of which 
are freely available, such as g:Profiler (21), PANTHER (47), Cytoscape (22), and 
DAVID (23), but others are subscription based, such as Ingenuity Pathway Analysis 
(QIAGEN Bioinformatics) (48) and MetaCore (Clarivate Analytics) (49). These 
tools, and many other functional analysis tools, are used by researchers to analyze a 
variety of high-throughput data, including transcriptomic (4, 50–53), proteomic (5, 
54, 55), and GWA (6, 14, 56) data. In addition, existing pipelines ensure that the 
GO annotations are included in widely used public resources such as UniProt (57), 
NCBI Gene (58), Ensembl (59), RNAcentral (46), and even Wikipedia. GO annota-
tions associated with individual protein, RNA, or macromolecular complex records 
are used by researchers to extract a synopsis of the cellular role of a gene product. 
These gene summaries have many uses in research, for example, they can help guide 
researchers to the most likely candidate gene associated with a risk locus (14, 18). 
However, it is the use of GO for the interpretation of data from high-throughput 
analyses where this resource can be exploited to the full.

The quality of the GO annotations used in the analysis of large biological 
datasets will determine how informative the outcomes of this analysis will be. 
Without highly descriptive annotations the analysis can only identify GO func-
tions, processes, or location that are not very specific, such as site of polarized 
growth, wound healing, and cell migration (54). The identification of more infor-
mative enriched terms is dependent not only on the presence of highly descrip-
tive GO terms describing biological knowledge, but also on the association of 
these terms with a sufficient number of gene products to enable the term to be 
detected as significantly enriched. A recent meta-analysis of late-onset AD, that 
included over 94,000 individuals, identified over 100 new risk loci, associated 
with amyloid-beta and tau processes, as well as immune response pathways and 
lipid processing (14). This meta-analysis took a wide range of approaches to 
identify new risk loci, one of which was the use of the pathway analysis soft-
ware, MAGMA (60), and GO annotation files (36). The GO terms plasma lipo-
protein particle assembly, reverse cholesterol transport, regulation of amyloid 
precursor catabolic process, and activation of immune response were identified as 
processes with relevance to AD. The first three of these GO terms provide a good 
description of the processes involved, whereas the last term activation of immune 
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response is too general to really give an indication of the mechanism involved. 
This is likely to reflect the considerable investment in annotation of cardiovas-
cular (18, 61, 62) and nervous system genes (26, 28), and the lack of focused 
annotation of the immune system. In addition, papers describing the immune 
system are often highly detailed and more challenging for biocurators without a 
background in immunology to fully annotate (63). Thus, the annotation of 
immune-associated pathways does not reflect the volume of literature and 
knowledge in this domain.

Another study aimed to elucidate protein expression in different brain regions 
in Alzheimer’s cases relative to controls to provide a broader understanding of 
molecular pathways impaired in dementia (64). In this study, GO analysis was 
used to identify the biological processes that had the largest numbers of differen-
tially expressed proteins associated with them. A wide variety of processes were 
identified, in this way, including regulation of apoptosis associated with the hippo-
campus and protein transport associated with the cerebellum and cingulate gyrus, 
therefore allowing researchers to identify new routes for potential therapeutic 
interventions.

GO term enrichment analysis has also been implemented in pilot studies aim-
ing to identify biomarkers associated with dementia, which can be detected using 
noninvasive methods in easily accessible bodily fluids, such as blood (65) and 
urine (66). For instance, Chouliaras et al. (65) used GO enrichment together with 
KEGG pathway analysis to demonstrate the relationships between the identified 
blood biomarkers with neurological processes and neuronal components. 
Significantly enriched GO terms included regulation of amyloid-beta formation and 
amyloid-beta binding, main axon, and ion channel complex, whereas KEGG pathways 
included glutamatergic synapse and Alzheimer’s disease, thus confirming their rele-
vance to cognitive impairments.

Similarly, Watanabe et al. (66) used GO term enrichment and KEGG path-
way analyses to delineate the roles of proteins differentially expressed in urine of 
Alzheimer’s patients relative to healthy controls to identify a urine biomarker 
signature, which could be used for noninvasive diagnostic purposes. Lipoprotein 
metabolism, heat shock protein 90 signaling pathway, and matrix metalloproteinase 
signaling pathway as well as redox regulation by thioredoxin were among the molec-
ular pathways with the highest enrichment scores, providing evidence for 
impairment of vascular processes key to the development of dementia (66). In 
addition, Watanabe et al. (66) also supplemented their functional GO and KEGG 
analyses with an interrelation network analysis to determine, which of the pro-
teins differentially expressed in the Alzheimer’s urine samples interact with each 
other (either directly or via an intermediate). This network analysis of molecular 
relationships enabled these researchers to further elucidate which GO biological 
processes and KEGG pathways should be prioritized in future studies and 
whether they correlate with and confirm other findings. An alternative approach 
to using GO annotations is to visualize them on an interaction network. This 
provides the researcher with an overview of the contribution that a network, or 
part of the network, makes to a particular process or the cellular location of the 
interacting entities, as shown in the example in Figure 3. Thus, the use of mul-
tiple, interoperable, annotation resources provides the opportunity to fully 
exploit and interrogate individual datasets.
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The above examples demonstrate how continuous, systematic, and consistent 
improvements to the GO resource, including contribution of new descriptive GO 
terms, and their association with gene products in the form of GO annotations, 
impact more informative outcomes of analyses of high-throughput datasets. 
The functional analyses relying on GO allow researchers to, first, plan and design 
further studies leading to a better understanding of the molecular mechanisms 
underlying dementia, and, second, to develop noninvasive diagnostic methods, 
which collectively will help to improve the management and treatment of AD.

CONCLUSION

The GO resource (8, 9, 70) adds value to published experimental data by creating 
computer-readable annotations that describe specific functions of a gene product, 
such as protein, complex, or noncoding RNA, and the biological processes and 
pathways it contributes to. This benefits all biological areas, including the AD 
field, on which the UCL Functional Gene Annotation team has recently been 
focusing their biocuration efforts. Gene annotations using GO terms enable 
groups of gene products, with similar cellular roles or locations in the cell, to be 

Figure 3  Network of proteins identified in Alzheimer’s disease meta-analysis. Nine proteins 
identified in an Alzheimer’s disease meta-analysis (14) due to their association with the GO 
term “regulation of amyloid precursor protein catabolic process” were used to seed an 
interaction network using Cytoscape (22) and five files available on the PSICQUIC web 
server (67) (IntAct, BHF-UCL, UniProt, MINT, and EBI-GOA-non-IntAct). The seed proteins are 
outlined in yellow. The network was analyzed using Golorize (68), BiNGO (69), and GO 
ontology and annotation files (36), as described in Denny et al. (29) (downloaded March 29, 
2019). The proteins associated with a selection of the enriched GO terms (or one of their 
child terms, including regulation child terms) are shown in the network.
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easily identified within a dataset, such as a list of differentially expressed genes 
from AD cases. Thus, dysregulated pathways, functions, and macromolecular 
complexes can be identified within high-throughput datasets using GO annota-
tion data and functional enrichment tools. GO annotation data are therefore 
needed for pathway construction, enrichment analyses and interpretation of 
large-scale datasets (3–5) and to inform biomarker selection decisions (27), and 
can also be used to identify novel drug targets or novel repurposing of drugs. 
Furthermore, the AD-focused and comprehensive efforts of the UCL Functional 
Gene Annotation team have improved and continue to improve the GO resource, 
enhancing its applicability to this neurobiological research domain and facilitating 
analyses and interpretation of AD big data.
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Abstract: Our current understanding of the molecular changes that drive 
Alzheimer’s disease (AD) pathogenesis is incomplete. Unbiased, mass-
spectrometry-​based proteomic studies provide an efficient and comprehensive 
way to quantitatively examine thousands of proteins at once using microscopic 
amounts of human brain tissue. Recently, the number of proteomic studies that 
examine protein changes in AD brain tissue has been increasing. This chapter 
reviews the different proteomic approaches currently being used to identify path-
ological protein changes in AD brain tissue including bulk tissue studies that 
examine protein changes throughout the progression of AD, studies of the insol-
uble proteome in AD, studies using proteomics to examine selective vulnerability 
in AD, studies of the amyloid plaque and neurofibrillary tangle proteome, studies 
of the synaptic proteome, and studies of the interactome of beta amyloid and tau. 
Combined, these complementary proteomic approaches provide increased 
understanding about the protein changes that occur in the AD brain. Results 
from these proteomic studies provide an excellent resource for future hypothesis-
driven targeted studies and will help identify new biomarkers of disease and new 
drug targets for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a complex, multifactorial disease. Various genetic, 
environmental, and lifestyle risk factors have been associated with the develop-
ment of AD; however, none of these have been shown to definitively cause late 
onset AD (1). AD is diagnosed at autopsy by the presence of characteristic 
neuropathology: amyloid plaques and neurofibrillary tangles (NFTs), which 
primarily consist of aggregated beta amyloid (Aβ) and hyperphosphorylated 
tau, respectively (2). The development of these neuropathological lesions is 
associated with increased neuroinflammation, synaptic loss, neurodegenera-
tion, and ultimately the development of cognitive impairment that clinically 
characterizes AD. Imaging and biomarker studies suggest that AD begins 
~20 years before the development of dementia, resulting in a long preclinical 
stage of disease before clinical symptoms are apparent (3).

There are still significant gaps in our understanding about the molecular 
mechanisms that underlie the pathogenesis of AD. For example, we do not 
know what causes AD, what factors drive the development of neuropathology, 
what factors cause the development of cognitive impairment, or what factors are 
responsible for the considerable heterogeneity in the rate of progression in peo-
ple with AD. A greater understanding of all of these factors is essential for the 
development of effective therapeutics and discovery of new biomarkers for AD. 
New therapeutics are particularly needed for AD as the previous record for AD 
clinical trials has been very poor: 99.6% of AD clinical trials have failed, and 
currently, no disease-modifying treatment is available. This high failure rate has 
been attributed to various factors including starting treatment too late in the 
disease process, having the wrong drug targets, or relying too heavily on results 
from preclinical studies that use animal models of AD that poorly reflect human 
disease (4–6).

THE BENEFITS OF USING PROTEOMICS TO STUDY PROTEIN 
CHANGES IN AD BRAIN TISSUE

Traditionally, studies examining the molecular mechanisms that drive AD 
pathogenesis have used a targeted, hypothesis-driven approach that focuses on 
select proteins of interest. This approach has uncovered many of the major 
players involved in AD pathogenesis, most notably identifying beta amyloid 
(Aβ) as the major protein present in amyloid plaques (7, 8), identifying tau as 
the major protein present in NFTs (9), and identifying apolipoprotein E (apoE) 
as the most significant genetic risk factor for late onset AD (10, 11). However, 
using a targeted approach precludes the discovery of novel disease-associated 
proteins and limits the ability to understand these protein changes in the broad 
context of AD.
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Unbiased, hypothesis-free “omics” studies such as genomic, transcriptomic, 
epigenetic and proteomic studies offer a comprehensive, highly efficient way to 
identify genes or proteins that are involved in the pathogenesis of AD. The high-
throughput nature of “omics” studies means that they can be performed using 
microscopic amounts of human tissue samples, which are essential to study when 
examining diseases that are unique to humans, such as AD (12). Genomic and 
epigenetic studies have successfully identified new genetic risk factors for late-
onset AD and have provided the basis for new hypothesis-driven studies examin-
ing how these genetic variants and epigenetic changes are involved in AD (13–16). 
Unbiased, mass-spectrometry-based proteomic studies of human AD brain tissue 
are essential to complement these genomic studies, particularly given that pro-
teins are the druggable targets in AD. Furthermore, there is a poor correlation 
between RNA expression and protein levels in AD brain tissue; therefore, tran-
scriptomic or genomic studies do not provide a complete picture of the patho-
genic changes in the AD brain (17). Using mass-spectrometry-based proteomics 
to study the pathogenesis of AD has many advantages including the following: 
thousands of protein differences can be quantified simultaneously using micro-
scopic amounts of brain tissue, the unbiased nature of these studies permits the 
discovery of novel proteins involved in AD pathogenesis, and proteomics can 
detect post-translational modifications on proteins (e.g. phosphorylation, oxida-
tion, and ubiquitination) that are known to have an important pathological role in 
AD. The large amount of data generated in proteomic studies provides a compre-
hensive, bird’s eye view of all protein differences that occur in AD, which can 
provide insight into the molecular mechanisms that cause AD at a network/
systems level, which is particularly useful when studying complex diseases like 
AD (18, 19). Mass-spectrometry-based proteomic studies have been limited in the 
past by technical and financial constraints; however, these factors have recently 
become less restrictive, and consequently, the number of proteomics studies using 
AD brain tissue has increased.

AD PROTEOMIC STUDIES USING BULK TISSUE 
HOMOGENATES

The majority of proteomic studies examining AD brain tissue have defined the 
proteomic changes between AD and age-matched, cognitively normal controls 
using bulk tissue samples. In these studies, proteomics is used to compare protein 
expression between AD and controls in brain homogenate, usually limited to one 
vulnerable brain region. Early liquid chromatography-mass spectrometry (LC-MS) 
studies generated preliminary findings about protein differences between AD and 
control brains, but were typically restricted by small sample sizes and therefore 
struggled to detect protein differences after correcting for multiple comparisons 
(20–26). More recent studies have included a larger number of samples, which 
are consequently sufficiently powered to detect hundreds of protein differences in 
AD brains (17, 27–34). Encouragingly, meta-analysis of these recent studies shows 
that many of the significantly altered proteins in AD brains are consistent, leading 
to increased confidence that these altered proteins are relevant to the pathogenesis 
of AD.
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The most comprehensive studies have been conducted by researchers at 
Emory University, USA (17, 30, 31). Their studies primarily examined protein 
differences in the frontal cortex throughout the progression of AD, specifically 
comparing protein levels in advanced AD, asymptomatic AD (also referred to as 
preclinical AD), and age-matched cognitively normal subjects. Combined, these 
studies identified hundreds of protein differences present at different stages of 
AD. They found that the number of protein differences steadily increased with 
disease progression, suggesting that the number of protein differences is reflec-
tive of increased dysfunction involving more pathways as AD progresses. Their 
analysis allowed the identification of subsets of proteins that were exclusively 
altered in the symptomatic phase of AD and those that were altered prior to the 
onset of clinical symptoms. For example, they showed that proteins involved in 
synaptic function and synaptogenesis progressively decreased throughout AD, 
starting before clinical symptoms were present. They also showed that altered 
RNA metabolism and increased inflammation were present in AD brains in the 
earliest stages of disease prior to cognitive impairment. In contrast, astrocyte and 
microglia proteins increased in late stage AD and showed a strong correlation 
with the number of NFTs present. A consequent study by the same group spe-
cifically focused on the protein differences present in AD cases stratified by ApoE 
genotype (33). ApoE is the major genetic risk factor for late onset AD (35, 36). 
The three alleles of ApoE (apoE2, apoE3, and apoE4) confer different risk for 
AD: apoE4 increases risk for AD and apoE2 decreases risk for AD. Their pro-
teomic results suggested that apoE may confer risk in AD through a combination 
of effects on inflammation, metabolism, and cerebral vasculature, and using 
their proteomic approach, they were able to pinpoint the specific proteins 
involved (33).

One important factor to be mindful of when interpreting and comparing pro-
teomic studies is the type of tissue lysis method used prior to mass spectrometry. 
Different lysis methods enrich for different populations of proteins or even differ-
ent pools of the same protein. For example, soluble and insoluble forms of the 
same protein may require different lysis methods for detection. Therefore, the use 
of various lysis methods can complicate meta-analysis of multiple proteomic stud-
ies as the same proteins are not always detected by each lysis method. However, 
one advantage of using varied lysis methods is that combined analysis of pro-
teomic studies that use various lysis methods provides a richer view of molecular 
changes in the AD brain. For example, some studies have specifically examined 
differences in the insoluble proteome in AD (21, 25, 30, 37), which enriches for 
proteins that are associated with the insoluble plaques or NFTs in AD, as well as 
other proteins that are independently prone to insolubility in the AD brain. Of 
these studies, Hales et al. provide the most comprehensive analysis of insoluble 
protein changes in AD (30). Interestingly, they showed that the number of differ-
entially expressed proteins in the insoluble fraction increased with disease severity 
and that many of these insoluble proteins were involved in mitochondrial func-
tion, which is known to be decreased in AD (30). Other recent studies have used 
proteomics to answer specific questions about which proteins are primarily 
affected by post-translational modifications in AD. Two recent studies have used 
enrichment strategies to identify all proteins that are phosphorylated and ubiqui-
tinated in AD (38, 39). These studies showed that the number of ubiquitinated 
proteins was much higher in AD brains than in control brains, which is consistent 
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with the accumulation of insoluble and misfolded proteins during AD and reflects 
the proteolytic stress present in AD (38). Examination of phosphorylated proteins 
confirmed that tau was the most highly phosphorylated protein in AD in compari-
son to controls and also identified an additional 142 proteins that were phos-
phorylated to a greater extent in AD brains (39).

THE USE OF PROTEOMICS TO UNDERSTAND SELECTIVE 
VULNERABILITY IN AD

One of the most striking features of AD is that specific brain regions are particu-
larly vulnerable to the development of amyloid plaques, NFTs, and neurodegen-
eration, while other regions are comparatively resistant to pathology. Why this 
occurs is still unknown. However, various factors have been proposed to contrib-
ute to vulnerability including: gene expression, long axonal projections or large 
neuronal size, being an excitatory neuron, containing low levels of calcium buff-
ering proteins, or containing high levels of metastable subproteome proteins that 
are prone to aggregate in times of stress (40–42). Defining a particular brain 
region as vulnerable or resistant in AD can be complex, as it depends on the 
neuropathological factor you use to define vulnerability. This is important 
because some brain regions are preferentially vulnerable to developing amyloid 
plaques, while others are preferentially vulnerable to developing NFTs or neuro-
degeneration, and the presence of these different types of neuropathology does 
not always correlate. In general, regions that are particularly vulnerable to the 
development of AD include the hippocampus, entorhinal cortex, basal forebrain, 
and locus coeruleus. Comparatively resistant regions include the cerebellum and 
occipital cortex.

Transcriptomics studies suggest that there is likely a distinct protein signature 
of vulnerable neurons in AD (43); however, this has not yet been comprehensively 
examined at the protein level. Proteomic studies of selective vulnerability in AD 
are complex as additional variables need to be considered in their experimental 
design. For example, basal protein differences between different brain regions 
have to be accounted for when interpreting protein differences that appear to be 
associated with increased vulnerability to AD. This is particularly important when 
comparing brain regions that are morphologically different such as the cerebellum 
and the hippocampus. Disparate basal protein expression between brain regions 
complicates interpretation of results as protein differences could be due to either 
basal brain region differences or AD associated differences. Accounting for these 
variables is possible, but ultimately results in large, complex studies that require a 
large number of samples to perform all analyses with sufficient power.

The majority of bulk tissue proteomic studies have only analyzed one or two 
brain regions, usually focusing only on vulnerable brain regions, meaning that 
they cannot be used to examine the protein changes associated with selective 
vulnerability in AD. Two recent studies have aimed to fill this knowledge gap. 
Xu et al. (44) performed the most extensive analysis of proteomic changes in the 
AD brain that are associated with selective vulnerability. They compared protein 
expression in three highly affected regions (hippocampus, entorhinal cortex, and 
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cingulate gyrus), two lightly affected regions (sensory cortex and motor cortex), 
and one comparatively unaffected region (cerebellum). As expected, the majority 
of protein differences between AD and control brains were observed in the highly 
affected regions, and these protein changes were reflective of increased innate 
and adaptive immune responses in the brain and increased apoptosis. The fewer 
protein differences in the lightly affected regions appeared to be reflective of early 
stage pathology, suggesting that the same molecular changes that drive pathogen-
esis of AD eventually spread to these lightly affected regions. Intriguingly, the 
cerebellum actually showed a large number of protein differences between AD 
and controls, even more so than the lightly affected regions. However, these pro-
tein differences appeared to be reflective of potentially protective molecular 
changes such as increased expression of proteins associated with growth factors, 
increased oxidative defense proteins, and decreased transfer RNA synthetases. 
Mendonca et al. (45) also performed a comprehensive study looking at the pro-
teomic differences in brain regions preferentially vulnerable to tau pathology in 
AD. They compared the proteome in AD and controls in two brain regions that 
are highly vulnerable to the development of NFTs (parahippocampal cortex and 
entorhinal cortex) and two brain regions that are moderately vulnerable to the 
development of NFTs (temporal cortex and frontal cortex). In doing so, they 
generated a complex dataset that will be useful for future data mining studies 
examining the protein changes associated with tau pathology in AD. In the future, 
expanding these studies to include comparisons between multiple brain regions 
at multiple stages of AD will be useful for defining the protein differences that 
underlie selective vulnerability in AD and to definitively determine whether 
mildly affected regions show molecular changes that are similar to those in early 
stage AD.

PROTEOMICS OF NEUROPATHOLOGICAL FEATURES 
PRESENT IN AD

Other groups, including my own, have recognized the importance of performing 
localized proteomic studies that specifically focus on disease-associated neuro-
pathological features or specific cell populations. Using a localized approach that 
focuses specifically on areas highly affected by disease has the potential to reveal 
protein differences between AD and controls that are particularly relevant to 
pathogenesis. We have focused our efforts on using a localized proteomics 
approach to determine the proteome of amyloid plaques, NFTs, and vulnerable 
neurons. In this approach, neuropathological features or vulnerable neuron popu-
lations are microdissected from sections of human brain tissue, and their protein 
composition is analyzed using mass spectrometry (46–48). A key advantage of 
our approach is that it can be performed using formalin-fixed paraffin-embedded 
(FFPE) tissue. This is important because the majority of human tissue specimens 
available for research are FFPE blocks of tissue that are collected and used during 
autopsy. Therefore, developing a method that is compatible with FFPE tissue 
greatly increases the feasibility of human tissue studies, particularly those using 
rare or unique cases. A second key advantage of our method is that it can be per-
formed using microscopic amounts of tissue. We have successfully performed 
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proteomics using as little as 1.5 mm2 of tissue, which is the equivalent of approxi-
mately 550 amyloid plaques or 4000 NFTs. This number of plaques and tangles 
can typically be collected using <4 tissue sections, showing just how little tissue is 
required for these studies. But the most important aspect of our approach is that 
we can quantify over a 1000 proteins at once using these microscopic tissue sam-
ples, which therefore provide a comprehensive analysis of the proteins that are 
associated with neuropathological features in the AD brain and proteins that are 
associated with selective vulnerability of specific neuronal populations. For exam-
ple, we showed that amyloid plaques consistently contained hundreds of proteins 
in addition to Aβ and that many of these were novel proteins that had not previ-
ously been associated with AD (49, 50). Importantly, we also showed that the 
protein composition of amyloid plaques was significantly different in people with 
rapidly progressive AD in comparison to typical sporadic AD, suggesting that dif-
ferent molecular mechanisms may underlie plaque development in different sub-
types of disease. We also recently examined the proteome of NFTs and identified 
over 500 proteins in NFTs in addition to tau, many of which were novel (51). 
These examples show the power of an unbiased localized proteomics approach to 
efficiently identify hundreds of proteins that are associated with amyloid plaques 
or NFTs. These findings can be used as the basis for future targeted studies that 
aim to determine the mechanistic involvement of these proteins in AD.

One example protein that we discovered using proteomics and have since fol-
lowed up on in a targeted study is secernin-1. Very little is known about the 
function of secernin-1, and no study has previously associated secernin-1 with 
AD. We identified secernin-1 as a novel amyloid plaque protein in our previous 
proteomic study of amyloid plaques (49). We have since performed a compre-
hensive neuropathological study of secernin-1 accumulation in early and late 
stage AD (52). Surprisingly, we found that secernin-1 abundantly and specifically 
accumulated in NFTs in AD and that its presence in amyloid plaques was limited 
to accumulation in the dystrophic neurites present in neuritic plaques. 
Co-immunoprecipitation showed that secernin-1 directly interacted with phos-
phorylated tau in AD brains, suggesting that it could have an important role in 
mediating the toxic actions of tau in AD. Intriguingly, secernin-1 colocalized with 
phosphorylated tau aggregates only in AD and not in other neurodegenerative 
diseases that also show the presence of aggregated phosphorylated tau including 
Pick’s disease, progressive supranuclear palsy, and corticobasal degeneration. 
This suggests that secernin-1 could be a new potential biomarker that discrimi-
nates between AD and other tauopathies. These results show that localized pro-
teomics studies are capable of identifying new biomarkers of disease and new 
potential drug targets. Secernin-1 is just one example protein from a list of many 
new potential candidates that we have identified in our proteomics studies that 
can be examined in future mechanistic studies.

A small number of other groups have also used a similar localized proteomics 
approach to study the proteome of neuropathological features or vulnerable cell 
populations/brain regions in AD. Two small studies have examined the proteome 
of human amyloid plaques (53, 54), and two small studies have examined the 
proteome of human NFTs (55, 56). Three other studies have examined the pro-
teome of cerebral amyloid angiopathy (CAA), which is present when Aβ patho-
logically accumulates in blood vessels (57–59). Combined, all of these studies 
provide preliminary data that have hinted at new proteins that are associated 
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with these neuropathological features; however, the small number of cases 
included in these initial studies means that further studies are needed to provide 
a comprehensive understanding of the proteome of amyloid plaques, NFTs, and 
CAA. Future studies examining larger numbers of cases that are stratified by AD 
subtype will be very informative in helping to identify proteins that have a par-
ticular interaction with neuropathological features and to determine whether 
proteins associated with these neuropathological features are different between 
subtypes of AD.

PROTEOMICS OF SYNAPTIC FRACTIONS IN AD

Synapse loss is an early feature of AD that closely correlates with cognitive impair-
ment (60–63). Understanding the synaptic protein changes in AD could help us 
understand what is driving this process. Multiple studies have been completed 
that have analyzed the proteome of synaptosomes and post-synaptic density in 
control human brains, which have been nicely combined in a recent meta-analysis 
(64). However, a comprehensive analysis of the synaptic proteome in AD has not 
yet been performed. Preliminary results have been generated that analyzed the 
proteome of synaptosomes (65, 66) or post-synaptic density fractions (67). 
However, the small sample sizes used in these studies (between n = 2 and n = 6) 
mean that their findings are not yet definitive. Other studies have used their bulk 
tissue homogenate results to look specifically at synaptic protein changes (34, 68); 
however, these results could potentially miss differences in low abundance synap-
tic proteins. To date, all studies examining synaptic protein differences in AD have 
compared advanced AD and controls. Given that synaptic loss is an early feature 
of AD, it would be particularly useful to determine the protein changes that con-
tribute to synapse loss in either mild cognitive impairment or preclinical AD. 
Larger studies examining differences in the synaptic proteome in early AD are 
currently ongoing in the field, and these will likely provide a greater overview of 
the specific protein changes that contribute to synaptic loss in AD. Future results 
detailing the synaptic protein differences in AD will be very interesting given that 
it has been recently suggested that synaptic proteins in the cerebrospinal fluid 
may also be excellent new biomarkers for early AD (64, 69).

ANALYSIS OF THE Aβ OR TAU INTERACTOME IN AD

Another useful proteomics approach to study AD pathogenesis is using affinity 
purification-mass spectrometry to identify the proteins that interact with toxic Aβ 
or tau species in AD. In this approach, particular species of Aβ or tau are isolated 
from human brain samples using antibodies. Proteins that interact with Aβ or tau 
are isolated at the same time, and mass spectrometry is used to identify these 
interacting proteins. This is a powerful approach because it allows the efficient 
and comprehensive examination of all proteins that interact with Aβ or tau in an 
unbiased manner. It can also determine which proteins interact with particular 
species Aβ or tau, which is important as some species are more toxic than others. 
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Results from these studies have the potential to increase our understanding about 
how Aβ and tau are involved in the pathogenesis of AD and could lead to the 
discovery of new drug targets.

Despite Aβ being the predominant focus of AD research for decades, there is a 
surprisingly limited number of studies that have used affinity purification mass 
spectrometry to examine the Aβ interactome. One possible reason for this is that 
it is difficult to find an appropriate antibody that specifically recognizes Aβ and 
not its longer precursor protein (amyloid precursor protein; APP). Accordingly, a 
number of studies have instead examined the interactome of APP in mouse brain 
tissue (70, 71) and in cells expressing human APP (72, 73). However, despite this 
limitation, there have been two recent studies that have developed alternative 
ways to examine the Aβ interactome. The first study isolated aggregated Aβ com-
plexes from human brain samples using a non-specific Aβ antibody (that also 
recognizes APP), but limited their downstream proteomic analysis to only those 
proteins present in the insoluble fraction, with the assumption that the resulting 
interacting proteins were limited to those present in insoluble Aβ-containing 
aggregates rather than APP (37). The second study used a more traditional 
approach of binding recombinant monomeric Aβ42 or oligomeric Aβ42 to beads 
that were then used to pull down interacting proteins from human brain samples 
(74). Combined, these studies identified over 100 proteins that interact with Aβ, 
including some proteins that preferentially interacted with oligomeric Aβ in com-
parison to monomeric Aβ. However, more studies are needed in the future that 
compare the interactome of different Aβ species (such as Aβ40, Aβ42, and pyro-
glutamate modified Aβ) and that determine the endogenous pathological interac-
tions present in AD brain tissue, as these may be different than those present in 
artificial in vitro experiments.

To date, all studies examining the tau interactome have used total tau anti-
bodies that identify proteins that interact with all tau species. Two studies 
have examined using human brain tissue (37, 75), while others have exam-
ined tau interactors in mouse brains (76–79) and in cells expressing human 
tau (80). These studies found that different isoforms or domains of tau regu-
late different protein interactions, identified the major protein families that 
tau preferentially binds to, and identified new potential drug targets for pre-
venting tau toxicity. However, one limitation of these studies is that using a 
total tau antibody results in the identification of all proteins that interact with 
both physiological and pathological tau in the brain, therefore making it dif-
ficult to determine which interactions are specific to the pathological phos-
phorylated tau species present in AD brains. Therefore, we have recently 
completed the first study of the phosphorylated tau interactome in human AD 
brain samples (51). Our results showed that phosphorylated tau in AD brains 
preferentially interacted with neuronal proteins, which is consistent with the 
intraneuronal location of phosphorylated tau in AD. We found that phos-
phorylated tau particularly interacted with proteins associated with two of the 
main protein degradation systems in the cell: the ubiquitin–proteasome sys-
tem and the phagosome–lysosome system. The specific proteins involved sug-
gested that phosphorylated tau may be potentially interfering with degradation 
of proteins by the proteasome and may contribute to lysosomal dysfunction in 
AD via interference with vacuolar ATPase proton pumps that are responsible 
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for acidification of lysosomes. Impairment of both of these processes has been 
previously associated with AD (81–83); however, this is the first study to show 
that tau may be involved in this process. This is an example of the informative 
nature of interactome studies, showing that they can provide a complete and 
unbiased overview of the pathogenic brain changes that occur in AD that are 
directly linked to a specific toxic protein species.

Going forward, performing these studies in a systematic manner that directly 
compares the interactome of multiple Aβ or tau species will help determine which 
protein interactions are particularly important for disease progression. Determining 
these key interactions that drive toxicity and that drive the formation of plaques 
or NFTs will help identify new potential drug targets for AD.

CONCLUSION

In conclusion, proteomics studies using human tissue are very useful for increas-
ing our understanding about the pathogenesis of AD. The combined proteomic 
results from studies described above provide a powerful resource for generating 
new hypotheses about the cause of AD. Unbiased, proteomic studies using AD 
brain tissue have been previously limited by concerns about cost, technical limita-
tions, and the assumption that very large samples sizes are required to counteract 
the large inter-patient variability in AD. However, recent studies have shown that 
hundreds of significant protein differences can be detected using sample sizes as 
low as 5 when comparing AD and controls. Larger sample sizes appear to be 
required when comparing different stages of AD (e.g., preclinical AD vs. advanced 
AD) or different subtypes of disease (e.g., rapidly progressive AD vs. sporadic 
AD); however, even in these studies, 20 samples/group are sufficient to identify 
hundreds of protein differences between groups. These results show that discov-
ery proteomic studies using AD brain tissue are feasible. Importantly, meta-
analysis of proteomics studies using AD brain tissue shows that many altered 
proteins in AD brain tissues are consistent between studies, therefore also validat-
ing these findings.

Going forward, it will be useful to expand the scope of these previous studies. 
Focusing on localized proteomics changes, either in neuropathological features, 
vulnerable neuron populations, or synaptic fractions, has the potential to greatly 
increase our understanding about what protein changes drive the development of 
neuropathology or neurodegeneration in these particularly affected regions. 
Systematic examination of the proteins that interact with specific species of Aβ or 
tau will help identify how these two proteins cause toxicity in AD. Results from 
localized or interactome studies have the potential to identify new drug targets or 
biomarkers of disease that are directly associated with AD neuropathology. 
Determining the protein changes that occur throughout the progression of AD is 
also particularly important to examine in future studies: the ideal drug targets for 
AD are pathological changes that occur in the earliest stages of disease; therefore 
proteomic studies that characterize protein changes in preclinical AD or mild cog-
nitive impairment should be a priority.

Combined, proteomic studies are capable of providing a roadmap of protein 
changes that are associated with AD. These studies pinpoint the protein networks 
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that are most involved in disease as well as the specific proteins that are involved. 
Overall, these studies provide an excellent resource for future hypothesis-driven 
targeted studies that will hopefully help identify new biomarkers of disease and 
will help in the development of new drugs for AD.
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Abstract: Ischemic brain damage is associated with the deposition of folding pro-
teins, such as all fragments of the amyloid protein precursor and tau protein, in 
the intra- and extracellular spaces of neurons. In this chapter, we summarize the 
protein changes associated with Alzheimer’s disease and their gene expression 
(amyloid protein precursor and tau protein) after cerebral ischemia and their role 
in the ischemic etiology of Alzheimer’s disease. Recent advances in understanding 
the ischemic etiology of Alzheimer’s disease have revealed dysregulation of amyloid 
protein precursors, β-secretase, presenilin 1 and 2, autophagy, mitophagy, apoptosis, 
and tau protein genes after ischemic brain injury. However, reduced expression of 
mRNA of the α-secretase in cerebral ischemia causes neurons to be less resistant 
to injury. In this chapter, we present the latest evidence that Alzheimer’s disease-
related proteins and their genes play a key role in brain damage with ischemia-
reperfusion and that ischemic episode is an essential and leading provider of 
Alzheimer’s disease development. Understanding the underlying processes of 
linking Alzheimer’s disease-related proteins and their genes in brain ischemia 
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injury with the risk of developing Alzheimer’s disease will provide the most sig-
nificant goals for therapeutic development to date.

Keywords: Alzheimer’s disease; amyloid; brain ischemia; secretases; tau protein

INTRODUCTION

Newer studies show that brain ischemia with reperfusion can be associated with 
a fully developed Alzheimer’s disease (1, 2). It is generally suggested that cere-
bral ischemia triggers Alzheimer’s disease, and an ischemic change in the perme-
ability of the blood–brain barrier additionally causes amyloid transportation 
from the blood to the brain, and this is the last element that causes the full-
bloom sporadic Alzheimer’s disease (3, 4). Ischemic human stroke and experi-
mental ischemia-reperfusion brain injury are serious, life-threatening 
neuropathological episodes with severe complications such as post-ischemic 
cognitive impairment and physical disability (5–12). The evidence to date sug-
gests that there is a potential compatibility among neuropathogenesis of brain 
ischemia and Alzheimer’s disease. First, clinical observations have shown that 
Alzheimer’s disease is a contributing factor to the development of ischemic brain 
damage and vice versa (13). Second, ischemic brain injury and Alzheimer’s dis-
ease have the same risk factors like hypertension, hyperlipidemia, diabetes, and 
age. Third, experimental ischemia-reperfusion brain injury produces a stereo-
typical pattern of selective death/loss of neurons in the hippocampus with severe 
brain atrophy, which is similar to the neuropathology observed in Alzheimer’s 
disease, indicating active, slowly progressive neuropathological processes 
(14–18). Fourth, inflammatory changes appear to play a key role in the progres-
sion of brain ischemia and Alzheimer’s disease (19). Fifth, the data indicate that 
ischemic brain damage can cause the pathology of proteins typical for Alzheimer’s 
disease by inducing the generation and deposition of the β-amyloid peptide and 
other fragments of amyloid protein precursor (16, 20–22). Finally, studies show 
that tau protein dysfunction also plays a key role in regulating brain ischemia-
reperfusion episodes (23–33). Together, these results point to common pro-
teomic and genomic factors in ischemic brain injury and Alzheimer’s disease in 
the neuropathological processes.

In this chapter, we present the current knowledge about the dysregulation of 
genes involved in the amyloidogenic processing of the amyloid protein precursor, 
which is associated with the generation of the β-amyloid peptide in the brain after 
ischemia. In addition, we pay attention to whether the signal pathway of the amy-
loid protein precursor is involved in the induced ischemic death of neurons in the 
CA1 area of the hippocampus and medial temporal cortex. Also, we take into 
account the importance of ischemic gene expression associated with Alzheimer’s 
disease, such as autophagy, mitophagy, and apoptosis during clinical onset, pro-
gression and maturation of brain injury after ischemia in the etiology of Alzheimer’s 
disease. With regard to the latest exciting discoveries after brain ischemia injury, 
we combine data from the proteomic and genomic point of view. In recent years, 
several researchers have documented that brain ischemia-reperfusion episode is 
an important element in the development of Alzheimer’s disease and plays a 
key role in proteomic and genomic (e.g., amyloid protein precursor, amyloid 
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processing secretases, autophagy, mitophagy, caspase 3, and tau protein) changes 
of this disorder (1, 2, 31). Below we summarize the latest evidence that Alzheimer’s 
disease-related proteins and their genes play an essential role in brain ischemia-
reperfusion injury, and ischemic episode is a necessary and most important sup-
plier for the start and progress of the full development of sporadic Alzheimer’s 
disease.

AMYLOID STAINING AND BLOOD LEVEL AFTER BRAIN 
ISCHEMIA

Although a significant progress has been made in research on the pathogenicity of 
amyloid in Alzheimer’s disease, the underlying molecular amyloid machinery 
affecting neurodegeneration after ischemic brain injury is unclear. Herein we pres-
ent the existing facts regarding amyloidogenic processing of the amyloid protein 
precursor into amyloid during brain injury due to ischemia and reperfusion, 
which is associated with the production and accumulation of the N- and C-terminal 
of amyloid protein precursor and amyloid in the brain. The appearance of an 
elevated level of β-amyloid peptide in the blood and its staining in the brain after 
ischemic injury sheds new light on a better understanding of the role of amyloid 
in the development of neurological deficits following an ischemic episode.

In animals

Different fragments of the amyloid protein precursor staining were observed in 
the extra- and intracellular spaces after experimental ischemic brain injury 
(15, 20, 34–37). In animals that survived up to 6 months after brain ischemia 
with recirculation in the extracellular space of the hippocampus, brain cortex, 
white matter, and around the lateral ventricles, the N- and C-terminal deposits 
of the amyloid protein precursor and the β-amyloid peptide were observed 
(16, 20). The accumulation of different parts of the amyloid protein precursor in 
various cells, such as the neuronal, glial, microglia, oligodendrocyte, endothelial, 
pericyte, and ependymal cells, has also been found (15, 20, 38–42). Especially 
astrocytes around microvessels showed intense staining of many very long, thin 
processes that adhered to or embraced capillaries. More than 6 months of sur-
vival after cerebral ischemia, only the C-terminal staining of the amyloid protein 
precursor and the β-amyloid peptide was observed (16). Accumulation of 
β-amyloid peptide in response to transient focal ischemic brain injury does not 
appear to be a temporary phenomenon, as diffuse β-amyloid peptide deposits 
turn into plaque about 9 months after ischemic episode (43). After ischemia–
reperfusion brain injury, the β-amyloid peptide arises as a result of neuronal 
ischemic damage (34), and it is likely that this peptide with its own neurotoxic 
activity further affects ischemic neurons.

In humans

Examination of human ischemic brains has shown that ischemia is associated 
with the accumulation of β-amyloid peptide in brain tissue (44–46). Studies have 



Pluta R et al.56

shown both diffuse and senile β-amyloid peptide plaques in areas of the brain 
prone to ischemia, at arterial border zones and cortex after focal and global cere-
bral ischemia (44–46). The middle layers of the cerebral cortex, which are very 
susceptible to ischemic injury, were most commonly affected by amyloid (44–46). 
The number of amyloid plaques in brain tissue correlated positively with age 
(44–46). In brains after global cerebral ischemia with a survival of up to 1 month, 
strong staining of the β-amyloid peptide in neurons and perivascular areas was 
found (45). The staining of neurons depended on the area of the brain. Neurons 
from the cerebral cortex and hippocampus were the most intensely stained. The 
ependymal and epithelial cells were also stained on the β-amyloid peptide. Not 
all brains had senile amyloid plaques in the cerebral cortex. The cerebral white 
and gray matter vessels were surrounded by β-amyloid peptide deposits. Deposits 
in the perivascular space looked like cuffs. In some brains, the walls of the men-
ingeal and cortical vessels were stained for the β-amyloid peptide. Accumulation 
of amyloid in the perivascular blood vessel space of the blood–brain barrier sug-
gested that the β-amyloid peptide was derived from blood. Some evidence to 
support this hypothesis comes from clinical studies showing that the β-amyloid 
peptide in the blood has been elevated in patients after ischemic brain injury 
(22, 47). According to another study, β-amyloid peptides 1–40 and 1–42 staining 
were found in the human hippocampus after ischemia (21). This intense staining 
of various β-amyloid peptides may contribute to the progression of ischemic hip-
pocampus neurodegeneration.

In the brains of patients after global cerebral ischemia caused by cardiac arrest, 
the immunostaining of the receptor for advanced glycation end products was 
located both in the cells of the choroid plexus epithelium and in the ependymal 
cells bordering the brain ventricles (48). These cells form both the cerebrospinal 
fluid–brain barrier and the blood–cerebrospinal fluid barrier. The β-amyloid pep-
tide was noted by staining in the blood vessels of the choroid plexus and in the 
basal membrane of the choroid plexus epithelium (48). The data showed that the 
choroid plexus epithelium and the lining cells, equipped with a receptor for 
advanced glycation end products, play not only a significant role in the accumula-
tion of the β-amyloid peptide in the brain parenchyma but also are a place where 
amyloid can be removable.

After ischemic brain injury in humans due to cardiac arrest, approximately 
70-fold increase in beta-amyloid peptide 1–42 in the serum was found (22). The 
level of amyloid growth correlated negatively with the complete clinical outcome 
after ischemic brain injury, which in turn probably reflects the severity of ischemic 
damage (22). The data confirm that brain ischemia may play a key role in the 
amyloidogenic processing of the amyloid protein precursor.

TAU PROTEIN STAINING, PHOSPHORYLATION, AND 
BLOOD LEVEL AFTER BRAIN ISCHEMIA

Although there has been significant progress recently in research on the patho-
genicity of the tau protein in Alzheimer’s disease, the basic molecular processes 
associated with the tau protein that affect neurodegeneration after ischemic 
brain trauma have not been finally clarified. In this analysis, we show that both 
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ischemia–​reperfusion brain damage and the permeability of the blood–brain 
barrier after ischemia induce tau protein dysfunction. As a result, we suggest 
that modifications of the tau protein by phosphorylation are dangerous for 
microtubule activity, especially in neurons, and are involved in the development 
of irreversible neuropathology in the ischemic brain with Alzheimer’s disease 
dementia.

In animals

Early experimental studies documented tau protein staining in neuronal and glial 
cells in the hippocampus, thalamus, and cortex after permanent and focal brain 
ischemia (36, 49–53). The modified tau protein was also observed in microglial 
cells both in ischemic penumbra and in brain tissue, respectively, after focal and 
global cerebral ischemia (29, 54). The above data showed that some neuronal and 
glial cells had changes in the tau protein after ischemic brain damage (52), which 
may be the main pathological stage of ischemic processes in these cells (53). 
Another study revealed that tau protein alone can block the transport of amyloid 
protein precursor in neurons, which leads to the accumulation of the amyloid 
protein precursor in the body of neuronal cells (55).

Studies have also shown that the phosphorylation patterns of tau protein dif-
fered in different models of cerebral ischemia (32). The tau protein was dephos-
phorylated after total and focal cerebral ischemia (51, 52, 56). During total brain 
ischemia, the tau protein was dephosphorylated, and during recirculation, it was 
re-phosphorylated and accumulated in the brain tissue (56). Transient local isch-
emic brain injury in rats with 24-h recirculation induces site-specific hyperphos-
phorylation of tau protein (57). An experimental combination of reversible total 
brain ischemia with hyperhomocysteinemia resulted in an approximate 700-fold 
increase in the number of hyperphosphorylated positive tau protein neurons in 
the cerebral cortex compared to control conditions (31). Recent studies indicate 
that following brain ischemia, hyperphosphorylated tau protein in cortical neu-
rons is integrated with apoptosis (24, 27, 29, 30, 54, 57, 58). Khan et al. (30) 
showed an increase in the production of paired helical filaments of tau protein 
after forebrain ischemia in mice. Wen et al. (24, 57, 58) provided evidence that 
brain ischemia with recirculation is involved in neurofibrillary tangle-like devel-
opment after local ischemic cerebral injury. Finally, tau protein dysfunction, 
a  typical hallmark of Alzheimer’s disease, worsens experimental ischemic brain 
damage via tau protein-mediated iron export (59) and excitotoxicity depending 
on the tau protein (28, 60).

In humans

Early studies have shown that tau protein staining in neurons and glia is present 
in the hippocampus, thalamus, and cerebral cortex in the human brain after 
ischemia (61–63). The modified tau protein was also observed in microglial 
cells (63). It was noted that microglial cells’ tau protein passes independent of 
phosphorylation modification following cerebral ischemia with recirculation in 
humans (63). Finally, in one of the studies, many neurofibrillary tangle-bearing 
neurons were observed in the nucleus basalis of Meynert ipsilateral to a massive 
focal cerebral infarction (23).
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Tau protein was detected in human plasma after complete ischemic brain 
injury with two peaks after 2 and 4 days, which probably indicates the degree 
of neuronal damage after ischemia–reperfusion episode (25). The observed 
bimodal changes in the tau protein in the blood are consistent with the 2 types 
of neuronal death: first, by necrosis, and second, by delayed neuronal 
death (26). The presented research suggests that the increase in blood tau pro-
tein can be used as a biomarker to assess neurological damage to the brain after 
ischemia (25, 26).

mRNAs ASSOCIATED WITH THE AMYLOID PROTEIN 
PRECURSOR AFTER BRAIN ISCHEMIA

Due to the fact that there are some new data in the literature in human and animal 
studies regarding changes in amyloid protein precursor following ischemia–
reperfusion brain damage in this part of the review, we present the first steps in 
mRNA studies related to the metabolism of the amyloid protein precursor after 
various types of brain ischemia. This indicates that there is urgent need for data 
on the new causative pathological role of amyloid in cerebral ischemia, which 
molecule presumably has an irreversible effect on the post-ischemic outcome.

mRNA of the amyloid protein precursor

After experimental focal ischemic brain damage with reperfusion, the mRNA level 
of the amyloid protein precursor increased both in the core and in the penumbra, 
by 150 and 200%, respectively, in 1 week of recirculation (64, 65). In addition, 
after permanent local ischemic brain injury without recirculation, the mRNA 
domain of the Kunitz-type protease inhibitor domain-containing amyloid protein 
precursor in the cortex of the brain was induced for 3 weeks (66). Also after tran-
sient local cerebral ischemia, the amyloid protein precursors, 770 and 751 mRNAs, 
were induced within 1 week of recirculation (67). In addition, 1 h after local 
ischemic brain damage in ovariectomized rats, the increased mRNA level of the 
amyloid protein precursor was observed in ischemic brain structures (64). In con-
trast, estrogen treatment reduces the mRNA level of the amyloid protein precursor 
in the ischemic brain (64). These data suggest that estrogen therapy can be used to 
lower the mRNA of the amyloid protein precursor after the ischemic episode.

mRNA of enzymes metabolizing the amyloid protein precursor

The amyloid protein precursor is metabolized by α-secretase, and this process is a 
non-amyloidogenic process. After experimental ischemic brain injury, the level of 
α-secretase mRNA decreases (68, 69). The second process is called amyloidogenic 
process, and the amyloid protein precursor is metabolized by β-secretase and 
γ-secretase to produce the β-amyloid peptide (70). Some studies have demon-
strated that ischemic episode of the brain activates the production and activity of 
β-secretase after ischemia (71–74). Another study showed changes in mRNA lev-
els of three enzymes that metabolize the amyloid protein precursor: β-secretase, 
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cathepsin B, and glutaminyl cyclase, which increased in the cortex and hippocam-
pus after ischemia (75).

Three days after ischemic brain injury, the highest level of presenilin 1 mRNA 
was observed in the neuronal cells of CA3 area of the hippocampus (76). This 
observation suggests that an elevated level of presenilin 1 mRNA probably is asso-
ciated with the response of neuronal cells to ischemia. In another study, the 
increased level of presenilin 1 mRNA showed the maximum growth in the stria-
tum, cortex, and hippocampus after focal ischemic brain damage (77). In the 
above study, the increased level of presenilin 1 mRNA was greater on the side 
opposite to local ischemic brain injury. This observation may reflect the disap-
pearance of brain neurons on the ipsilateral side. The mRNA of presenilin 1, 
which increased after brain ischemia (76, 77), is involved in the production of the 
β-amyloid peptide by the γ-secretase complex (70, 78). The above data will help 
understand the progressive neuronal disappearance following the ischemia–
reperfusion episode of the brain and the slow, prolonged accumulation of the 
β-amyloid peptide in ischemic brain tissue (16).

EXPRESSION OF GENES INVOLVED IN THE PRODUCTION OF 
AMYLOID AFTER BRAIN ISCHEMIA

The ischemic–reperfusion episode of the brain is undoubtedly one of the most 
common multifactorial forms of neurodegeneration, including many pathological 
processes occurring during ischemia and recirculation and gradually spreading to 
various areas of the brain. It seems that the ischemic event in humans and animals 
is associated with the development of Alzheimer’s disease type of neurodegenera-
tive pathology, such as the accumulation of all parts of the amyloid protein pre-
cursor after its processing in the amyloidogenic process and dysregulation of 
Alzheimer’s disease-related genes involved in this process. Progress in understand-
ing new proteomic and genomic processes caused by ischemic brain damage in 
various brain structures that have not yet been fully elucidated will result in new 
strategies for the treatment of neurodegeneration of the Alzheimer’s disease type 
with full-blown dementia due to ischemia.

CA1 area of the hippocampus and medial temporal cortex

In the CA1 region of the hippocampus and temporal cortex, the expression of 
the amyloid protein precursor gene was below the control value within 2 days 
after ischemia (79, 80). In the above areas, 7 and 30 days after cerebral 
ischemia–reperfusion, the expression of the amyloid protein precursor gene was 
above the control value (79, 80). The expression of the β-secretase gene 
increased above the control value following brain ischemia injury in the CA1 
area of the hippocampus 2 to 7 days after recirculation (79). But, 30 days after 
brain ischemia, the expression of the β-secretase gene was below the control 
value (79). The expression of the β-secretase gene was above the control value 
in the temporal cortex after 2 days from ischemic episode (80). The expression 
of the β-secretase gene was reduced in the temporal cortex 7 and 30 days after 
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ischemia (80). In the CA1 region, the expression of the presenilin 1 and 2 gene 
was increased 2 and 7 days after ischemia (79). But, 30 days post-ischemic 
injury, the gene expression of presenilin 1 and 2 was below the control value 
(79). In the temporal cortex, presenilin 1 gene expression was lowered below 
the control value, but presenilin 2 was above the control value 2 days after isch-
emia (81). Seven days after ischemia, the gene expression of presenilin 1 was 
reduced, and presenilin 2 was elevated (81). Thirty days post-ischemia, the 
expression of presenilin 1 gene was above the control value, and presenilin 2 was 
below the control value (81).

EXPRESSION OF THE TAU PROTEIN GENE IN THE CA1 AREA 
AFTER BRAIN ISCHEMIA

In the neurons of CA1 area of the hippocampus, the tau protein encoding 
gene expression increased above the control value on the 2nd day after brain 
ischemia (33). On the 7th day of reperfusion after ischemic episode, the gene 
expression oscillated in the range of control values (33). On the 30th day of 
recirculation after brain ischemia, the expression of the tau protein gene was 
below the control value (33). The statistical significance of changes in the 
expression of the tau protein gene after brain ischemia–reperfusion injury in rats 
was between 2 and 7, and 2 and 30 days of recirculation (33).

EXPRESSION OF GENES INVOLVED IN THE DIRECT DEATH OF 
NEURONS AFTER BRAIN ISCHEMIA

One of the risk factors of Alzheimer’s disease is aging, and for that reason, a large 
number of scientists believe that the main cause of Alzheimer’s disease is brain 
ischemia closely related to age. It seems that brain injury caused by ischemia and 
reperfusion facilitates the development of irreversible neurodegeneration similar 
to Alzheimer’s disease as a result of neuronal death, synaptic dysfunction, inflam-
matory changes, white matter damage, and general brain atrophy, which changes 
are closely related to genes involved in neuronal death in Alzheimer’s disease. 
Despite the years of expansion, the amyloid Alzheimer’s disease theory has not 
solved the etiology of the disorder (82), and the current research suggests that 
brain ischemia leads to neurodegeneration of Alzheimer’s disease through numer-
ous terminal events, such as dysregulation of genes that cause cell death in various 
brain structures of varying intensity. Understanding the basic pathological path-
ways causing proteomic and genomic changes associated with Alzheimer’s disease 
and induced by cerebral ischemia will help in the development of neurodegenera-
tive dementia treatment after ischemia.

CA1 area of the hippocampus

Expression of the autophagy gene in the CA1 region of the hippocampus after 
brain ischemia with 2, 7, and 30 days of recirculation was within the control 
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limits (83). Two days after ischemic brain injury, the expression of the mitophagy 
gene in the CA1 region increased above the control value. Seven and 30 days after 
ischemia–reperfusion injury of the brain, the gene expression was within the con-
trol range. Overexpression of the caspase 3 gene in the CA1 region was observed 
after 2 and 7 days of recirculation. However, 30 days after ischemic brain injury, 
the gene expression was below the control value.

Medial temporal cortex

Two days after ischemic brain injury, autophagy gene expression increased above 
the control value in the medial temporal cortex (84). However, 7 and 30 days 
after ischemia–reperfusion brain injury, autophagy gene expression decreased. 
Two days after cerebral ischemia, mitophagy gene expression decreased below 
the control value (84). Nevertheless, 7 and 30 days after ischemic brain 
injury, the expression of the mitophagy gene increased above the control value. 
Two days after cerebral ischemia, the expression of caspase 3 gene decreased 
below the control value (84). However, 7 and 30 days after brain injury due to 
ischemia and reperfusion, caspase 3 gene expression increased above the control 
value.

THE RELATIONSHIP BETWEEN IRON DYSHOMEOSTASIS 
AND AMYLOIDOGENESIS

Both the amyloid protein precursor and iron play a key role in brain neurodegen-
eration due to Alzheimer’s disease and cerebral ischemia (59, 85–88). Alzheimer’s 
disease is primarily characterized by the deposition of amyloid plaques and the 
formation of neurofibrillary tangles which co-localize with iron (88). Under 
physiological conditions, the amyloid protein precursor is processed primarily on 
the non-amyloidogenic pathway by α-secretase, thereby producing the neuropro-
tective ectodomain of the soluble amyloid protein precursor α and the carboxy-
terminal fragment α. Alternatively, a small pool of amyloid protein precursor is 
processed by the amyloidogenic pathway using β-secretase, thereby producing 
a  soluble amyloid protein precursor β and carboxy-terminal fragment β. The 
carboxy-terminal fragment β is further cleaved by γ-secretase, resulting in 
β-amyloid peptides.

Iron is gradually deposited in selected areas of the brain during Alzheimer’s 
disease, as well as in the course of ischemic neurodegeneration (59, 85–88). In 
the brain, iron is present in neurons, oligodendrocytes, astroglia, and microglia 
cells. Excess iron is associated with oxidative stress and neuronal damage 
because iron accumulation in neurons can cause free radical production and 
mitochondrial dysfunction and ultimately lead to neuronal death. In addition, 
iron can induce hyperphosphorylation and aggregation of tau protein. Deficiency 
of tau protein leads to iron accumulation, which is associated with impaired 
transport of the amyloid protein precursor to the cell membrane (59, 87). 
Therefore, iron accumulation in brain cells must be strictly regulated to main-
tain basic cellular function and avoid cytotoxicity. The evidence obtained con-
firms the role of the amyloid protein precursor in maintaining iron homeostasis 
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in brain tissue (86). It has been demonstrated that the amyloid protein precur-
sor and soluble amyloid protein precursor α facilitate iron outflow by stabilizing 
the iron exporter ferroportin 1 on the cell membrane (86, 87). In contrast, abla-
tion of the amyloid protein precursor in neurons causes iron retention (87), 
while the knockout of the amyloid protein precursor in mice causes iron accu-
mulation in the brain (86). While the amyloid protein precursor affects iron 
export, the inverse is also true because iron modulates the metabolism of the 
amyloid protein precursor (86). Iron and interleukin 1 levels in cells regulate 
translation of the amyloid protein precursor by acting on an iron-responsive 
element found in the 5’ untranslated region of the amyloid protein precursor 
mRNA (87, 89). Iron has also been shown to affect the processing of the amy-
loid protein precursor and the production of β-amyloid peptides. In addition, 
the activation of α-secretase and β-secretase is proteolytically modulated by 
furin; furin protein levels are reduced under conditions of excess iron, which 
promotes β-secretase activity, thereby promoting amyloidogenesis (87). Iron 
and inflammation promote amyloid toxicity (87). Recent experimental studies 
showed that: (i) iron overload increased retention in the neurons of the soluble 
amyloid protein precursor α, (ii) iron overload reduced the extracellular levels 
of the soluble amyloid protein precursor α and β-amyloid peptide, and (iii) the 
direct molecular target of iron is β-secretase (86).

Given the key physiological and pathological role of the amyloid protein 
precursor and its cleavage products in the brain, it is likely that iron overload 
may affect neuronal activity, interfering with the normal processing of the amy-
loid protein precursor. Although it is unclear what mechanism causes abnormal 
intracellular retention of the soluble amyloid protein precursor α, there is evi-
dence that cell accumulation of the soluble amyloid protein precursor α may be 
due to intracellular cleavage of the amyloid protein precursor by α secretase or 
the internalization of the extracellular soluble amyloid protein precursor α by 
cell surface receptors (90, 91). Together, evidence of the beneficial role of the 
secreted soluble amyloid protein precursor α indicates that iron overload medi-
ates the decrease in secreted soluble amyloid protein precursor α, which can 
lead to harmful consequences. This possibility is particularly important in neu-
rological diseases, given that the secretion of the soluble amyloid protein pre-
cursor α affects many brain disorders, including Alzheimer’s disease and cerebral 
ischemia (85–88). In addition, it has recently been suggested that the loss of 
β-amyloid peptide function, rather than its accumulation, plays a pathogenic 
role in Alzheimer’s disease (92). In summary, iron overload affected nonamy-
loidogenic as well as amyloidogenic metabolism of the neuronal amyloid pro-
tein precursor. In addition, it was confirmed that the soluble amyloid protein 
precursor α is an endogenous inhibitor of β-secretase activity, potentially affect-
ing the production of β-amyloid peptide (86). As iron directly inhibits β-secretase 
activity, it is likely that increased iron primarily inhibits β-secretase and the 
amyloidogenic pathway and promotes the non-amyloidogenic pathway and 
retention of the soluble amyloid protein precursor α. β-secretase activity is then 
inhibited by the growth of the soluble amyloid protein precursor α (86). These 
abnormal iron-induced changes form a vicious circle that leads to dysregulation 
of the processing of amyloid protein precursors in neurons.
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CONCLUSION

Although there are reasonable doubts about the effects of cerebral ischemia on the 
development of Alzheimer’s disease, the mounting evidence on the ischemic the-
ory of Alzheimer’s disease should not be ignored. Ignoring the numerous scientifi-
cally substantiated clinical and experimental data on the connection between 
brain ischemia and Alzheimer’s disease will hamper not only the proper under-
standing of the disease mechanism but also the development of complementary 
and alternative strategies for the treatment and management of Alzheimer’s 
disease. The conclusions drawn from the study of ischemia-induced Alzheimer’s 
disease-associated proteins and their genes in the hippocampus and the medial 
temporal cortex, which contribute to the death of neurons, the production of the 
β-amyloid peptide, and neurofibrillary tangle-like formation, are important for 
the development of treatment goals in the therapy of Alzheimer’s disease. As 
deposits of amyloid and tau protein may not be the cause in the pathogenesis of 
Alzheimer’s disease, further research is needed in this field. Animal models of 
cerebral ischemia seem to be a useful experimental approach in determining the 
role of folding proteins and their genes in the neurodegenerative process of spo-
radic Alzheimer’s disease.
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Abstract: Alzheimer’s Disease (AD) affects at least 5.7 million Americans, and it is 
the sixth leading cause of death in the United States. At the onset, patients experi-
ence minor memory problems. Next, impairments in speech and motor function 
manifest as a limitation to well-being and independence. Slowing this pandemic 
rise is critical, since AD also bears a huge socioeconomical burden. Unfortunately, 
there is limited prevention and no effective cure has been found, as all clinical tri-
als for promising AD drugs have failed thus far. The pathological hallmarks of AD 
include amyloid-β plaques (Aβ), neurofibrillary tangles (NFT), and neuroinflam-
mation. Other factors include APOE4 and environmental stressors, such as metal 
dyshomeostasis, which contribute to AD pathogenesis. Herein, we review major 
contributing factors involved in AD pathophysiology. Deeper understanding of 
associated molecular mechanisms underlying AD pathogenesis is critical for 
developing novel AD theranostics.

Keywords: Amyloid-β; amyloid precursor protein; metals; β-site of APP cleaving 
enzyme 1 (BACE1 or β-secretase); neurotoxicity; NF-κB; presenilins
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the 
most represented form of dementia. It is the 3rd most common disease affecting 
the population, inflicting at least 5.7 million Americans as the trend continues to 
rise at a pandemic rate. It is the leading cause of age-dependent disability on a 
global scale (1). AD reduces the quality of a patient’s life, as irreversible cognitive 
decline becomes apparent due to pathological and morphological changes such as 
cortical atrophy, neuroinflammation, loss of synaptic connections, and cellular 
death (2) leaving the individual dependent on significant care, as their memories 
and motor function deteriorate.

Fortunately, technological advances have afforded researchers the ability to 
characterize neuronal loss in the hippocampus and cortices (3). Additional work 
has acknowledged perspectives on multifaceted complexities that have linked risk-
associated genes and environmental factors to these differences (4). For example, 
increased exposure to air pollution, chemicals, and ionizing radiation is harmful 
(5, 6) and potentially contributes to dementia-related diseases. Unfortunately, AD 
has no efficacious treatments, and thus, the disease is a critical health concern and 
has incurred a colossal socioeconomic burden. Recently, the Alzheimer’s Association 
reported the cost as $236 billion and is projected to rise to $1.1 trillion in 2050 (1). 
Therefore, identifying an accurate diagnosis and effective treatment is urgent.

The hallmarks of AD are evident, with neuroinflammation and aggregated 
Aβ  plaques followed by neurofibrillary tangles (NFT). In fact, recent studies 
observed plaque deposits within cognitively normal individuals up to 20 years 
before the onset of cognitive decline (7). Why Aβ fibrils aggregate into plaques has 
yet to be elucidated; however, there is evidence that its exacerbated presence is 
toxic to neuronal cells. For example, Aβ inhibits respiratory function, reduces 
ATP levels (8), and leads to mitochondrial dysfunction (9). In vitro studies of 
PC12 cells observed depolarization of the mitochondrial membrane potential 
and  decreased activity of mitochondrial electron transport chain complexes. 
As Aβ aggregates, it leads to signaling impairments causing the cells to undergo 
apoptosis. Anti-Aβ drugs tested in human clinical trial have failed to produce 
promising results. As  such, the credibility of the amyloid hypothesis has been 
questioned, and the true role of Aβ is currently being investigated.

AMYLOID PRECURSOR PROTEIN

Amyloid plaques, or the insoluble Aβ peptides, in the brain form through the 
cleavage of amyloid precursor protein (APP) by the b-site of APP cleaving 
enzyme 1 (BACE1 or β-secretase) and γ-secretase (10, 11). APP is located on 
chromosome 21, and it is a type I transmembrane protein involved in secretory 
and endocytic processes (12). It contains a metal-binding domain, heparin, col-
lagen, laminin, and a protease inhibitor domain (13). Although the function of 
APP is unclear, there is evidence to suggest that the ectodomain of APP may be 
involved in cell adhesion, trophic support, cell growth, and differentiation of 
neuronal stem cells (14). Conversely, the intracellular domain may modulate 
mitochondrial function (15).
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APP can be processed through two pathways: the amyloidogenic pathway and 
the non-amyloidogenic pathway. In the amyloidogenic pathway, β-secretase 
cleaves APP at amino acid 671 releasing APP β (sAPPβ). Next, the CTF99 
embedded in the plasma membrane is cleaved by γ-secretase, made up of 
4 subunits (16, 17), including the catalytic domains Presenilin1 gene (PS1) and 
Presenilin2 (PS2) (18). BACE1 is a rate-limiting step for Aβ production, and 
knockout studies result in complete inhibition of Aβ generation (19). In the non-
amyloidogenic pathway, APP is cleaved by α-secretase at amino acid 687, releas-
ing soluble APPα (sAPPα). The remaining protein, CTF83 is cleaved by γ-secretase 
releasing a soluble p3 fragment. α-secretase belongs to a family of single-pass 
transmembrane and secretes zinc-containing endopeptidases that are dominant in 
neurons (20). Aggregated Aβ function in normal physiology remains to be eluci-
dated (19); however, Aβ disrupts postsynaptic trafficking in glutamate receptors 
such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors (21) and N-Methyl-D-Aspartate (NMDA) receptors (22). Their actions may 
be important for learning and memory, and synaptic plasticity (23–25). Aβ has 
also been shown to modulate the inhibitory neurotransmitter gamma-aminobutyric 
acid (GABA) through interaction with KCC2 (26). A study by Senechal et al. 
investigated APP knockout mice and discovered dysregulated long-term potentia-
tion (LTP) and learning deficits (27, 28). Moreover, theta–gamma oscillation 
phase–amplitude coupling was also diminished in regions of the parietal cortex 
and hippocampus compared to the wild type (27). As such, the function of APP 
is complex, and data so far have linked the role of the protein in neurite growth 
(29–31), axon guidance (32), and neuronal cell adhesion (33).

β-SITE OF APP CLEAVING ENZYME 1

β-site of APP cleaving enzyme 1 (BACE1) is a major drug target for therapy (34) 
because its expression correlates not only with the onset of AD but also with glu-
cose intolerance. Importantly, this downstream effect is a risk factor for diabetes. 
Studies on mouse models which inhibit BACE1 expression resulted in improve-
ments in glucose homeostasis, lowered leptin levels, and decreased hypothalamic 
inflammation (35, 36). However, depletion of BACE1 leads to other harmful 
effects as evidence suggests it important in regulating adult hippocampal 
neurons  responsible for memory (37, 38) and other important neuronal 
processes.  For example, mice models that possess faulty BACE1 expression 
result  in deficits in synaptic transmission and plasticity in the hippocampal 
region (39). Furthermore, the cell adhesion molecule Neuregulin-1 (Nrg1), which 
must be cleaved by BACE1, mediates radial migration of glutamatergic and 
GABAergic neurons. It is also responsible for myelination and synaptic plasticity 
(40) and is required for the formation of new synapses while strengthening exist-
ing ones. Interestingly, BACE1 null mice result in a reduction of Nrg1 cleavage, 
resulting in characteristics of schizophrenia (41). Similarly, Sez6 is a protein that 
is concentrated in areas associated with morphological plasticity. This includes 
areas within the hippocampus and cerebellum in postnatal brains. Sez6 is also 
cleaved by BACE1 and mediates dendritic arborization of cortical neurons (42) 
which is critical for neuronal transfer of information. Thus, defective BACE1 leads 
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to poor motor coordination, weak balance, and cognitive deficits. Lastly, BACE1 
deficiency also affects Jagged-1 (Jag1) that regulates astrogenesis/neurogenesis 
through Notch signaling pathway (43, 44) and contributes to memory formation. 
Therefore, suppression of this enzyme is a double-edged sword and more research 
is needed to help in AD patients.

GENETIC RISK FACTORS OF ALZHEIMER 
DISEASE PATHOLOGY

There are two forms of AD: sporadic and familial. The majority of the cases 
(approximately 95%) are classified as sporadic late-onset AD (LOAD), while 
about 5% are classified as familial early-onset l AD (EOAD) with an autosomal 
dominant inheritance pattern. Sporadic AD is influenced by complex genetic 
variants combined with environmental factors (45). However, there is little evi-
dence to define how this occurs. Early onset is caused by rare mutations in three 
genes located on chromosome 21 (46, 47) and chromosome 14 (48). The sum-
mary of genetic mutations implicated in LOAD is shown in Table 1 and EOAD 
is given in Table 2 (45).

TABLE 1	 A summary of genetic mutations implicated in LOAD

Gene Protein Chromosome Risk change %
Proposed molecular 
phenotype

APOE Apolipoprotein E 19q13 ~400–1500% Clearance of Aβ
Lipid metabolism

ABCA7 ATP-binding cassette
subfamily A member 7

19p13.3 ~20% Lipid metabolism
Cellular signaling

BINI Bridgin integrator 1 2q14 ~15% Production of Aβ
Clearance of Aβ
Cellular signaling

CR1 Complement component
(3b/4b) receptor 1

1q32 ~15% Clearance of Aβ
Innate immunity

PICALM Phosphadylinositol-binding 
clathrin assembly 
molecule

11q14 ~15% Production of Aβ
Clearance of Aβ
Cellular signaling

CD2AP CD2-associated protein 6p12.3 ~10% Cellular Signaling

CD33 CD33 (Siglec 3) 19q13.3 ~10% Innate immunity
Degradation of 

CLU Clusterin 8p21.1 ~10% Clearance of Aβ
Innate immunity

EPHA1 EPH receptor A1 7q34 ~10% Cellular signaling
Innate immunity

ATXN1 Ataxin 1 6p22.3 NA Production of Aβ
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Mutations in APP, Presenilin1 (PS1), and Presenilin2 (PS2) genes have been inte-
gral in the development of AD as they cause a disruption in the ratio of Aβ42 pro-
duction (49). In normal physiology, presenilins, needed for the production of Aβ 
peptides via both β- and γ-secretases-mediated cleavage (50, 51), are responsible for 
autosomal transmission and the promotion of amyloid plaque. PS1 regulates cal-
cium homeostasis and mediates neurotransmission (52, 53). The largest amount of 
mutations occurs for PS1 at an estimate of 200 mutants, whereas APP and PS2 have 
10–25 mutants on the AD and frontotemporal dementia mutation database.

Meta-analysis revealed at least 15 potential loci where variations may predispose 
one to developing AD (46). However, a particular gene appears to be the most bur-
densome, the ApoE gene. It has four different isoforms: ApoEe1, ApoEe2, ApoEe3, 
and ApoEe4. Apolipoprotein E (ApoE) regulates synaptic function, promotes plas-
ticity, increases the number of dendritic spines, and regulates protein trafficking 
across neurons (54). It is responsible for the regulation of triglyceride and choles-
terol metabolism. Binding of lipidated ApoE facilitates Aβ uptake in an isoform-
dependent manner, and inhibited clearance contributes to Aβ accumulation. One 
variant of ApoE gene has been identified as the largest risk factor for late-onset AD 
through computational analysis (55–57). It is important to note that possessing 
ApoEe4 over the e3 (common) or e2 (other variant) alleles is not enough to cause 
AD but it acts as a determinant which increases overtime as the patients ages (45). 
Analyses reveal that a heterozygous pair increases AD by threefold, whereas a homo-
zygous pair increases the risk by 15-fold (58). It is thought to be the least effective 
in binding to, and facilitating the uptake of, Aβ. Additionally, its strong ties to neu-
rovascular dysfunction further confirm its contribution in AD manifestation (56). 
The allele can be investigated for potential biomarkers and to unearth new targets 
for AD drug discovery due to significant clinical and neurobiological correlations. 
Among them, ApoE e4 allele and low CSF level of Aβ42 have been reported (59). 
Patients with the e4 allele tend to present with early-onset memory impairment, 
decrease in global cognitive function, and weak episodic memory (60). Interestingly, 
the ApoE e2 variant seems to reduce the risk of dementia compared to the common 
e3 allele, despite its association with an increased amyloid burden (56). Overall, 
monitoring ApoE gene can play an important role in understanding the AD patho-
physiology and be used as an assessment tool for at-risk patients.

Other genes that have a strong association with late-onset AD include SORL1, 
which mediates protein trafficking (61), and ACE, which regulates blood pressure 
(62). Furthermore, testing a single nucleotide for any association with disease 

TABLE 2	 A summary of genetic mutations implicated 
in EAOD

Gene Protein Chromosome Molecular phenotype

APP Amyloid b protein precursor 21q21 Increased Ab42/Ab40 ratio
Increased Ab production
Increased Ab aggregation

PSEN1 Presenilin 1 14q24 Increased Ab42/Ab40 ratio

PSEN2 Presenilin 2 1q31 Increased Ab42/Ab40 ratio
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pathology can be accomplished through GWAS technology. One avenue leads to 
the discovery of GRB2, which mediates tau phosphorylation and has a high affin-
ity for APP and the presinilins (63, 64). Other findings identified ATXN1, which 
affects Aβ levels by modulating β-secretase levels and cleavage of APP (65), and 
BIN1 (66), which is highly expressed in the central nervous system and plays a 
role in receptor-mediated endocytosis (67). Furthermore, ADAM10 mutations 
have impaired enzyme activity and lead to the onset of AD in the elderly (67). 
Lastly, CD33 has been an interesting discovery because it helps strengthen that Aβ 
acts as an AMP (11, 68–70).

THE NEUROIMMUNE SYSTEM

There are many challenges in understanding the complexity of inflammation in 
relation to AD in order to develop appropriate therapeutics. Clinical analysis of 
AD patients exhibited chronic neuroinflammation, insufficient energy metabo-
lism, and redox stress in postmortem brains (71). These observations have been 
replicated in both animal and cell culture models. Increased inflammatory cas-
cade by microglia has been observed in areas of Aβ deposits and activation of 
NF-κB (72, 73).

Due to their high affinity for Aβ deposits, understanding the role of microglia 
may help identify therapeutic targets. In brief, microglia are recognized as the 
brain macrophage and play an integral role in housekeeping. Upon signal detec-
tion, they act to remove debris, toxins, pathogens, and apoptotic neurons (74, 75) 
by releasing a cascade of inflammatory factors. As such, they release reactive oxy-
gen species and Th1 cytokines including interleukin 1-beta (IL-1β), IL-6, tumor 
necrosis factor alpha (TNF-α), and interferon-gamma (76) to ramp up the immune 
system. Furthermore, they are integral in upregulating MCHII complexes, leading 
to an inflammatory cascade in innate immune response in many disorders such as 
Parkinson’s disease, HIV, and multiple sclerosis (77–80). In AD brain, microglia 
are constantly aggregated around Aβ plaques (81) to form a barrier between 
healthy tissue and areas of injured or infected tissue. Since there is no evidence to 
suggest microglia can degrade Aβ, they undergo a state of compromised phagocy-
tosis, in which the semi-degraded Aβ are ultimately expelled from the microglial 
cell (82) causing a dysregulation of homeostasis. Extended exposure to Aβ leads 
to disrupted calcium homeostasis within astrocytic cells, which also leads to 
degeneration of neurons (83).

NF-κB regulates the expression of more than 400 genes (72) and can be 
induced by ROS, interleukinIL-1β, TNF-α, bacterial lipopolysaccharides (LPS), 
isoproterenol, and ionizing radiation (73, 84). Its activation is dependent on 
growth factors and the neurotransmitter, glutamate (85). Thus, NF-κB plays an 
important role in DNA transcription and cellular survival. In general, high levels 
of NF-κB expression are associated with normal aging and upregulate microglial 
activity (85–87). This overexpression increases the susceptibility for AD through 
upregulating BACE1 and APP genes (88).

Furthermore, rodent models have demonstrated the outcomes of unregulated 
NF-κB, resulting in a destructive feedback loop (89, 90). For example, mice that 
overexpressed NF-κB had clinical signs of increased apoptosis in the hippocampal 
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region through triggering TNF-α and iNOS when exposed to neurotoxins (91, 92). 
Moreover, drosophila studies that overexpressed NF-κB in the hypothalamus-like 
pars intercerebralis resulted in deficits in learning, inadequate memory consolida-
tion, and increase in mortality rates compared to the controls (93). Upon clinical 
analysis, imaging studies resulted in severe neurodegeneration (94).

Studies regarding the relationship between AD and lifestyle choices concluded 
that an increased risk of AD was associated with diabetes, high blood pressure, 
and smoking (95–97). Type 2 diabetes mellitus (T2DM) increases a patient’s risk 
of developing AD by over 50% (45), and it affects the increase of Aβ pathology by 
its ability to upregulate NF-κB and the expression of BACE1 (98, 99). As research-
ers continue their efforts in drug therapeutic development, alternative approaches 
have been sought, including cognitive exercises that have improved the produc-
tion of dopamine and vitamin C (100, 101). Rats that were subjected to pro-
inflammatory diets, and adhered to aerobic exercise, resulted in attenuated NF-κB 
expression in the liver and muscles. Similarly, regular exercise resulted in an 
increase of endurance, cognition, and performance (102–104). Unfortunately, 
standard models are not adequate in analyzing the effect of nutrition on the onset 
of AD, and no study to date can definitively state the relationship (101).

BLOOD–BRAIN BARRIER

The blood–brain barrier (BBB) plays a vital role in the longevity of an individual’s 
health, and it is responsible for the clearance of Aβ; thus, any insult that compro-
mises the integrity of BBB can cause neuronal cells damage (105–107). New stud-
ies have observed the progression of AD along with compromised BBB (108). This 
negative effect is alarming as any damage to the neurovascular unit (NVU) results 
in toxic substance leaking into the CNS circulating in the blood. In fact, the mech-
anism of transporting Aβ out of brain is impaired in AD patients, which contrib-
utes substantially to its accumulation (107). One example is the dysfunction of 
P-glycoprotein (Pgp) (109) resulting in increased deposits and age-associated cog-
nitive impairments. Furthermore, mediating glucose transport for neuronal func-
tionality is integral for astrocytes and neurons, and expression of GLUTs is 
downregulated in patients. This decreases brain energy supply as confirmed by 
brain imaging studies (110). Other risks associated with an impaired BBB lead to 
insufficient nutrient supply and toxin removal, and altered protein expression, all 
impacting and upregulating the role of neurodegeneration (111, 112). Although 
it is not elucidated how the mechanism works, therapeutic interventions in alle-
viating the disease progression are necessary. Recent findings conclude that AD 
risk factors can be modulated with lifestyle changes in regard to increase in edu-
cational levels, exercise, and healthy dietary choices (113–115).

METALS

Strong evidence suggests that biometals in the brains of AD patients are 
insufficiently maintained, thereby promoting cognitive loss. Due to their structure 
and function, the proteins that play a role in AD pathophysiology have capabilities 
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of interacting with metals, especially zinc and copper. Other transitional metals 
include lead, aluminum, and iron, which may negatively impact human health if 
the homeostasis is not maintained (116, 117). Neuronal damage can occur due to 
dysregulation of integral metals needed to maintain brain function. The accumu-
lation of Cu ions has been identified around plaques in postmortem AD brains 
(118), suggesting the impact of Cu on AD progression. As such, excessive dietary 
Cu on high-cholesterol diet in rabbits and AD mouse model induces hallmark 
pathologies. Research has found that chronic exposure to Cu contributes to an 
increased risk of AD by facilitating Aβ accumulation (118).

Additionally, zinc regulates many proteins such as SNAP25, PSD95, AMPA 
receptors, and NMDA receptors. ZnT3, a zinc transporter, allows for the release of 
zinc from neurons into synapses and is involved in cognition and memory. The 
disruption in mechanism results in cognitive decline (120). Likewise, AD mouse 
brains have irregular protein levels of CamKII, spinophilin, NMDA receptors, and 
BDNF (119, 121). Interestingly, AD transgenic mice studies indicated Aβ amyloid 
aggregated in areas of high Fe, Cu, and Zn levels, indicating accumulation of met-
als within the brain promotes the aggregation of the Aβ peptides (122, 123). 
Recent studies have found that APP can regulate iron levels in the brain by remov-
ing it from cells, similar to ceruloplasmin. In AD, this activity is decreased by 70% 
in cortical tissue (122, 123). Tau knockout mice lacked the ability to clear out iron 
and developed age-dependent neurodegeneration. Rescue studies provided clues 
that quinoline activity may be a possible therapeutic for AD (124).

PBT2, currently in clinical trials, is a disease modifying drug that does not 
act  like a chelator but as an ionophore (119, 121). Administration of PBT2 for 
12  weeks improved mild forms of AD cases through executive function and 
composite cognitive z-scores and reduced the levels of Aβ in cerebrospinal fluid 
(125, 126). Other studies also showed increased neurite outgrowth in vitro and 
decreased tau phosphorylation (121, 127).

Iron is critical for maintaining neuronal tissue and is involved in the syn-
thesis of myelin and neurotransmitters. Conversely, excessive accumulation 
can enhance Aβ production and tau dysfunction leading to neuronal cell 
death. Parallel to how iron increases expression of ferritin and ferroportin, 
iron also increases the processing of APP (128, 129). This causes formation of 
senile plaques and leads to oxidative stress, resulting in oligomerization and 
more Aβ generation (130). Iron dysregulation increases NFT (131) creating an 
iron-rich population within oxidatively stressed environments (132). 
Quantitative mapping that displays an increase in iron loading shows a strong 
predictor for cognitive decline. The disruption of iron levels affects neuronal 
populations within the hippocampus through Fenton and Haber–Weiss reac-
tions (133), producing oxidative lipids that further increase the neurotoxicity 
and AD pathogenesis (134). As stated, NFT is the integral for trafficking APP 
to neuronal membrane to facilitate iron efflux from neurons (122, 135), and 
thus, the loss of tau expression increases the risk for cognitive loss and cortical 
atrophy in mice (124).

The effects of aluminum on neurodegeneration have attracted attention since it 
can cause mitochondrial dysfunction and ATP depletion at the cellular level, and 
decline in memory and cognitive performance on a psychiatric level (136, 137). It 
can also cause apoptosis in neurons (138). Biopsy studies have confirmed elevated 
levels of aluminum in LOAD brains, possible source being drinking water (139).
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CONCLUSION

AD significantly reduces patients’ quality of life. Therefore, there is an urgent need 
to develop early detection diagnostics and preventive measures to slow the prog-
ress of the onset until the discovery of a cure. Serial failures of clinical trials for AD 
experimental drugs have led us to reevaluate the pathology of this devastating 
disease and to embark on further understanding of the underlying AD patho-
physiology and associated contributing factors. Agents against targets such as 
BACE1 and APP amyloidosis have proved to be ineffective against AD progression 
so far. Therefore, further studies in AD pathogenic mechanisms and future utility 
of artificial intelligence (AI)-based drug discovery tools may aid in developing 
novel theranostic agents for AD (140, 141).
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Abstract: The extracellular aggregation of insoluble protein deposits of amyloid-β 
(Aβ) into plaques and the hyperphosphorylation of the intracellular protein tau 
leading to neurofibrillary tangles are the main pathological hallmarks of 
Alzheimer’s disease (AD). Both Aβ and tau are metal-binding proteins. Essential 
trace metals such as zinc, copper, and iron play important roles in healthy brain 
function but altered homeostasis and distribution have been linked to neurode-
generative diseases and aging. In addition, the presence of non-essential trace 
metals such as aluminum has been associated with AD. Trace metals and abnor-
mal metal metabolism can influence protein aggregation, synaptic signaling path-
ways, mitochondrial function, oxidative stress levels, and inflammation, ultimately 
resulting in synapse dysfunction and neuronal loss in the AD brain. Herein we 
provide an overview of metals and metal-binding proteins and their pathophysi-
ological role in AD.
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INTRODUCTION

Essential trace metals and those with biological functions (biometals) play a vital 
role in many physiological processes in the human body. As free ion, some of 
them can participate in cellular signaling pathways, while bound to proteins 
they may have a structural or regulatory role in protein folding and function. 
The fact that about 10% of the genes in the human genome encode for proteins 
with zinc (Zn)-binding motif points to the evident dependency of biological 
processes on this trace metal. This number of Zn-binding proteins is not even 
accounting for Zn coordinated between two proteins in protein–protein interac-
tions (1). In addition to Zn, several proteins and processes depend on other 
essential trace metals, the most important of which are iron (Fe), manganese 
(Mn), copper (Cu), and selenium (Se) (a metalloid). The average human body 
contains about 4.2 g Fe, 2.3 g Zn, 0.072 g Cu, 0.015 g Se, and 0.012 g Mn (2). 
However, the distribution of trace metals can vary depending on the organ 
considered. In the human brain, Fe is the most prevalent trace metal, which can 
be found both as heme (bound to hemoglobin in blood) and non-heme Fe. Heme-
bound Fe may be a major contributor to the overall concentration. Therefore, 
Zn, the second most prevalent metal, may play an even more prominent role in 
the brain, which is underlined by its function as neurotransmitter/neuromodula-
tor (3). Additionally, within the brain, some trace metals are enriched in particu-
lar brain regions (Figure 1). For example, the hippocampus is a brain region that 
is high in Zn, while the nucleus caudatus has higher levels of Fe than several 
other brain regions (4, 5). This unequal concentration of trace elements in dif-
ferent tissues demands a tightly regulated distribution. Given that charged mol-
ecules such as metal ions cannot freely pass the cellular membrane, a plethora of 
transport proteins evolved, with very specific regional and also developmentally 
and environmentally dependent expression. Especially, the regulation of metal 
concentrations in the brain faces a tight control at the level of the blood–brain 
barrier (BBB), a barrier composed of endothelial cells of the brain capillaries, 
pericytes, astrocytes, and the basement membrane (6). Together, they form a 
functional unit, mediating the exchange of trace metals between neurons, capil-
laries, and glia, while protecting against neurotoxicity of non-essential trace 
metals or excessive levels of essential trace elements. A specific set of transport-
ers allows the crossing of trace metals into the brain. For example, only for Zn, 
24 different transport proteins are known in humans (7), which allow the estab-
lishment of zinc homeostasis in tissues.

The maintenance of a balance between biometals is complicated by the influ-
ence different metals have on each other. Their concentration is regulated by 
complex interactions between trace metal ions and their ligands. For example, 
due to their physicochemical nature, Zn and Cu are known to compete for the 
binding sites of some transporters and metal-binding proteins, resulting in an 
antagonistic relationship, where low levels of Zn increase Cu levels and vice 
versa (8). Due to these interactions, the loss of, or increase in, one trace metal can 
lead to the establishment of a completely new biometal profile affecting many 
other trace metals of a system (9).

Metal homeostasis can be challenged in many ways. In fact, our body is not 
only exposed to essential trace metals. Through the environment (e.g., air, food, 
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medical devices, and cosmetic products), other nonessential trace elements 
such as lead (Pb), mercury (Hg), and aluminum (Al) may enter our system. 
Indeed, these metals are present in all humans at low levels (e.g., 0.060 g Al, 
0.012 g Pb, and 0.006 g Hg). Some of these metals are currently reported to 
have no or little effect on the body [e.g., titanium (Ti)], while others can pro-
duce adverse effects even at concentrations slightly above the normal back-
ground levels [e.g., Pb, Hg, and cadmium (Cd)]. These toxic effects are usually 
due to a chemical nature similar to that of an essential metal that allows binding 
to metal-binding sites of metal transporters and other proteins, leading to com-
petition with essential trace metals. However, toxic metals are often not able to 
produce the biological effect of essential metals, and therefore, they act 
antagonistically. Recent evidences put synaptic signaling, synapse formation and 

Figure 1 Trace metal concentration in different brain regions.  Within the brain, trace metals 
are unequally concentrated in different brain regions. The figure shows the concentrations 
in µg/g brain tissue in the human cortex, hippocampus, thalamus, and caudate nucleus for 
Fe, Zn, Cu, Mn, and Se. This metal homeostasis can be challenged by environmental factors, 
the presence of pathologies such as aggregates of metal-binding proteins, and aging.
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plasticity, oxidative stress, inflammation, and protein aggregation at the fore-
front of disease-relevant processes caused by abnormal trace metal homeostasis 
(Figure 1).

The enrichment of biometals in a tissue may occur through several mecha-
nisms, such as mutations in metal import and export proteins, proteins buffering 
metals through transient binding (e.g. metallothioneins) (10), and also the abnor-
mal accumulation of metal-binding proteins that occurs in several neurodegenera-
tive diseases such as Parkinson’s disease (alpha-synuclein protein) (11) and 
Alzheimer’s disease (AD).

In AD, a contribution of abnormal trace metal homeostasis and signaling has 
been extensively reported (9). However, changes in trace metals’ levels in AD are 
complex and can rarely be directly associated with systemic alterations that can 
be measured in easily accessible biosamples such as serum. The most likely rea-
son for this is the ability of senile plaques to sequester specific metal ions that in 
turn become mislocalized instead of decreasing or increasing systemically. Cu, 
Zn, and, to a lesser extent, Fe are known to associate with senile plaques made 
of beta-amyloid (Aβ) protein (see below). It is hypothesized that this association 
causes several biological effects. For example, sequestration of Cu and Zn into 
plaques leads to an abnormal distribution of these metals, initially resulting in a 
deficiency of Cu and Zn in the vicinity of plaques (12, 13) and not throughout 
the whole brain.

Therefore, findings concerning alterations in metal ions in AD are highly 
dependent on the tissue and resolution used for analysis. Regarding essential 
metals, although results vary in some studies, Mn, Cu, Fe, and Zn seem to show 
an inverse correlation with senile plaque load and thus a decrease in the cerebro-
spinal fluid (CSF) (14) of AD patients.

The accumulation of trace elements, including Al, Pb, Hg, Cu, and Fe, has 
been implicated in AD through an increase in oxidative stress (15). In particular, 
a disruption in the homeostasis of Cu and Fe, two redox-active metals, may 
increase lipid peroxidation, and the oxidative damage to neurofibrillary tangles 
(NFTs), senile plaques, and nucleic acids (16). Oxidative stress is induced by an 
imbalance in the redox state, involving the generation of excessive reactive oxygen 
species (ROS) or the dysfunction of the antioxidant system (17). Cu is a potent 
mediator of the highly reactive hydroxyl radical (OH•) and is highly concentrated 
in senile plaques. Consequently, Cu contributes to the increase of oxidative stress 
in AD. In addition, increased levels of Fe, transferrin, and ferritin may contribute 
to NFT formation, possibly due to the binding of Fe to the tau protein. In the 
brain, oxidative stress may cause serious damage via several mechanisms, includ-
ing the release of excitatory amino acids and neurotoxicity (18). Although Zn is 
redox-inert, Zn signaling plays a role in the regulation of proteins (e.g., enzymes 
kinases and phosphatases) controlling redox-signaling pathways. Therefore, while 
not acting as an electron donor, Zn plays a role in redox biology, where zinc, in 
general, is considered as an antioxidant. However, these indirect antioxidant-like 
effects are present only in certain conditions and both a lack and excess of Zn can 
result in pro-oxidant effects (19).

In addition to changes in trace metal homeostasis resulting from AD, it is 
likely that alterations may also facilitate and trigger the development of AD 
pathology. For example, it has been shown that the levels of Zn decrease during 
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aging as a result of more restricted food choice (20, 21), which may facilitate 
inflammatory processes (22), increase oxidative stress (19), and decrease mem-
ory as seen in several animal models for Zn deficiency (23). More importantly, 
key proteins involved in the etiology of AD, and especially early-onset AD 
(familial AD), such as amyloid precursor protein (APP), presenilin 1 (PS1), and 
presenilin 2 (PS2), have been shown to bind to or regulate metals. For example, 
PS are important for cellular Cu and Zn turnover (24). Further, metals have 
been shown to interact with the two major disease-related proteins of AD, 
namely Aβ and tau.

METAL INTERACTIONS WITH APP

The APP is expressed in various tissues of the human body, in particular in the 
brain. Its general function within the brain has been linked to neurite outgrowth 
and neuronal cell migration (25). However, it becomes increasingly evident that 
APP can be considered to act as a metalloprotein, which is involved in the regula-
tion of Cu, Fe, and ferroxidase homeostasis (26). Recent studies indicate further-
more that metals are involved in the proteolytic processing of APP.

APP displays two putative metal-binding sides, which are located within the 
E1 (124–189, APP770 numbering) and E2 (376–554) domains (27, 28). Cu 
binds to APP between residues 142 and 166 (29). It has been demonstrated that 
the two Cu-binding residues 149 and 151 are involved in the metabolism, folding 
and stability, and homodimerization of APP (30). Besides, Cu ions have been 
shown to promote cell surface localization of APP (31). Furthermore, it has been 
shown that cellular Cu levels can influence the expression of APP in vitro at both 
gene and protein levels (32).

APP also displays an evolutionary conserved Zn-binding site between amino 
acid positions 170 and 188 (33, 34). The binding of Zn to APP has been reported 
to play a similar role as Cu-binding in the homodimerization of APP (35) 
(Figure 2A).

Fe is involved in the direct regulation of APP translation. The APP mRNA dis-
plays an Fe response element (IRE) in its 5’-untranslated region (5’-UTR) sequence 
(36), and APP levels increase after a rise in cytosolic free Fe levels (37). Additionally, 
APP has been suggested to be involved in Fe export in the brain through the sta-
bilization of ferroportin (Fpn). Deletion of APP in vitro in primary neurons impairs 
Fe export, which can be fully restored by the addition of APP (38).

Aβ is derived from APP by the sequential proteolysis by β- and γ-secretases. 
Metals have also been shown to indirectly influence Aβ generation by modifying 
the proteolytic processing of APP (28). Interestingly, all three secretases 
(α, β, and γ) involved in the enzymatic cleavage of APP interact with metal ions. 
The enzymatic activity of the α-secretase TACE is regulated by a “cysteine 
switch” motif, which is based on an intramolecular bond between cysteine (Cys) 
and a Zn atom in its catalytic site (39). Furthermore, the major β-secretase 
involved in APP processing displays a Cu-binding site in its C-terminal domain 
(40). Further, Zn has been shown to enhance the synthesis of PS1, the active 
subunit of the γ-secretase (41).
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METAL INTERACTIONS WITH AMYLOID-BETA (Aβ)

The Aβ domain of APP is another region that can directly bind Zn and Cu ions; 
however until now, there is no evidence that this region interacts with metal ions 
prior to the enzymatic cleavage mediated by α-, β-, and γ- secretases (42) 
(Figure 2B).

Aggregation of Aβ into insoluble fibrils is a key pathological event in AD and 
is mediated by the interactions of Aβ with metals, in particular, Zn, Cu, and Fe. 
Early studies have shown that in particular, the histidine (His) residues in Aβ 
are responsible for the metal-mediated aggregation of Aβ (43). Interestingly, in 
mice and rats, the same His residues are not present, which might explain why 
these animals are more resistant to the amyloid pathology compared to other 
mammals (44).

Figure 2  APP cleavage and APP and tau metal-binding sites. A) Cleavage of APP by α- and 
γ-secretases creates the sAPPα and Aβ17-40/42 fragments (upper panel). Cleavage by β- and 
γ-secretases creates the sAPPβ and Aβ1-40/42 fragments (lower panel). The N-terminal part of 
APP contains a CuBD, copper-binding domain; ZnBD, zinc-binding domain; HepBD, 
heparin-binding domain; GFD, growth factor-like domain. B) Two of several possibilities of 
metal interaction with Aβ. Below: Sequence of Aβ, 3 His in the Aβ peptide domain of human 
wild type (wt) Aβ are important for metal coordination. C) Representation of the three main 
domains studied in tau protein. The picture shows the binding sites of Cu and Fe, 
respectively, through R1, R2, and R3 regions in the MTB ensuring the binding to the 
microtubules.
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The strong chelation properties of Aβ of Zn, Cu, and Fe explain the enrich-
ment of these ions in amyloid plaques and suggest that one potential pathological 
influence of Aβ might be to sequester metal ions (45) and, through increasing 
concentrations of redox-active Cu and Fe ions in amyloid plaques, to promote 
oxidative stress.

Zinc and Amyloid-Beta

Zn is a factor contributing to the neurotoxicity of Aβ through the stabiliza-
tion of amyloid fibrils (46). Various coordination sites have been proposed 
for the binding of zinc to Aβ with particular importance of His13 and His6. 
In vitro studies demonstrated that Zn induces the rapid and extensive aggre-
gation of synthetic Aβ (34, 47), which might act as a seeding factor in the 
formation of amyloid plaques. In support of these studies, high levels of Zn 
have been found in the senile plaques of postmortem tissue of AD patients 
(45) and plaques of genetic AD mouse models. Interestingly, Aβ deposits fail 
to develop into mature plaques in the cerebellum where vesicular Zn is 
absent. Scavenging of Zn ions through Aβ may itself be a pathomechanism of 
AD. A locally decreasing Zn level in the vicinity of plaques contributes to 
synapse loss (13).

Copper and Amyloid-Beta

Homeostasis is fundamental for all metal ions, but for Cu it is critical because this 
metal is redox-active and can catalyze and activate O2, generating reactive oxygen 
species (ROS) involved in oxidative damage. The soluble monomeric Aβ displays 
three high-affinity His Cu-binding sites (His6, His13, and His14), which along 
with the N-terminal amino group and aspartate form a tetragonal complex with 
Cu ions (48, 49). Cu(II) has been demonstrated to play a crucial role in the forma-
tion of β-sheet structures, which are thought to be a preliminary step of the toxic 
aggregates of the fibrillar form of Aβ. Thus, Cu binding to Aβ has been proposed 
to play a major role in the neurotoxicity of Aβ. In line with this, a series of studies 
have reported that Cu chelators rapidly induce the inhibition of Aβ accumulation 
in transgenic AD mouse models (50, 51).

Other essential trace metals and Amyloid-Beta

Because of Fe3+ hydroxide species precipitation, the binding of Fe3+ to Aβ seems 
implausible. Instead, Asp1, Glu3, and the three His residues (His6, His13, and 
His14) are involved in binding of Fe2+. However, iron mineral deposits in the 
cortical tissue may occur in vivo and contain magnetite (Fe3O4). They have been 
found in tissue extracted from human AD brain and brain from APP/PS1 trans-
genic mice (52). The aggregation state of Aβ appears to affect iron redox cycle and 
consequently may lead to the release of free radicals via Fenton chemistry. 
Interestingly, the degree of altered iron accumulations in AD is correlated with the 
amount of Aβ plaque pathology. However, these changes appear to occur after the 
development of the AD pathological hallmarks (53). Increased aggregation of 
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Aβ has been observed through the down-regulation of the enzymes that regulate 
the degradation of extracellular Aβ deposits induced by high Mn levels (54).

Toxic trace metals and Amyloid-Beta

Several studies have suggested that Al interacts with Aβ. Al has been detected in 
both the Aβ plaques and NFTs. Treatment of neuronal cultures with Al resulted in 
a marked accumulation of Aβ aggregates in vitro. However, the relevance of this 
for AD pathology in vivo is currently not well understood (48). Similarly, Hg 
exposure has been shown to promote the accumulation of Aβ deposits in vitro. 
Cd, like Mn, has been reported to reduce the expression of Aβ-degrading enzymes, 
resulting in an increased Aβ accumulation(48).

METAL INTERACTIONS WITH TAU

In AD, Tau aggregates due to hyperphosphorylation, abnormal splicing, or muta-
tion in the tau encoding gene (55, 56). AD is the most common tauopathy among 
degenerative brain diseases. The tauprotein, with a molecular weight between 
50 and 68 kDa, is encoded by a single gene (MAPT) located on chromosome 
17q21 in humans. Tau is mainly localized in neuronal axons, but also dendrites 
(57), in the central nervous system (CNS). Tau is a microtubule-associated pro-
tein (MAP) implicated in the stabilization and integrity of microtubules (MT) in 
neurons, and its activity is regulated through a phosphorylation-dependent 
mechanism (58). In physiological conditions, tau is phosphorylated (facilitating 
the disassociation of the protein from the MT) and dephosphorylated (promoting 
the binding with MT) through the activity of tau kinases and phosphatases (59). 
In the human brain, under developmental control, six different isoforms of tau 
exist with a variation in size from 352 to 441 amino acids. The isoforms differ in 
the inclusion or exclusion of N repeats (0N or 1N or 2N) at the amino-terminal 
region and for the presence of three (3R) or four (4R) MT-binding domain (MTB) 
repeats (R) in the carboxyl-terminal part of the molecule (60).

The major domains identified in the tau protein are the projection domain, situ-
ated in the acidic N-terminal part, and the assembly domain, localized in the basic 
C-terminal domain. The two domains with the opposite charge are separated from 
one another by the proline (Pro)-rich region, situated in the middle part of the 
protein. Here, tau interacts with proteins containing an SH3 domain. Further, the 
Pro-rich region is the target of different Pro-directed kinases and also FYN-tyrosine 
kinases (61). The assembly domain, through R1–R4 repeat regions and flanking 
domain, binds microtubules and supports their assembly. This domain is the key 
in the regulation of the phosphorylation state of the tau protein (62). On the con-
trary, the projection part does not interact with microtubules but projects away 
from their surface interacting with other cytoskeletal elements, mitochondria or 
the neuronal plasma membrane (63, 64).

Phosphorylation of tau plays a crucial role in the pathogenesis of AD (65, 66) 
introducing negative charge(s) that promote an electrostatic interaction with metal 
ions (67) (Figure 2C). Tau abnormal phosphorylation leads to an abnormal struc-
ture, that is, polymerized into paired helical filaments (PHFs) which may further 
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aggregate to form NFTs, assuming the shape of a toxic protein deprived of the 
biological functions typical of the MAP family. It was reported that in AD brains, 
NFTs include metals, confirming an association between endogenous redox-active 
transition metals and metal-binding sites in tau (68). Binding of a series of metal 
ions including the essential biometals, Zn, Cu, Fe, Mg, and Mn, and non-essential 
trace metals, Pb, Cd, Hg, and Al, may promote tau hyperphosphorylation and 
induce tau aggregation. In contrast, Fe and lithium (Li) reduce the abnormal 
phosphorylation of tau (48). For this reason, biometal homeostasis is essential, 
and the disruption of this balance may play a key role in the pathogenesis of AD.

Zinc and Tau

A disruption in the Zn homeostasis leads to a series of pathogenic conditions in 
the AD brain, including the formation of NFTs composed of hyperphosphorylated 
tau. Recent studies show that Zn is involved in the mechanism of tau hyperphos-
phorylation via two different interactions: in vitro, Zn can directly affect tau at 
serine (Ser) and Pro sites, at threonine (Thr) and Pro sites or via two Cys residues: 
C291 and C322 (69). At the same time, Zn can indirectly hyperphosphorylate tau 
protein, by activating kinase and phosphatase pathways, for example activating 
Raf/mitogen protein kinase and inhibiting phosphatases such as PP2A (70, 71).

These two independent ways of action have different effects on tau toxicity. 
It has been demonstrated that the direct interaction between tau and Zn plays an 
important role in tau toxicity: after removing the Zn-binding site, tau toxicity is 
completely abolished, assuming that the toxic effect of tau necessitates both the 
presence of hyperphosphorylation and Zn bond. Tau hyperphosphorylation path-
ways appear to be less toxic, compared to tau toxicity that occurs from the direct 
binding between tau and Zn (72). Recently, it has been discovered that Zn could 
be considered a catalyst, accelerating the aggregation of tau-R3 complexes and, at 
the same time, promoting the formation of tau oligomers (73, 74). Thus, correct 
Zn homeostasis in AD is fundamental because abnormally high concentrations of 
this mineral induce the development of granular tau aggregates, while abnormally 
low concentrations of Zn lead to amyloid fibril formation (75).

Copper and Tau

A high concentration of Cu (0.4 mM) was reported in amyloid plaques and NFTs. 
Thereby, NFT may be linked to high levels of redox-active Cu (68). Besides, Cu is 
involved in tau hyperphosphorylation by activating the cyclin-dependent kinase 
(CDK)5/p25 complex. Tau hyperphosphorylation resulting from the activation of 
GSK-3β kinase by Cu is controversial: some studies suggest that GSK-3β kinase is 
activated by Cu (76, 77), while other studies propose that GSK-3β kinase may not 
necessarily be involved in the abnormal phosphorylation of the protein (78). The 
binding between tau and Cu is highly selective. Studies revealed that the full-
length Human Tau40 isoform (K32) can bind one Cu for each monomer (1:1 
binding stoichiometry) with a dissociation constant (Kd) close to 1 µM via two Cys 
residues. The sequences mediating the binding of Cu are 287VQSKCGS293 and 
310YKPVDLSKVTSKCGS324. An analysis conducted by circular dichroism and 
nuclear magnetic resonance (NMR) spectroscopy showed only limited formation 
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of aggregates after binding Cu because the addition of Cu to K32 does not affect 
the secondary structure, and thus, tau remains mostly disordered (79). In vitro, it 
has been demonstrated that Cu can bind different tau fragments containing 
diverse MTBR such as R1 and R2, showing alterations in the secondary structure 
(80, 81). Furthermore, the interactions between tau R2 and Cu lead to the pro-
duction of H2O2 (82). The repeat R3 can be associated with more than one Cu ion 
via two His residues (83).

The role of Cu-binding to tau remains controversial, although some studies 
suggest that the binding between Cu and tau inhibits the formation of abnormal 
aggregates in vitro (78, 81). For example, increasing intracellular Cu levels by the 
addition of Cu–bis (thiosemicarbazone) complexes, inhibits tau hyperphosphory-
lation (76).

Iron and Tau

Fe dysregulation is linked to oxidative stress in tauopathies. Fe, as Zn and Cu, 
interacts with some of the isoforms of the tau protein, causing irreversible struc-
tural changes. The result of this interaction is protein aggregation and/or oxidative 
stress, through the Fenton reaction, perpetuating a condition of cellular damage. 
Analysis of postmortem AD brains shows increased Fe levels in several brain 
regions (84).

In the human body, Fe is available in two oxidation states: Fe3+ (redox-inert 
state) that is stored in ferritin and Fe2+ (redox-active). The iron status associated 
with NFTs in AD is Fe3+, which can induce the aggregation of hyperphosphory-
lated tau. Fe-binding sites using His residues have been identified in tau (85). The 
hyperphosphorylated status of tau may not involve Fe3+ interacting with the pro-
tein, but Thr phosphorylation can regulate the interaction between tau and 
Fe2+ (86). Thus, the phosphorylation level of tau causes conformational changes 
of tau to mediate tau–Fe interactions (87). In addition to a direct interaction, Fe 
induces tau hyperphosphorylation, both in vitro and in vivo, by activating the 
CDK5/p25 complex and GSK-3β and MAP kinases (88). This evidence suggests a 
possible role of iron involved as a co-factor for tau aggregation.

Other essential trace metals and Tau

In AD patients, Mg levels appear lower (540–625 µg/g) compared to the physio-
logic range (620–680 µg/g) (89). In vivo, data obtained from an AD transgenic 
mouse model show that Mg increases the phosphorylation of the GSK-3β kinase 
at Ser9, which in turn reduces the hyperphosphorylation of tau protein (90). 
Additionally, in postmortem brains of patients affected by AD, the level of Mn 
appears to be higher (91). An increase of Mn levels is related to abnormal tau 
aggregation and its hyperphosphorylation, mediated by GSK-3β kinase (92).

Toxic trace metals and Tau

Al is the most widely exogenous metal ion distributed in the environment. As 
Fe3+, Al3+ is a trivalent cation that influences protein phosphorylation of tau 
(93, 94). Recent data show that Al can promote the formation of sodium dodecyl 
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sulfate (SDS)–resistant tau oligomers after tau phosphorylation (95). The role of 
Al in AD has been intensively investigated since NFT-like deposits were discov-
ered in mammalian brains after intracerebral Al injection (96). Al has been shown 
promoting tau aggregation through the down-regulation of PP2A activity and an 
increase of CDK5 and GSK-3β kinase levels (97). Thus, Al, although not directly 
binding to tau, may have a role as co-factor in AD (98).

Further, heavy metals such as Cd, Pb, and Hg have been implicated in AD 
pathology (99). Data show that Cd is involved in the formation of NFTs (100, 
101). Both in cell models and in in vivo studies, Cd increases the activation of 
GSK-3β kinase, causing the hyperphosphorylation of tau (102). Similarly, Pb has 
been reported to modulate tau aggregation by increasing the activity of CDK5/p25 
complex and GSK-3β kinase (103). Hg was demonstrated to inhibit tubulin that 
has a very high-affinity binding-site for Hg (104). Once Hg binds tubulin, the 
structural integrity of the protein is impaired. The final result of this interaction 
between Hg and tubulin is the formation of NFTs (105). Also, Hg is involved in 
tau hyperphosphorylation; the mechanism starts with the oxidative stress induced 
by Hg, ultimately affecting tau phosphorylation status (106).

OTHER METAL-BINDING PROTEINS AND THEIR ROLE IN AD

Several of the effects of an altered trace metal status in AD such as increased oxida-
tive stress, neuroinflammation, and effects on synapses are mediated by excess or 
lack of trace metals for binding to proteins other than Aβ and tau. Together with 
several other factors in AD, oxidative stress leads to an activation of the immune 
system. The immune system is highly dependent on trace metal biology. Especially, 
Zn signaling seems to be a key mediator of inflammatory responses. For example, 
the activity of NF-κB (nuclear factor kappa-light-chain-enhancer of activated 
B cells), a major regulator of pro-inflammatory cytokines such as interleukins (IL) 
(107), is regulated, among others, by Zn through Zn binding of the IKK (IκB 
kinase) complex member IKKβ (108). Further, the formation of senile plaques 
made of Aβ aggregates stimulates inflammasomes, such as the NLRP3 (nucleo-
tide-binding domain and leucine-rich repeat-containing family, pyrin domain-
containing-3) inflammasome that detects the inflammatory Aβ aggregates and 
responds by forming active IL-1β through secreting caspase-1 (Casp-1) (109). 
IL-1β acts as an inflammatory cytokine (110), which leads to the creation of an 
inflammatory environment around the plaque. This ultimately decreases plaque 
degradation and destruction by microglia cells. Zn deficiency and/or high Cu lev-
els facilitate NLRP3 inflammasome activation (111) and thereby the production of 
IL-1β in macrophages (112).

Initially, Pro-IL-1β is expressed in response to damage-associated molecular 
patterns (DAMPs) that bind to pattern recognition receptors (PRRs) on the mac-
rophage to upregulate pro-inflammatory gene expression. Inflammation, protein 
misfolding, and aggregation, as well as neurodegeneration, lead to increased levels 
of so-called alarmins or DAMPs that include several cytokines including those 
from the S100 family. The S100 proteins are engaged in classical calcium-activated 
signaling but recent work has shown their involvement in new biochemical mech-
anisms in the brain related to the prevention of protein aggregation (113) and 



De Benedictis CA et al.96

sensing of neuronal Ca and Zn levels (114). Therefore, S100 alarmins are impli-
cated in the maintenance of protein homeostasis (proteostasis) and metal ion 
homeostasis (metallostasis) in the brain. Upon activation and at high (μM) con-
centrations, S100 proteins act as extracellular cytokines via RAGE (receptor for 
advanced glycation end-products) mediated signaling. RAGE persistent engage-
ment increases S100 extracellular levels via NF-κB activation resulting in a posi-
tive feedback cycle (115). Glial S100B and S100A9 proteins show increased 
expression in response to several risk factors for AD, including aging (116). 
Interestingly, S100B undergoes metal-binding-induced conformational changes 
and thereby delays the onset of Aβ aggregation by interacting with Aβ1–42 mono-
mers inhibiting primary nucleation (113). However, high levels of S100B can 
elicit alterations in intracellular Zn concentrations (114).

The increase in S100B proteins and accumulation of Aβ as a factor for trace 
metal imbalances also has direct effects on Zn signaling at excitatory glutamatergic 
synapses. It has been shown that the dynamics of major postsynaptic scaffold 
proteins of these synapses (SHANK2 and SHANK3) are dependent on Zn avail-
ability (117). Studies have shown that SHANK platform disassembly is linked to 
the molecular pathology of AD (118, 119), and recent research confirmed that the 
progressive accumulation of Aβ results in decreased Zn concentrations at the syn-
apse, which in turn leads to disruption of SHANK3 scaffold formation, and ulti-
mately, loss of synapses (13). Thus, Zn sequestration by protein aggregates in AD 
may be a contributor to the cognitive impairments caused by the loss of synapses 
through trapping synaptic Zn rather than through neurodegeneration in general 
(120). In addition, NMDA receptors at synapses are Zn-binding proteins (121). 
Increased trapping of Zn lowers the inhibitory activity of Zn on the NMDAR. 
Excessive stimulation of receptors at the excitatory synapse has been linked to 
neuronal death through excitotoxicity leading to chronic neurodegeneration in 
AD (122). Together, these metal-imbalance-driven signaling pathways create a 
vicious cycle leading to increased inflammation, oxidative stress, and neuronal 
damage (Figure 3).

METAL DETECTION FOR AD DIAGNOSIS

Several metal bioimaging strategies have been developed not only to examine the 
distribution of metals in human clinical AD brain tissue and AD mouse models 
but also to diagnose and monitor the progression of AD (123). In the clinical set-
ting, the most common imaging tool is magnetic resonance imaging (MRI). This 
technique focuses on Fe due to its magnetic properties and its abundance in the 
brain. The latest MRI technology provides sufficient resolution to detect regional 
differences and has the major advantage that it can be applied to living patients 
rather than being a tool for postmortem analysis only (124). The presence of 
localized Fe can be detected by MRI (T2). However, although detecting general 
metal dyshomeostasis, MRI has limitations in visualizing metal-loaded plaques 
directly with high resolution. Further development of metal-based compounds or 
compounds visualizing metal homeostasis, such as a Cu-64-labelled–bis (thios-
emicarbazonato) complex for clinical application in positron emission tomogra-
phy (PET), and improvement of imaging devices may lead to more precise 
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Figure 3  Interaction between Aβ plaques, glial cells and trace metals. Senile plaques sequester 
large amounts of Zn, Cu, and Fe, creating a zone of metal depletion, especially Zn depletion, 
in their vicinity. While high levels of Cu and Fe at the center of plaques may contribute to the 
generation of ROS and damage neurons through oxidative stress, Zn deficiency in a zone 
surrounding plaques will lead to further effects: Accumulation of Aβ aggregates leads to the 
release of S100B from astrocytes. S100B as DAMP can initially prevent Aβ aggregation. 
However, S100B signals back to astrocytes via RAGE receptor activation that will, in turn, 
activate NF-κB. Active NF-κB is dis-inhibited by low levels of Zn and thus results in further 
production of S100B, which enters a positive feedback cycle. High levels of S100B further 
deplete Zn through Zn binding. In response to high DAMP levels (S100B), microglia cells will 
produce pro-IL-1β. This will be cleaved by Casp-1-dependent processes through the NLRP3 
inflammasome. NLRP3 activity is further increased by low Zn levels. Production of IL-1β leads 
to further generation of ROS and release of cytokines and chemokines from microglia cells 
that facilitate NFT formation and neurodegeneration. Further, low Zn levels facilitate 
excitotoxicity through dis-inhibition of NMDAR signaling, and low levels of Zn destabilize 
the postsynaptic Shank3 scaffold resulting in synapse loss.
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diagnosis and monitoring of progression and therapeutic effects based on the role 
of trace metals in AD in the future (124).

METALS HOMEOSTASIS AS A THERAPEUTIC 
STRATEGY FOR AD

Based on the interactions of metals with several key proteins of the AD pathology, 
different therapeutic approaches aimed at restoring or manipulating metal homeo-
stasis and, thereby, regulating oxidative stress, tau phosphorylation, Aβ aggrega-
tion, and inflammation have been developed in the last decade.

For example, metallothionein 3 (MT-3), a key regulator of metal homeosta-
sis in neural tissue, has been found down-regulated by up to 30% in AD brains. 
Given that MT-3 contributes, among others, to detoxification and storage of 
heavy metals, regulation of Cu and Zn metabolism, and modulation of Aβ 
endocytosis of astrocytes (125), increasing MT-3 levels in AD has been explored 
as therapeutic strategy. In vivo studies demonstrated that effects of Zn-loaded 
MT-3 treatment in a mouse model for AD (Tg2576 mice) are inconsistent if 
MT-3 is injected subcutaneously. However, MT-3 injected intracerebroventricu-
larly is able to ameliorate behavioral deficits and hippocampal impairments in 
APP/PS1 mice. In these mice, MT-3 treatment was also able to restore metal 
homeostasis, inhibit Aβ aggregation, and reduce oxidative stress and neurode-
generation (125).

Another interesting treatment strategy is based on metal protein attenuating 
compounds (MPACs): Clioquinol (CQ) represents the prototypic MPAC. It is a 
small hydrophobic molecule that can cross the BBB and that has moderate affinity 
for metal ions. When administered to Tg2576 mice, a 49% decrease of Aβ in the 
brain of AD model mice compared to control mice was shown (126). In humans, 
oral CQ treatment for 36 weeks of severely affected AD patients was able to sig-
nificantly prevent cognitive deterioration. Subsequent clinical studies of this com-
pound were not pursued. However, PBT2, a highly soluble derivate of CQ 
(a second-generation MPAC), has been used first in APP/PS1 mice and then in 
human clinical trials (phase I and II). The results showed improved cognitive 
performance and reduced Aβ load in the mouse model. A 12-week-long treatment 
of 78 patients with early AD showed that PBT2 is safe (127). Although the effects 
of PBT2 were inconsistent, executive dysfunction was significantly reduced in the 
patients. Several other metal chelators were engineered over the last years, and 
most of them are currently investigated for use in AD. Some of them have been 
shown to be effective at inhibiting Aβ–metal interactions both in vitro and in vivo. 
For example, it has been demonstrated that the normally insoluble Aβ deposits of 
postmortem brain tissue from AD patients can be solubilized in aqueous media in 
the presence of specific Cu chelators (128).

Another promising approach is the delivery of metals directly to the brain 
using nanotechnological approaches. Polymeric g7-poly-lactide-co-glycolide 
(PLGA) nanoparticles (NPs) are able to cross the BBB and release metals within 
the brain. This system has been considered as a Trojan horse strategy to effectively 
deliver Zn to the brain with a low-toxicity profile (129). Three hours after ip injec-
tion of NPs, an increase of Zn levels in the brain and the increase of zinc-sensitive 
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genes such as MT and Zn transporters were seen (130). The same pharmacologi-
cal approach applied to APP23 mice, an animal model of AD, showed promising 
effects such as Aβ dis-aggregation, a reduction of inflammation, and synapse sta-
bilization (129). Thus, both redistribution of metals bound to Aβ through MPACs 
and increase in metal levels that has dropped through trapping of metals in Aβ 
deposits have beneficial effects. However, additional research is necessary to rede-
fine time point of application, duration, and concentration of NP-based metal 
delivery.

CONCLUSIONS AND FUTURE PERSPECTIVES

In general, impaired biometal homeostasis and/or the accumulation of non-
essential trace metals have significant effects, most prominently on proteotoxic 
stress, synapse function, oxidative stress, and inflammatory processes. Building 
on the metal-binding abilities of key proteins in AD, brain imaging-based meth-
ods for the diagnosis of AD in humans have been, and are, currently developed. 
However, despite improving techniques for the detection of trace metals in the 
brain, re-establishing metal balances remains a difficult task. Initial studies using 
Zn ionophores have been promising and showed that targeting metal homeostasis 
in AD may be one of the most auspicious therapeutic strategies. However, new 
targeted and improved approaches are needed in the future.
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Abstract: The accumulation and aggregation of amyloid-β (Aβ) peptides in the 
brain is believed to be the initial trigger in the molecular pathology of Alzheimer’s 
disease (AD). In addition to the widely studied full-length Aβ peptides (mainly 
Aβ1–40 and Aβ1–42), a variety of amino-terminally truncated (N-truncated) pep-
tides, such as AβpE3-x and Aβ4-x, have been detected in high abundance in autopsy 
samples from sporadic and familial AD patients. N-truncated Aβ species adopt 
specific physicochemical properties resulting in a higher aggregation propensity 
and increased peptide stability, which likely account for their neurotoxic potential. 
The presence of N-truncated Aβ peptides in transgenic mouse models of AD and 
the selective overexpression of specific N-truncated variants in the murine brain 
have facilitated their investigation in relevant in vivo settings. In this chapter, we 
address the pathological relevance of N-truncated Aβ peptide species and sum-
marize the current knowledge about the enzymatic activities that might be 
involved in their generation.

Keywords: ADAMTS4; Alzheimer’s disease; amyloid; N-truncation; protease
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INTRODUCTION

The deposition of extracellular plaques consisting of amyloid-β (Aβ) peptides in 
the brain parenchyma is one of the neuropathological hallmarks of Alzheimer’s 
disease (AD). Although these deposits have also been found in non-demented 
control individuals, they are believed to play an important role in the disease pro-
cess, and their presence and abundance is an obligatory criterion for a diagnosis 
of AD. Full-length Aβ peptides composed of 40 (Aβ1–40) or 42 (Aβ1–42) amino 
acids constitute the main components of extracellular amyloid plaques, together 
with other proteins such as ubiquitin and different proteoglycans. These peptides 
are generated by sequential proteolytic cleavage of the amyloid precursor protein 
(APP), a large type-I transmembrane protein that in rare families was found to 
carry mutations causative of inherited cases of AD. After an initial cleavage by 
either α- or β-secretase, which facilitates shedding of the APP ectodomain, the 
remaining membrane-bound β- or α-C-terminal fragments (CTFs) are cleaved by 
γ-secretase within their transmembrane domains. In the latter case, a small peptide 
fragment named p3 is released, while the cleavage of β-CTFs results in the genera-
tion of Aβ peptides (1) (Figure 1).

The analysis of brain samples from non-demented control cases, pathologi-
cal aging (which is being regarded as a prodromal phase of AD), and AD revealed 
that, apart from full-length Aβ1–40 and Aβ1–42, N-truncated Aβx-42 species were 
the most abundant in AD with considerable overlap in pathological aging sam-
ples (2). This is interesting from a pathological point of view as full-length Aβ 
peptides are normal metabolites generated under physiological conditions. The 
exact physiological function of these peptides remains unresolved; however, it 
has been hypothesized that modulation of endogenous Aβ production might 
play an important role in the regulation of neuronal activity via a feedback loop 
mechanism (3). Other possible physiological functions include promoting 
recovery from traumatic brain injury, sealing leaks in the blood–brain barrier, 
or antimicrobial activities (4). While full-length Aβ peptides starting with an 
aspartic acid (Asp) residue at position 1 of the Aβ sequence are generated by an 
enzymatic activity called β-site APP cleaving enzyme 1 (BACE1) (5, 6), much 
less is known about the proteases responsible for the production of N-truncated 
Aβ peptides.

Aβ peptides with varying N-termini were described more than 30 years ago. In 
1984, the identification of full-length Aβ peptides starting with an Asp residue in 
position 1 purified from cerebrovascular amyloid deposits was reported (7). The 
following year, N-terminal sequencing of Aβ peptides purified from amyloid 
plaque cores from AD cases demonstrated the presence of peptides starting with 
phenylalanine (Phe) in position four (Aβ4-x), as well as with serine (Ser) or glycine 
(Gly) in position eight (Aβ8-x) or nine (Aβ9-x) (8, 9). By means of immunohisto-
chemistry, N-truncated Aβ species with post-translational modifications such as 
pyroglutamylation at position 3 (AβpE3-x) and 11(AβpE11-x) were subsequently 
described in human AD brains (10, 11). The loss of charged amino acids at the 
N-terminus changes the biophysical properties of the Aβ peptides, thus influenc-
ing their aggregation propensity and toxicity. As a consequence, efforts to under-
stand the relevance of N-truncated Aβ species in the pathogenesis of AD, as well 
as the mechanisms responsible for their generation, have recently increased.
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HETEROGENEITY OF N-TRUNCATED Aβ SPECIES IN AD BRAIN

Several studies employing mass spectrometry (MS) that intended to analyze the 
full spectrum of Aβ peptides in postmortem brain samples of AD patients have 
been published. In the earliest of these studies, purified amyloid core and cere-
brovascular amyloid peptides were sequenced using matrix-assisted laser-
desorption-time-of-flight (MALDI-TOF) mass spectrometry. While the amino 
acid composition of cerebrovascular Aβ peptides consisted mainly of species 

Figure 1  APP processing pathways. A) The non-amyloidogenic processing pathway 
(depicted on the right) is initiated through cleavage by α-secretase, which cleaves within the 
Aβ domain and generates the soluble ectodomain sAPPα. Subsequent cleavage of the 
membrane-bound C-terminal APP fragment C83 by the γ-secretase complex releases the 
soluble fragments p3 and the APP intracellular domain (AICD). Amyloidogenic APP 
processing (left panel) is initiated by β-secretase cleavage with the liberation of the soluble 
sAPPβ fragment. The remaining C-terminal fragment C99 is then cleaved by γ-secretase 
generating Aβ peptides as well as AICD. B) APP is a large transmembrane protein containing 
up to 770 amino acids. The Aβ peptide sequence (in red) starts within the ectodomain and 
ends within the transmembrane (TM) domain.
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starting with residues 1 or 2, the preparations from amyloid cores were more 
heterogeneous, corresponding to peptides beginning with every residue between 
Asp-1 and Glu-11(Figure 2), with major signals for peptides starting with Phe-4, 
Ser-8, and Glu-11 (12). In good agreement, using surface-enhanced laser desorp-
tion/ionization time-of-flight (SELDI-TOF) mass spectrometry, Aβ4-42 was also 
identified as the major N-truncated species in postmortem brain samples from 
aged controls, patients with vascular dementia, and AD patients (13). This sug-
gested that N-truncated species account for a substantial proportion of total Aβ 
in the aged human brain, a finding that was corroborated in subsequent studies. 
The entire spectrum of Aβ peptides ranging from Aβ1-x to AβpE11-xwas detected 
in frontal cortex samples of a sporadic AD case and of an individual affected by 
the FAD-associated presenilin (PSEN1) V261I mutation. This mutation is asso-
ciated with the deposition of the so-called cotton wool plaques, which are lesions 
lacking a central amyloid core (14). By investigating non-demented individuals 
with incipient amyloid pathology as well as AD patients, it was further demon-
strated that initial insoluble Aβ aggregates are largely composed of N-truncated 
Aβ42 variants such as peptides starting at positions 4-, 5-, 8-, or 9–42 (15). 
Portelius et al. also studied the Aβ isoform pattern in the hippocampus, cortex, 
and cerebellum of non-demented controls, sporadic AD cases, and patients suf-
fering from familial AD (FAD). In all groups, Aβ1–42, Aβ1–40, AβpE3–42, and Aβ4–42 
were identified as the dominant isoforms (16), which is in good agreement with 
the most recent studies from other investigators (2, 17, 18).

N-TERMINALLY TRUNCATED Aβ SPECIES IN TRANSGENIC 
MOUSE MODELS OF AD

Transgenic mouse models overexpressing mutant forms of human APP, either 
alone or in combination with mutant forms of PSEN1 or PSEN2, are valuable and 

Figure 2  Sequence of the Aβ N-terminus with indicated cleavage sites and enzymes involved in 
the generation of N-truncated Aβ species. Amino acids (AA) are color-coded according to their 
properties (red: charged AA; grey: uncharged AA; blue: nonpolar hydrophobic AA).
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widely used model systems to study AD-associated pathological alterations such as 
extracellular amyloid deposition, inflammatory responses, and cognitive deficits 
(19–21). The analysis of Aβ peptide species in brain samples using mass spectrom-
etry revealed that most transgenic AD mouse models only partially reflect the Aβ 
spectrum in human sporadic AD. While the overall heterogeneity of N-terminal 
truncated Aβ species could be reproduced in mouse models such as APP/PS1KI 
(22) or 5XFAD (23, 24), the ratio of full-length Aβ peptides to N-truncated vari-
ants is much different in human brain samples. While N-truncated variants such 
as AβpE3-x or Aβ4-x might be present in comparable quantities compared to full-
length Aβ1–40 or Aβ1–42 species in human samples (16), full-length peptides com-
prise by far the majority of all Aβ peptides in transgenic AD models (23, 25, 26). 
This is likely explained by the fact that most of these models (e.g., Tg2576 (27), 
APP23 (28), APP/PS1KI (22), 5XFAD (29), or APPswe/PSEN1dE9 (30)) utilize the 
Swedish APP mutation. Cell lines transfected with the Swedish APP670/671 muta-
tion have been shown to release three to six times more Aβ peptides than wild-
type cells (31, 32). Due to the location of the double mutation in the immediate 
vicinity of the β-secretase cleavage site (Figure 1), the Swedish mutation increases 
the affinity of the substrate APP for BACE1, thus favoring the generation of full-
length Aβ peptides starting with Asp in position 1 (33).

Using two-dimensional gel electrophoresis with subsequent mass 
spectrometry analysis, a variety of N-truncated Aβ species have been detected 
in APP/PS1KI mice. While full-length Aβ1–42 peptides were already detectable 
in young mice at 2.5 months of age, other Aβ variants such as Aβ2/3–42, AβpE3–42, 
and Aβ4/5–42 became apparent only at later time points (22). Mass spectrometry 
analyses have also supported that N-truncated species represent only a small 
percentage of the total Aβ peptide amount in mouse models such as 5XFAD or 
APP23, although variable ionization efficiencies for the different Aβ species 
might contribute to a distorted image of the Aβ peptide composition in both 
mouse and human brains (23, 34). In conclusion, N-truncated Aβ species are 
substantially underrepresented in transgenic mouse models compared to 
human AD brain samples (34, 35).

MAJOR N-TERMINAL TRUNCATED Aβ SPECIES DETECTED IN 
HUMAN BRAIN

As pointed out above, a huge variety of different N-terminal truncated Aβ species 
has been identified by either MS or immunohistochemical staining methods in 
brain samples from human AD patients. In this section, we discuss the current 
knowledge on the most important variants in more detail.

Aβ2-x

In AD patients, a consistent elevation of Aβ peptides lacking the N-terminal Asp 
residue have been observed in the detergent-soluble pool of brain extracts, as well 
as in cerebrospinal fluid (CSF) samples (36). Using SELDI-MS, several Aβ pep-
tides including those starting with Ala-2 were found in extractions from senile 
plaques (13). Immunohistochemical analysis of postmortem brain samples using 
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TABLE 1	 List of proteases involved in the generation of 
N-truncated Aβ species

Protease

Levels/activity in 
human AD brain 
versus control Cleavage site

Potential Aβ 
peptides References

BACE1 Increased (42) Met(-1) ‚ Asp(1)
Tyr(10) ‚ Glu(11)

Aβ1-x

Aβ11-x, AβpE11-x

(6)

Aminopeptidase A Reduced (43) Asp(1) ‚ Ala(2) Aβ2-x (38)

Meprin-β Unknown Asp(1) ‚ Ala(2) Aβ2-x (39, 40)

Neprilysin (NEP) Increased (44)
Reduced activity (45)

Asp(2) ‚ Ala(3)
Ala(3) ‚ Phe(4)
Arg(5) ‚ His(6)
Gly(9) ‚ Tyr(10)

Aβ3-x, AβpE3-x

Aβ4-x

Aβ6-x

Aβ10-x

(46, 47)
(48, 49)

ADAMTS4 Unknown Ala(3) ‚ Phe(4) Aβ4-x (24)

an Aβ2-x-specific polyclonal antibody confirmed the presence of Aβ2-x peptides in 
both parenchymal and vascular deposits of sporadic AD cases as well as trans-
genic mouse models such as APP/PS1KI or 5XFAD (37). As the sequence of full-
length Aβ starts with an Asp residue in position 1, it has been suggested that 
proteolysis of Aβ1-x peptides by the exopeptidase aminopeptidase A, which 
releases Glu and Asp residues from the N-termini of proteins, could result in the 
generation of Aβ2-x species (38). However, the evidence in this study was limited 
to showing that Western blot immunoreactivity with an Aβ1-x-specific antibody 
was reduced after the co-incubation of purified aminopeptidase A with recombi-
nant full-length Aβ1–40 peptides (Table 1). The identity of specific degradation 
products and, in particular, the generation of Aβ2-x species, was not confirmed by 
mass spectrometry or other methodology (38). In contrast, it has been convinc-
ingly demonstrated in cell-free and cell-based assays that cleavage of APP or Aβ by 
the metalloprotease meprin-β can result in the generation of Aβ2-x species (39, 40). 
In both HEK293T and CHO cells, co-expression of human APP and meprin-β 
facilitated the secretion of Aβ2–40 peptides, whose identity was confirmed by mass 
spectrometry, and this was blocked by treatment with a γ-secretase but not a 
β-secretase inhibitor, indicating that Aβ2–40 peptides were produced through a 
BACE1-independent mechanism. Later, these results were partially confirmed by 
another group (41). Still missing is in vivo proof that meprin-β is responsible for 
the brain production of Aβ2-x peptides in AD mouse models. However, this exper-
iment is complicated by the fact that meprin-β does not generate Aβ2-x peptides 
with Swedish mutant APP as a substrate, which excludes most of the commonly 
used APP-transgenic strains as in vivo model systems (40).

AβpE3-x

Pyroglutamate-modified AβpE3-x represents a major Aβ species identified in human 
AD brains (16, 50). In 1995, Saido et al. reported the identification of  these 
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post-translationally modified peptides in which the glutamate at position three 
becomes converted to pyroglutamate through intramolecular dehydration (51). 
This cyclization alters the physicochemical properties of Aβ and results in 
increased hydrophobicity due to the loss of a negative charge, faster aggregation 
kinetics compared to full-length Aβ peptides in in vitro assays (52–54), and 
increased insolubility and stability (55). Importantly, higher abundance of these 
peptides in AD as compared to age-matched non-demented control patients has 
been demonstrated (56–58). With regard to their toxic properties, increased 
neurotoxicity compared to full-length Aβ peptides (59) has been reported; how-
ever, some studies found full-length and AβpE3-x peptides to be equally toxic 
(60,  61), while others suggested that Aβ/AβpE hetero-oligomers constitute the 
main neurotoxic Aβ fraction (62). Interestingly, related properties have also been 
reported for pyroglutamylated ABri and ADan peptides, representing the major 
peptide species accumulating in the neurodegenerative disorders familial British 
dementia and familial Danish dementia (63, 64).

The formation of AβpE3-x peptides appears to be at least a two-step process, 
with removal of the first two amino acid residues from full-length Aβ followed by 
cyclization. Recently, it has been suggested that meprin-β might not only generate 
Aβ2-x but also Aβ3-x peptides as substrates for cyclization (41). However, Aβ3-x 
peptides were not detected in an earlier study by mass spectrometry (39), and 
whether genetic deletion of meprin-β would reduce AβpE3-x peptide formation in 
vivo is unknown. In contrast, solid evidence supports that glutaminyl cyclase 
(QC) is at least one of the enzymes capable of catalyzing the second step of AβpE3-x 
formation (65). Treatment using an orally available QC inhibitor resulted in a 
reduction of the AβpE3–42 burden in transgenic mouse models of AD (66). The 
same was also seen in 5XFAD mice on a QC knock-out background and was 
accompanied by a rescue of behavioral deficits (67). The observation of a signifi-
cant age-dependent increase of the AβpE3-x parenchymal plaque burden at the 
expense of Aβ1-x full-length peptides suggested that AβpE3-x formation might occur 
late in the process of amyloidosis and could involve the remodeling of existing 
extracellular amyloid deposits (68). On the other hand, the presence of AβpE3-x 
peptides has been also described within neurons both in mouse models (22, 69) 
and human AD samples (53, 70), raising the question of whether the localization 
is important for toxicity. In order to address such questions, transgenic mouse 
models have been developed with constructs that only encode the Aβ3-x peptide, 
with a glutamate to glutamine substitution at the initial position to facilitate cycli-
zation (71–73). This construct is expressed under the control of the murine neu-
ron-specific Thy1-promotor and contains the thyrothropin-releasing hormone 
(TRH) signal peptide sequence to ensure liberation of the peptide preferentially in 
the secretory pathway (74). In contrast to other models, these mice do not express 
human full-length APP or any FAD-associated mutations, but impress with a 
rapid onset of behavioral deficits, neuron loss, and microgliosis (71, 72).

Aβ4-x

Aβ4–42 was one of the first Aβ peptide species that was detected in the amyloid 
plaque cores of human AD brains (9). More recently, novel Aβ4-x specific antibod-
ies have been described, and the localization of Aβ4-x to amyloid plaque cores has 
been confirmed in immunohistochemical studies in both human AD and 
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transgenic AD mouse models (75, 76). In addition, Aβ4-x peptides were also found 
within blood vessels in the majority of the analyzed AD cases (76). Similar to 
AβpE3-x peptides, Aβ4–42 peptides lacking another charged amino acid residue have 
also been described to quickly aggregate into soluble oligomers and fibrillar, high-
molecular weight aggregates (61, 75, 76). Quantitatively, Aβ4–42 peptides seem to 
be among the most abundant Aβ species in human AD brain with equal or even 
higher amounts compared to Aβ1–42. It should be noted again, however, that in 
studies using mass spectrometry to assess Aβ peptide patterns, the ratios between 
the respective peptide variants cannot be regarded as a direct reflection of their 
abundance (16, 77). With regard to their neurotoxicity, Aβ4–42 and Aβ4–40 demon-
strated equal toxicity as Aβ1–42 or AβpE3–42 using in vitro assays with primary 
neuronal cultures. This was also observed in an in vivo setting in which freshly 
prepared Aβ peptides were applied by intraventricular injection followed by an 
analysis of working memory using a Y-maze task after 5 days (61).

The metalloprotease neprilysin (NEP) has been proposed as a candidate 
enzyme responsible for the generation of Aβ4-x peptides by cleaving between 
Glu-3 and Phe-4 among other sites, with full-length Aβ1-x peptides acting as the 
immediate substrate. This has been shown by high-performance liquid chroma-
tography analysis yielding several product peaks after incubation of Aβ1–40 with 
either recombinant soluble NEP produced in Sf9 cells or NEP purified from rabbit 
kidney cortex (46). More recent studies using synthetic Aβ peptides and recombi-
nant human NEP confirmed the generation of Aβ peptide fragments starting with 
Phe-4 (such as Aβ4–9 or Aβ4–16 but also the existence of several other cleavage 
sites, at least under the given in vitro conditions (48, 49). Therefore, it is currently 
unclear whether NEP might contribute to the generation of longer Aβ peptides 
such as Aβ4–40 and Aβ4–42. However, we regard this possibility as unlikely as in 
vivo studies have demonstrated that the rate-limiting step in the proteolysis of Aβ 
by NEP is cleavage of the Gly-9–Tyr-10 bond, which would rule out the genera-
tion of full-length Aβ4–40 and Aβ4–42 peptides (78).

Most recently, it was shown that APP contains a cleavage site for the metallo-
protease ADAMTS4 (a disintegrin-like and metalloprotease with thrombospondin 
type 1 motif) between Glu-3 and Phe-4 of the Aβ peptide sequence (24). ADAMTS 
proteases constitute a family of secreted Zn2+-metalloproteases that degrade or 
modify major components of the extracellular matrix (79). ADAMTS4 partici-
pates in the proteolytic degradation of proteoglycans like aggrecan, brevican, and 
versican (80). Aggrecan is a hyaluronan-binding proteoglycan, which is present in 
large amounts in the articular cartilage. In an important pathological process lead-
ing to osteoarthritis and rheumatoid arthritis, aggrecan is degraded by ADAMTS4 
and the homologous family member ADAMTS5, leading to the exposure and sub-
sequent degradation of collagen fibrils by collagenases (81). Co-expression of 
ADAMTS4 and APP in HEK293 cells resulted in the secretion of Aβ4–40 peptides 
as measured by mass spectrometry and ELISA, while several species of Aβ1-x pep-
tides were not affected (24). Aβ4–40 secretion was not blocked by treatment of the 
cells with a potent β-secretase inhibitor indicating that Aβ4-x peptides were gener-
ated in a BACE1-independent fashion. IHC analysis of ADAMTS4 reporter mice 
showed that ADAMTS4 was exclusively expressed in oligodendrocytes in the 
adult murine brain. Consistently, the culture of murine oligodendrocytes demon-
strated that these primary cells secrete Aβ4–40 peptides among a spectrum of other 
Aβ species very similar to established cell lines. However, Aβ4–40 peptides were 
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undetectable in primary oligodendrocytes derived from ADAMTS4 knockout 
(KO) mice, providing genetic proof that ADAMTS4 is responsible for Aβ4–40 pep-
tide generation in this cell type. In vivo, the crossing of 5XFAD mice to ADAMTS4 
knockout mice reduced Aβ4–40 levels by 50%, but the overall amyloid plaque load 
and the distribution of Aβ4-x peptides in amyloid plaque cores appeared to be 
unchanged, clearly suggesting that other mechanisms for Aβ4-x generation beside 
ADAMTS4 must exist. Compellingly, abundant Aβ4-x immunoreactivity was 
observed in white matter structures of 5XFAD mice, and this signal was entirely 
abolished in the ADAMTS4 knockout background (24). This could be of patho-
logical relevance as numerous neuropathological, biochemical, and imaging 
studies have reported white matter abnormalities and oligodendrocyte dysfunc-
tion in AD patients (82, 83). However, further studies are required to define a 
potential detrimental role of Aβ4-x peptides in white matter structures. In any case, 
the recent link of ADAMTS4 to AD risk as well as single-cell transcriptomic data 
supporting that many oligodendroglia-specific and myelination-associated genes 
are dysregulated in human AD brains should provide new urgency to consider the 
role of oligodendrocytes in AD (84, 85).

As a tool to investigate the in vivo role of Aβ4-x peptides, a transgenic mouse 
model has been generated that only expresses Aβ4–42 peptides under the control 
of the murine Thy1-promotor. These mice develop age-dependent behavioral 
deficits with spatial or working memory impairments, which are detectable in 
paradigms such as Morris water maze or novel object recognition task, as well as 
motor deficits. These mice do not develop amyloid plaque pathology but show a 
robust hippocampal CA1 neuron loss correlating with the transgene expression 
pattern in a gene-dose dependent manner (61, 86). Interestingly, altered basal 
excitatory synaptic transmission with Aβ4–42-dependent neuronal hyperexcitabil-
ity is already obvious in young Tg4–42 mice preceding neuron loss and behav-
ioral deficits (87).

Aβ5-x

Aβ peptides starting with an Arg residue at position 5 have been detected in 
brains of transgenic mice such as APP/PS1KI (22) or 5XFAD (23), as well as in 
human AD brains (15–17) by mass spectrometry. Conditions of BACE1 inhibi-
tion resulted in strongly increased levels of Aβ5-x species in cellular models 
(88–90). This clearly suggests that Aβ5-x peptides are produced through a 
BACE1-independent pathway, with some evidence supporting α-secretase-like 
proteases (e.g., ADAM family proteases such as TACE or ADAM10) as poten-
tial candidate enzymes (88).

In vivo studies with several BACE1 inhibitors in beagle dogs confirmed the 
absolute signal reduction of all Aβ isoforms in the CSF except for Aβ5–40 peptides, 
and an analysis of relative levels demonstrated a clear increase of Aβ5–40 (90). 
This was further corroborated in a placebo-controlled study in healthy human 
subjects in which dose-dependent increases in Aβ5-x levels were measured 
in  the CSF upon treatment with the BACE1 inhibitor LY2811376 (91). 
Immunohistochemical analyses using Aβ5-x selective antibodies confirmed the 
presence of Aβ5-x peptides in brain tissues samples from sporadic AD patients 
showing immunoreactivity primarily in vascular deposits (88, 92). In cases from 
individuals harboring FAD-associated APP or PSEN1 mutations, both vascular 
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and parenchymal deposits were detected, while in mouse models such as 
5XFAD, APP/PS1KI, or 3xTg Aβ5-x, immunoreactivity was confined to extracel-
lular plaques (92).

Aβ11-x/AβpE11-x

In addition to the cleavage site between methionine and aspartate in position 1 
(Asp-1) generating β-CTFs, BACE1 has also been shown to cleave APP between 
tyrosine and glutamate in position 11 (Glu-11) of the Aβ sequence resulting in 
N-truncated Aβ11-x species (β′-cleavage) (6). There is evidence that the BACE1 
cleavage preference depends on the intracellular localization, with β′-cleavage 
being favored in the trans-Golgi network (93). Aβ11-x peptides have been detected 
in brains from AD and Down’s syndrome patients (94) and have been shown to 
accumulate within neurons in cellular models upon BACE1 overexpression (95). 
Similar to Glu-3, the free Glu residue in position 11 can also undergo cyclization 
and modification to an N-terminal pyroglutamate (AβpE11-x). In contrast to 
AβpE3–42, which is mainly confined to mature plaque cores in AD patients, 
unmodified Aβ11–40 and AβpE11–40 peptides have been detected in the vasculature 
using selective antibodies (95). Within amyloid plaques cores, AβpE11-x has been 
found to co-localize with full-length Aβ peptides but also with AβpE3-x (96).

CONCLUSION

There is substantial evidence that N-truncated Aβ species, in addition to the 
extensively studied full-length Aβ peptides, might play an important role in the 
molecular pathology of AD. In recent years, new candidate proteases and 
nonneuronal cell types have been linked to the generation of N-truncated Aβ 
species. Novel antibodies specific for some N-truncated Aβ peptides have been 
developed, and this should allow the development of quantitative detection 
assays to better define their abundance in relation to full-length Aβ peptides. To 
advance the functional analysis of N-truncated Aβ peptides, novel animal models 
might be needed as N-truncated Aβ species are underrepresented in the available 
AD models. These efforts should improve our understanding of the pathological 
role of N-truncated Aβ peptides. They could provide novel insights into cur-
rently unexplained aspects of AD pathology, and they might be crucial to develop 
novel therapeutic approaches.
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Abstract: In Alzheimer’s disease (AD), white matter (WM) degeneration begins 
early, increases with disease progression, and contributes to cognitive impairment, 
yet the mechanisms are poorly understood. This article reviews the roles of myelin 
loss, oligodendrocyte dysfunction, and microvasculopathy in relation to AD WM 
degeneration. Myelin loss impairs axonal function and its breakdown promotes 
oxidative stress, inflammation, and lipid peroxidation, further compromising the 
structure and function of axons. Oligodendrocyte dysfunction impairs homeo-
static mechanisms needed to maintain myelin. Microvascular disease with endo-
thelial cell pathology leads to thrombin activation and pro-inflammatory cytokine 
release, oxidative stress, and increased vascular permeability. Progressive fibrotic 

http://dx.doi.org/10.15586/alzheimersdisease.2019�
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.15586/alzheimersdisease.2019.ch8


de la Monte SM and Grammas P124

replacement of smooth muscle cells reduces vaso-responsiveness to metabolic 
demands. Fibrotic thickening of vessel walls narrows the lumens, rendering them 
more susceptible to occlusion, endothelial cell injury, and thrombin activation. 
Since normal physiological functions of oligodendrocytes and microvascular 
endothelial cells rely on intact insulin/insulin-like growth factor (IGF) signaling 
through cell survival, metabolic and anti-inflammatory pathways, conceivably, 
WM degeneration in AD is mediated by insulin and IGF resistance with attendant 
pathogenic targeting of oligodendroglia and endothelial cells. The apolipoprotein 
E-ε4 genotype may serve as a co-factor in AD-associated glial-vascular WM degen-
eration due to its role as a mediator of insulin resistance.

Keywords: Alzheimer’s disease; Insulin resistance; oligodendrocytes; thrombin; 
white matter

INTRODUCTION

Alzheimer’s disease (AD) is the 6th leading cause of death and the most prevalent 
aging-associated dementia, afflicting over 5 million people in the United States. 
Despite intense and comprehensive research efforts over the past 4–5 decades, we 
still lack effective disease-modifying therapies, and thus, the annual economic 
burden of over $170 billion continues to grow (1). Perhaps one of the main obsta-
cles to success has been the failure to appreciate the full spectrum of disease 
which extends well beyond cerebral accumulations of amyloid-beta (Aβ) and neu-
ronal structural pathologies caused by abnormally phosphorylated tau. AD is 
mechanistically linked to: (i) insulin resistance; (ii) neuroinflammation; (iii) white 
matter (WM) atrophy with myelin loss and axonal degeneration; (iv) vasculopa-
thy; (v) leukoaraiosis; (vi) blood–brain barrier disruption; (vii) oxidative stress; 
(viii) mitochondrial dysfunction; (ix) loss of neuronal plasticity; and (x) synaptic 
disconnection. Furthermore, consideration should be given to the concept that 
different mediators of neurodegeneration may emerge at various time points and 
could be inter-dependent. These points are not addressed by the present-day 
diagnostic and therapeutic approaches.

In light of the varied and complex nature of AD-associated pathologies, it is 
not surprising that mono-therapeutic strategies have failed to remediate this dis-
ease. The development of a more rational and effective therapeutic design requires 
that we attain a greater understanding of how various pathogenic processes con-
tribute to the onset and progression of AD. Furthermore, additional information 
about systemic and central nervous system (CNS) forces that drive the cascade of 
neurodegeneration could lead to preventive strategies. For example, a better 
understanding of how co-factors such as vascular disease, head trauma, and life-
style exposures modify risk and the phenotypic features of AD could ultimately 
help refine and personalize diagnostics and therapeutics. In this regard, the role of 
vascular disease in AD has been strongly suggested by the finding that at least 
40% of people with clinically diagnosed AD have significant cerebrovascular 
disease yet neither disease process would be regarded as sufficient to cause demen-
tia (2). Correspondingly, the relatively recent incident decline in AD severity in 
the United States has been attributed to improved vascular protective care (3). 
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Now it is time for investigators to re-focus their efforts by capturing a better 
understanding of the protean pathogenic factors that drive progressive neurode-
generation. Evidence- and mechanism-based approaches are needed to develop 
multi-pronged therapeutics, utilizing strategies that already have been successful 
for cancers and other chronic diseases.

AD-ASSOCIATED WM PATHOLOGY

White matter degeneration is a major and consistent but vastly under-studied 
abnormality in AD (Figure 1). Its occurrence was initially characterized in 1986 
by Brun and Englund (4, 5) and subsequently shown to be an early pre-clinical 
abnormality (6). WM atrophy in AD is most pronounced in the parietal and tem-
poral lobes, followed by the frontal lobes, whereas the occipital lobes tend to be 
spared (6). Consequently, the severities of WM atrophy correspond with the dis-
tribution and degree of cerebral cortical pathology. WM degeneration in AD is 
associated with loss of myelin and myelinated axons, together with dysfunction 
or loss of oligodendrocytes, increased activation of astrocytes, that is gliosis, and 
microvascular disease (7–9). Leukoaraiosis, an extreme form of WM degenera-
tion in which the loss of myelinated axons is extensive and associated with WM 
hyperintensities by magnetic resonance imaging (MRI) (7–9), is most promi-
nently distributed in periventricular and central compared with subcortical WM 
(5, 6, 10–15).

Figure 1  White matter atrophy in AD. Postmortem coronal slices of the left cerebral 
hemisphere from patients with (A) normal aging or (B) advanced AD. Panels A and B show 
approximately the same coronal slice levels depicting the cingulate gyrus, corpus callosum, 
basal ganglia (bg), central and periventricular posterior frontal white matter (wm) and lateral 
ventricle. Note the markedly atrophic white matter and associated ex vacuo enlargement of 
ventricles (V) in (B) AD relative to (A) control.
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The histopathologic correlates of myelin degeneration in AD have been char-
acterized by assessing relative reductions in Luxol fast blue (LFB) staining inten-
sity and uniformity. LFB reacts with phospholipids and lipoproteins and is 
suitable for detecting myelin pathology in formalin-fixed, paraffin-embedded 
tissue. However, additional approaches are required to evaluate axonal degen-
eration and attrition. Traditional histochemical stains, such as Bielschowsky, uti-
lize silver impregnation to label cytoskeletal proteins in axons, dendrites, and 
degenerated or dystrophic fibers. Current, more specific approaches employ 
immunohistochemical staining with antibodies to phosphorylated neuronal 
cytoskeletal proteins such as neurofilament and tau. In AD, myelin loss and axo-
nal degeneration, respectively, marked by pallor of LFB staining and fragmenta-
tion, irregular swelling, and rarefaction of fibers, tend to be more pronounced in 
central and periventricular compared with subcortical WM, and they increase 
with severity of AD.

ASTROCYTES, MICROGLIA, AND OLIGODENDROCYTES

Astrocyte activation or gliosis is a conspicuous feature of AD. Gliosis marks 
responses to cellular and tissue degeneration. One potential outcome of gliosis 
is tissue repair, but an alternative outcome is the elaboration of pro-
inflammatory cytokines that promote oxidative stress and tissue injury, thereby 
worsening neurodegeneration. WM gliosis is marked by increased glial 
fibrillary acidic protein (GFAP) immunoreactivity in enlarged (hypertrophic) 
astrocytes and fibrillary deposits within the extracellular matrix (Figure 2). 
Dense fibrillary gliosis, which reflects severe degeneration, is most prominently 
distributed in periventricular and subcortical U-fiber regions. In contrast, 
central WM gliosis is generally less pronounced and associated with increased 
reactive hypertrophic astrocytes and variable densities of GFAP-positive fibril-
lary deposits.

WM gliosis, particularly in the early and intermediate stages of AD, is accom-
panied by microglial activation. Microglia have rod-shaped, curved, or twisted 
nuclei and can be detected by immunohistochemical staining with antibodies 
to  common leukocyte antigen (CD45) or ionized calcium-binding adaptor 
protein-1 (IBA-1) (16). In AD, activated microglia together with reactive astro-
cytes promote neuroinflammation via increased elaboration of pro-inflammatory 
cytokines and chemokines and suppression of anti-inflammatory molecules (17). 
Neuroinflammation causes injury and degeneration of myelin and axons. 
Although the underlying causes of WM neuroinflammation have yet to be 
determined, plausible etiologies include insulin/insulin-like growth factor (IGF) 
resistance and microvascular ischemic injury since both have been demonstrated 
in AD and are well-documented mediators of inflammation, oxidative stress, and 
metabolic dysfunction.

Oligodendrocytes synthesize and maintain myelin sheaths needed to support 
axonal integrity and function. Oligodendrocytes, like neurons, are highly vulner-
able to both insulin and IGF-1 resistance and ischemic injury. Loss or dysfunction 
of oligodendrocytes impairs myelin maintenance, axonal function, and ultimately 
axonal structure. To better understand the mechanisms of WM degeneration 
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Figure 2  WM gliosis exhibits regional variation in AD. Immunohistochemical staining was used 
to detect glial fibrillary acidic protein (GFAP) in the(A, E) anterior frontal, (B, F) posterior 
frontal, (C, G) parietal, and (D, H) occipital cortex (CTX) and underlying white matter (WM) in 
formalin-fixed paraffin-embedded human postmortem brain tissue. Immunoreactivity was 
detected with biotinylated secondary antibodies, horseradish peroxidase-conjugated 
avidin-biotin complexes, and diaminobenzidine (brown precipitant). Panels A–D (100x 
original magnification) show intense GFAP immunoreactivity in white matter (wm) and 
variable labeling of the cortex (ctx). Panels E–G (200x original magnification) show abundant 
GFAP-positive hypertrophic reactive astrocytes (dot-like structures) in a background of 
diffuse fibrillar labeling, whereas Panel H shows predominantly fibrillar labeling of central 
occipital WM.
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in AD, more information is needed about the biochemical and molecular nature 
of oligodendrocyte injury and dysfunction leading to myelin and axonal loss. 
However, recent advances in adult brain WM cell isolation techniques (18), lipi-
domics mass spectrometry (19, 20), and targeted gene array analysis now provide 
practical methodologic approaches for characterizing WM oligodendrocyte and 
myelin lipid pathologies.

BIOCHEMICAL AND CELLULAR BASIS OF WM 
PATHOLOGY IN AD

White matter is largely composed of myelinated axons. Traditionally, the integri-
ties of myelin and axons are studied by histochemical or immunohistochemical 
staining. However, overlapping responses to various types of injury and degenera-
tion limit the utility of these approaches for characterizing disease-specific pathol-
ogies and responses to treatment. To better understand the nature of AD-associated 
myelin pathology, biochemical approaches that assess reproducible alterations in 
lipid composition are needed.

CNS myelin, a specialized membrane synthesized by oligodendrocytes, has a 
much higher dry mass of lipids (70–85%) compared with proteins (15–30%) 
and plays a major role in insulating axons to support conductivity. Myelin lipids 
primarily include cholesterol, glycosphingolipids, sulfatides, gangliosides, phos-
pholipids, and sphingomyelin (21). Many diseases that impair the structural and 
functional integrity of WM are associated with abnormalities in the expression 
and metabolism of phospholipids and sulfatides (20, 22–28). Membrane 
phospholipids have important roles in regulating lipid rafts and receptor 
functions. Sulfatides, located on extracellular leaflets of plasma membranes (29) 
and generated via sulfonation of galactocerebroside, regulate neuronal plasticity, 
memory, myelin maintenance, protein trafficking, adhesion, glial-axonal 
signaling, insulin secretion, and oligodendrocyte survival (30). Degradation of 
sulfatide via galactosylceramidase and sulfatidase yields ceramide (29, 31), 
which promotes neuroinflammation, apoptosis, and production of reactive 
oxygen species (ROS), and impairs signaling through survival and metabolic 
pathways (32). Furthermore, deficiencies in membrane sulfatide disrupt myelin’s 
structure, function, and capacity to support neuronal conductivity (32). Thus, 
imbalances in sphingolipid composition that reduce sulfatide and increase 
ceramide are potentially important mediators of WM degeneration and atten-
dant cognitive impairment.

Potential role of oligodendrocyte dysfunction as a mediator 
of WM degeneration

Oligodendrocytes generate and maintain CNS myelin by controlling the expres-
sion and activity of enzymes that modulate its biosynthesis, turnover, and degra-
dation (33–36). Loss or damage to myelin impairs neuronal conductivity and 
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compromises axonal integrity, releasing neurofilament and myelin sulfatides (37). 
Increases in lipid peroxidation after myelin breakdown exacerbate oxidative dam-
age, neuroinflammation, and astrocyte activation (gliosis). Therefore, the presence 
of WM atrophy and degeneration early in the course of AD, including in its pre-
clinical stages (6), could be due to pathogenic processes that impair function and 
survival of mature oligodendrocytes and promote secondary reactive injury via 
increased oxidative stress, inflammation, and lipid peroxidative. In light of the 
known importance of insulin and IGF signaling for maintaining a broad array of 
homeostatic functions in both neurons and oligodendrocytes (38–40), and strong 
evidence for brain insulin and IGF deficiencies and resistances beginning early in 
the course of AD (41, 42), it is plausible to hypothesize that impaired signaling 
through the insulin and IGF receptors also mediates oligodendrocyte dysfunction 
in AD.

Many critical functions of oligodendrocytes, including cell survival, myelin 
synthesis, and myelin maintenance, are supported by insulin and IGF-1 signaling 
(43–46). Consequently, disruption of related networks decreases oligodendrocyte 
viability, increases oxidative stress, and impairs myelin maintenance and matura-
tion. Likewise, experimental models of chronically impaired brain insulin and 
IGF signaling exhibit WM atrophy and degeneration (47, 48) together with oligo-
dendrocyte dysfunction (49), all of which can be partly reversed or prevented by 
early treatment with insulin sensitizers (47, 49). Another consequence of impaired 
insulin/IGF signaling is dysregulated sphingolipid metabolism resulting in 
decreased sulfatide and increased ceramide levels (23, 26–28, 50–52). Increases 
in ceramide can cause WM degeneration via several mechanisms, including inhi-
bition of insulin/IGF signaling through pathways needed for oligodendrocyte sur-
vival and metabolic functions, and stimulation of pro-inflammatory and oxidative 
stress responses (28).

Besides lipids, oligodendrocytes synthesize integral membrane proteins whose 
expressions are differentially modulated at each stage of myelin maturation as well 
as in response to injury. As immature oligodendrocyte precursor cells (OPC) pass 
through phases of differentiation to eventually become mature myelin-producing 
oligodendrocytes, the proteins needed to support the structure and function of 
myelin also change. Mature oligodendrocytes express myelin basic protein (MBP), 
myelin-associated glycoprotein (MAG), myelin oligodendrocyte glycoprotein 
(MOG), proteolipid protein (PLP) (53), and adenoma polyposis coli (APC) (54), 
as well as O4 sulfatide (54). PLP is the most abundant protein in CNS myelin 
(55, 56). Olig 1–3 transcription factors are expressed at various stages of oligo-
dendroglial maturation (54). Injury and degeneration of myelin cause the popula-
tions of intact mature functional oligodendrocytes to decline. That effect can lead 
to the proliferation of immature oligodendrocytes that express different myelin 
glycoproteins, transcription factors, and myelin glyco- and phospholipids which 
may not support optimum conductivity and CNS function. The conspicuous 
abnormalities in oligodendrocyte myelin-associated gene and lipid expression 
observed in human brains with AD and relevant experimental models including 
those linked to brain insulin and IGF resistance (19, 22–24, 57), lend strong sup-
port the hypothesis that oligodendrocytes are targets of WM atrophy and neuro-
degeneration in AD.
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VASCULOPATHY, VASCULAR DEGENERATION, AND 
ISCHEMIC INJURY IN AD

Small vessel disease is a recognized component of WM degeneration in AD, but 
its pathogenesis and contributions to neurodegeneration are poorly understood. 
The nature of vasculopathy and its progression to vascular degeneration and 
attendant ischemic injury require mechanistic understanding to guide preventive 
and therapeutic measures. Important initial steps include drawing distinctions 
between amyloid and non-amyloid associated vasculopathy and degeneration 
and characterizing the mediators and consequences of non-amyloid micro-
vasculopathy, which is a feature of WM degeneration in AD.

The well-established AD-associated progressive declines in cerebral blood 
flow, glucose metabolism, and oxygen utilization suggest that impairments in 
brain perfusion are important components of AD (58, 59). However, the extent to 
which vascular disease causes AD or represents an integral component of neuro-
degeneration remains controversial. Postmortem studies demonstrated cerebral 
vascular pathology in over 80% of brains with AD (60). In a separate postmortem 
study, substantial overlap was observed between AD and vascular-mediated injury, 
but very few cases of dementia could be attributed to vascular disease alone (2). 
The Gothenburg study reported that mental slowness and deficits in executive 
function were linked to WM vascular dysfunction and pathology but not cortical 
vasculopathy (37). Together, these studies suggest that although CNS vasculopa-
thy contributes to AD, it is seldom sufficient to cause dementia on its own (37).

In AD, there are two major types of microvascular pathology: amyloid angi-
opathy and non-amyloid vasculopathy (Figure 3). Amyloid angiopathy affects 
vessels in the cerebral cortex and leptomeninges, but not WM (61–63). In AD, 
non-amyloid vascular degeneration occurs in microvessels, including capillaries, 
arterioles, and venules in the cerebral cortex, WM, and subcortical nuclei. Non-
amyloid microvascular disease is characterized by fibrotic thickening of vessel 
walls (sclerosis), loss of endothelial cells, thickening of basement membranes, 
attrition of perivascular tissue (64), reduced vascular density (micro-vasculopenia), 
and increased vessel coiling (65). Mural sclerosis leads to extreme narrowing of 
the lumens and reduced vaso-responsiveness, restricting perfusion, particularly in 
times of increased metabolic demand (66). Chronic hypoperfusion of WM causes 
ischemic injury ranging from myelin loss to fiber attrition, and in extreme cases, 
leukoaraiosis and micro-infarcts (5, 13). Another consequence of microvascular 
pathology is weakening and increased permeability of vessel walls as that occurs 
in diabetic nephropathy (67). Leakiness of microvessels enables toxins and inflam-
matory mediators from the peripheral circulation to enter the brain and cause 
perivascular tissue injury and attrition (58, 68–74).

Potential role of nitric oxide in cerebral microvascular 
dysfunction and pathology

Nitric oxide (NO) is an important physiological modulator of vascular smooth 
muscle function and blood flow. However, NO in high concentrations can 
be cytotoxic due to the activation of stress and inflammatory responses. 
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Figure 3  White matter (WM) vascular pathology in AD. Human postmortem parietal lobe 
samples were fixed in formalin, embedded in paraffin, and stained with Luxol fast blue (LFB), 
hematoxylin and eosin (LHE). (A, B) Control white matter (A) medium size and (B) small 
vessels (sv). Fine arrow in A shows normal smooth muscle cells and the broad arrow shows a 
normal endothelial cell. L = lumen. Panels C–M depict vascular pathology in AD WM. 
(C) Medium size vessel with reduced smooth muscle and a widened perivascular space (pvs) 
reflecting to perivascular tissue attrition. (D) Vascular fibrosis with enlarged pvs containing 
lipid-laden macrophages and hemosiderin deposits. (E) Vascular fibrosis (arrow) and myelin 
loss (markedly reduced LFB staining compared with A–D, and F–I). (F) Severe microvascular 
disease with fibrotic thickening (black arrow) and an extremely narrow lumen (red arrow; L). 
(G, H) Severe arteriosclerosis with degeneration and splitting of vessel walls, narrowing of 
lumens and in (H), widened pvs. (I) WM lacune (micro-infarct) associated with severe 
vascular degeneration and circumscribed area of WM degeneration. (J–M) Progressive WM 
degeneration associated with vasculopathy. WM degeneration is associated with loss of 
myelin staining, perivascular tissue attrition, and fiber loss. (M) Absent LFB staining and 
cystic degeneration of WM.

Microvascular degeneration is ultimately mediated by oxidative stress and 
inflammation. The potential role of NO as a mediator of vascular degeneration 
in AD was suggested by the findings that high levels of nitric oxide synthase 
(NOS) activity were co-localized with nuclear p53 in cerebral vessels (75) and 
cells with increased expression of pro-inflammatory and immune signaling 
genes (76). A later independent study of postmortem human brains demon-
strated increased endothelial NOS (NOS3) immunoreactivity co-localized with 
nuclear p53 in AD microvascular smooth muscle and endothelial cells, confirm-
ing a role for aberrant NOS expression in cerebrovascular cells with increased 
proneness to apoptosis (77). Together, these findings suggest that non-amyloid 
vascular degeneration in AD is mediated by increased NO production and acti-
vation of inflammatory mechanisms.

However, the simultaneous detection of many sclerotic vessels with increased 
nuclear p53 but no detectable NOS3 immunoreactivity in either smooth muscle 
or endothelial cells, that is NOS3 expression was aberrantly down-regulated, 
suggests additional mechanisms mediate vascular dysfunction in AD (77). 
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For example, degenerative vascular sclerosis compromises vaso-responsiveness 
and flow, resulting in chronic ischemic injury that can be exacerbated by repeated 
and multifocal thrombotic microvascular occlusions. Furthermore, fibrotic 
degeneration disrupts vessel wall integrity, rendering them more permeable to 
toxic-inflammatory factors from the peripheral circulation. This phenomenon 
could account for the perivascular tissue attrition that accompanies microvascu-
lar degeneration in AD (Figure 3).

Thrombin activation, inflammation, microvascular 
occlusion, and ischemic injury in AD

In AD, the cerebral microcirculation is pathophysiologically activated due to 
endothelial cell overexpression of bioactive, neurotoxic, and inflammatory pro-
teins including thrombin. Endothelial-derived thrombin is a multifunctional pro-
tease which in AD, besides promoting vascular occlusion, functions as a 
stress-activated neurotoxin (78, 79). Mechanistically, thrombin initiates neuronal 
apoptosis via activation of glial and microglial cells, leading to increased oxidative 
stress and neuroinflammation (80). Thrombin also stimulates Aβ precursor pro-
tein production and cleavage, mediates proteolytic processing of tau, and causes 
tau hyperphosphorylation and aggregation (80, 81). In essence, vessel-derived 
thrombin could represent a critical modulator of AD pathology via its regulation 
of inflammatory and bioactive protein expression. In this regard, thrombin activa-
tion of endothelial cells enhances expression and release of many pro-inflammatory 
proteins including monocyte chemoattractant protein-1 (MCP-1), intercellular 
adhesion molecule-1 (ICAM-1), IL-1, IL-6, and IL-8 (80, 81). Thus, microvascu-
lar disease could initiate and propagate neuroinflammation in AD.

Pro-inflammatory cytokine activation in endothelial cells leads to oxidative 
stress and thrombin release, with attendant thrombotic luminal occlusion or ves-
sel wall injury causing increased permeability (82). However, the same responses 
can be mediated by up-regulation of the thrombin receptor protease-activated 
receptor 1 (PAR-1) or down-regulation of the brain thrombin inhibitor, protease 
nexin-1 near blood vessels (80). Since brain endothelial cells produce thrombin 
and also express functionally active PAR-1 and PAR-3 (79, 83), thrombin may 
initiate autocrine stimulation of a noxious feed-forward cycle. In addition, the 
intimate proximity of microvascular endothelial cells to microglia, astrocytes, and 
oligodendrocytes enables secretory products, including thrombin to influence cel-
lular responses via a paracrine-type stimulation. For example, treatment of human 
microglia with thrombin induces TNF-α/TNR-dependent up-regulation of 
NF-κB (84). In astrocytes, thrombin activation of PAR-1 leads to increased MMP-9 
expression through the regulation of several signaling pathways including PKC, 
JNK, and MAPK (85).

Microvascular endothelial cells elaborate trophic factors that positively impact 
oligodendroglia, but under conditions of stress, injury, or inflammation, endothe-
lial cell dysfunction can adversely affect oligodendrocytes. An important role for 
endothelial-derived factors in oligodendroglial health was suggested by studies 
showing that endothelial cell-conditioned media enhances survival of OPCs (86, 
87). On the other hand, in an experimental animal model of cerebral small vessel 
disease, early development of endothelial cell dysfunction was found to promote 
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secretion of heat shock protein 90alpha and subsequently block oligodendroglial 
differentiation and production of mature myelin (88). Mechanistically, oxidative 
stress impairs the capacity of endothelial cells to generate trophic factors (89) 
needed to support critical functions of mature oligodendrocytes, including myelin 
maintenance.

In AD, WM degeneration could stem from both endothelial and oligodendro-
cyte dysfunction. Endothelial cell dysfunction leading to excess thrombin release 
could cause micro-ischemic injury due to thrombosis or perivascular toxic injury 
mediated by increased vessel wall degeneration and permeability. At the same 
time, increased thrombin release would compromise the functional integrity 
of  oligodendroglia, impairing survival and maintenance of mature myelin 
(79, 90–92). The concept that increased thrombin release could impair oligo-
dendrocyte function is supported by the findings that the PAR1 thrombin recep-
tor is a critical extracellular switch that controls myelination and that PAR1 
deletion increases myelination (93), survival, maturation, and myelin mainte-
nance. Altogether, the findings suggest that increased thrombin signaling by any 
one of several mechanisms can lead to micro-vessel-related WM injury in AD. 
However, the missing link is that we still do not understand the underlying 
causes of brain microvascular degeneration and endothelial cell dysfunction that 
lead to thrombin activation. One potential etiopathic candidate is insulin resis-
tance since type 2 diabetes mellitus and other insulin resistance diseases are typi-
cally associated with microvascular disease and increased thrombin activation, 
accompanied by oxidative stress, platelet aggregation, vascular occlusions, and 
ischemic injury (94, 95). Correspondingly, insulin inhibits thrombin-induced 
endothelial dysfunction and mitigates microvascular permeability by decreasing 
thrombin-mediated vascular endothelial-cadherin translocation to the cytoskel-
eton/nuclear compartment (96).

INSULIN AND INSULIN-IGF SIGNALING IMPAIRMENTS 
AS MEDIATORS OF WM GLIAL-VASCULAR 
DEGENERATION IN AD

Considerable research had already demonstrated roles for impaired insulin and 
IGF-1 signaling in AD cortical and subcortical gray matter structures. However, 
little information is available regarding alterations of these same signaling path-
ways in AD WM degeneration, despite evidence that oligodendrocyte survival 
and function are dependent upon intact insulin and IGF networks. Therefore, 
additional research on the nature, mechanisms, and effects of impaired insulin 
and IGF signaling in relation to brain WM degeneration could generate a solid 
foundation for enhancing a broader understanding of the spectrum of brain 
pathology in AD.

In AD, deficits in brain energy metabolism, particularly concerning glucose 
utilization have been recognized for years (97–100). Positron emission tomog-
raphy (PET) imaging with (18) F-fluoro-deoxyglucose (FDG) is a standard 
approach for detecting early impairments in brain glucose uptake and utilization 
(101–103). Insulin and IGF are major regulators of energy metabolism in the 
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brain, and they have critical roles in maintaining broad neuronal and oligoden-
drocyte functions (38, 40). Impairments in brain insulin/IGF signaling due to 
insulin/IGF deficiencies or receptor resistances cause deficits in learning and 
memory (104).

Postmortem human studies demonstrated that AD is associated with signifi-
cantly reduced expression of brain insulin and IGF polypeptides and receptors, 
insulin and IGF receptor tyrosine phosphorylation and receptor binding, activa-
tion of downstream pathways that promote cell survival, metabolism, neuronal 
plasticity, and myelin maintenance, and inhibition of signaling mechanisms that 
promote oxidative stress, neuroinflammation, cell death, and lipid peroxidation 
(42, 105, 106). Insulin/IGF deficiencies and resistances increase with Braak stage 
severity of AD (41, 105) and therefore correlate with accumulations of Aβ and 
pTau pathologies. The finding that cerebrospinal fluid (CSF) insulin levels decline 
in the early or intermediate stages of AD (107), and overlap with progressive 
accumulations of Aβ and advanced glycation end-products (AGEs) (Figure 4A) 
(52, 107, 108) which cause oxidative stress and neuroinflammation, suggests that 
insulin deficiency contributes to progressive neurodegeneration in AD.

The human studies linking AD pathogenesis and progression to impairments 
in brain insulin/IGF signaling are supported by data from experimental models of 
sporadic AD produced by intracerebral (i.c.) administration of streptozotocin 
(STZ). STZ, a pro-diabetes toxin, injected into the cerebral hemispheres and ven-
tricles, causes selective insulin deficiency and resistance in the brain with deficits 
in learning and memory, elevated levels of pTau, Aβ, and ubiquitin, loss of neu-
rons, gliosis, oxidative stress, neuroinflammation, WM atrophy, and microvascu-
lar disease (47–49, 104, 109). Importantly, data from these models support the 
concept that sustained and progressive deficits in brain insulin/IGF signaling 
cause nearly all of the known structural, functional, biochemical, molecular, and 
neurobehavioral abnormalities identified in AD. Correspondingly, insulin admin-
istration improves working memory and cognition (110–113) and enhances Aβ 
clearance (114). Moreover, CNS-appropriate insulin sensitizer drugs have been 
shown to prevent or reduce AD-associated abnormalities in experimental animals 
(49, 109, 115).

Until now, the adverse effects of brain insulin/IGF deficiencies and resistances 
have been focused on neurodegeneration and the functional impairments in gray 
matter structures due to the interest in linking them to standard neuropathologi-
cal processes. Additional research is needed to determine how insulin/IGF-1 met-
abolic dysfunction mediates other aspects of AD. In this regard, recent preliminary 
studies showed that with the increasing severity of AD, WM atrophy and degen-
eration are associated with corresponding impairments in the expression of 
Akt pathway proteins and phosphoproteins (de la Monte, S.M. and Tong, M, 
Unpublished). Compromised signaling along these pathways could lead to loss of 
structural and functional integrities of oligodendrocytes and myelin. Although the 
steps leading from brain insulin and IGF deficiencies and resistances to WM 
degeneration have not yet been delineated, clues may be harnessed from data 
generated via unrelated experiments. For example, several studies have shown 
that WM atrophy and degeneration in other models of brain insulin and IGF resis-
tances were associated with significant oligodendrocyte dysfunction. For exam-
ple, in a rat model of i.c. STZ, WM degeneration was associated with reduced 
expression of mature myelin-associated genes and increased expression of 
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Figure 4  Cellular signaling abnormalities mediating WM degeneration. (A) Advanced 
glycation end-product (AGE) immunoreactivity was measured in postmortem frontal WM 
homogenates from humans with normal aging (Braak 0–2; B0–2), moderate AD (B3–4),or 
severe AD (B5–6) AD using a direct binding ELISA (107). Immunoreactivity was detected 
with horseradish peroxidase-conjugated secondary antibody and Amplex Red fluorophor. 
Fluorescence light units (FLU) were measured (Ex 579 nm/Em 595 nm) in a Spectromax 
M5, and results were normalized to protein content. (B) AD WM atrophy and 
degeneration are associated with reduced expression of mature MAGs. Quantitative 
RT-PCR was used to measure mRNA levels of MAG 1 and myelin oligodendroglial 
glycoprotein (MOG). PCR primer pairs were designed with Primer 3 (http://primer3.
sourceforge.net/) software. PCR reactions were performed in a Roche Lightcycler 480 
System (116). Gene expression was analyzed using the ΔΔCt method with results 
normalized to hypoxanthine-guanine phosphoribosyl transferase, HPRT. (C) Insulin and 
IGF-1 suppress expression of genes encoding enzymes that produce ceramides or break 
down sphingomyelin. Frontal lobe WM slice cultures from an i.c. STZ adult Long Evans rat 
model of sporadic AD (109) were stimulated for 24 h with 10 nM insulin, 10 nM IGF-1, or 
vehicle (control). Graphs depict the mean ± S.E.M. for each group. Intergroup 
comparisons were made by one-way ANOVA with the post hoc Tukey’s test. Significant 
P-values and trends are indicated.

http://primer3.sourceforge.net/�
http://primer3.sourceforge.net/�
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immature myelin-associated genes (116), corresponding with deficits in myelin 
maturation and striking alterations in WM structure (117). Similar observations 
have been made in human postmortem brains with different severities of AD and 
WM atrophy (Figure 4B).

An additional feature of experimental brain insulin resistance with WM atro-
phy is that oligodendrocyte dysfunction is associated with altered expression of 
sphingolipid metabolizing enzymes such that ceramide accumulation and sulfa-
tide depletion would be favored (Figure 4C) (118, 119). In humans and experi-
mental animals, reductions in brain sulfatide and increases in ceramide correlate 
with cognitive impairment, oxidative stress, lipid peroxidation, and neuroinflam-
mation (22–24, 120). Ceramides inhibit insulin signaling through PI3K-Akt 
(25, 121) and increase oxidative stress, Aβ, pTau, and pro-apoptosis activation 
(122). Furthermore, preliminary studies suggest that insulin and IGF-1 stimula-
tion suppress expression of enzymes that generate ceramides via degradation of 
sphingomyelin (Figure 4C). Therefore, it is likely that impairments in insulin/
IGF-1 signaling in oligodendrocytes are important in the pathogenesis of WM 
atrophy and degeneration and mediate disease progression in AD.

Proposed role of APOE-ε4

Apolipoprotein E is the major lipid transport protein in the CNS. This 34 kDa 
protein has three major isoforms (APOE-ε2, APOE-ε3, and APOE-ε4) that 
differ by single amino acid substitutions at residues 112 and 158 (123). The 
ε4 allele is the strongest genetic risk factor for late-onset sporadic AD 
(124–127) in that carriers account for over 50% of all AD cases (128); how-
ever, the APOE-ε4 risk assessments vary across different countries and eth-
nicities (129). AD risk is increased by three- or fourfold among APOE-ε4 
carriers, and 15-fold in APOE-ε4 homozygotes. APOE-ε4 confers increased 
risk for AD by reducing brain glucose metabolism in the preclinical stages of 
disease (130), and ultimately impairing signal transduction through the insu-
lin receptor, reducing Aβ clearance, and increasing Aβ aggregation (131). 
APOE-ε4 may also have a role in mediating AD-associated WM degeneration 
via insulin resistance (131) and attendant microvascular endothelial cell and 
oligodendrocyte dysfunction.

Insulin/IGF signaling impairments and glial-vascular 
WM pathologies in AD

Our overarching hypothesis is that in AD, WM degeneration is mediated by 
impairments in insulin and IGF signaling that cast a wide net of pathophysiologi-
cal responses including oxidative stress, inflammation, and dysregulated glucose 
and lipid metabolism (Figure 5). In WM, the targets of degeneration are oligoden-
drocytes and microvessels. Reduced signaling through insulin/IGF receptors, IRS 
and downstream Akt pathways compromises oligodendrocyte survival, myelin 
maintenance and integrity, and sphingolipid homeostasis, favoring sulfatide 
depletion and ceramide accumulation. Ceramide-mediated neurotoxicity, inflam-
mation, oxidative stress, lipid peroxidation, and further impairment of insulin 
signaling reinforce the cascade of WM degeneration.



White Matter Degeneration in Alzheimer’s Disease 137

Figure 5  Hypothesis: White matter degeneration in AD is mediated by insulin and IGF resistances 
that target oligodendrocytes and microvessels. Reduced myelin and vascular integrity promote 
neuroinflammation, stress, and ischemic injury. APOE-ε4 genotype, obesogenic diets, and 
poor lifestyle choices have cofactor roles in mediating WM degeneration due to 
exacerbation of insulin resistance.

Microvascular disease is also driven by insulin deficient and resistant states 
such as in types 1 and 2 diabetes mellitus. Initially, microvascular disease is 
mediated by combined effects of hyperglycemia, increased levels of AGE 
(Figure 4A), up-regulation of receptors for AGE (RAGE), and reduced responsive-
ness to NOS/NO (67, 132). Therefore, insulin and IGF resistances negatively 
impact microvascular structural integrity, vaso-responsiveness, and endothelial 
function. In later stages, microvascular disease is associated with the replacement 
of smooth muscle by collagen (sclerosis) leading to degenerative mural fibrosis 
and luminal narrowing, restricted blood flow, reduced vessel wall integrity marked 
by increased leakiness, and endothelial damage with attendant up-regulation and 
release of thrombin. Thrombin activation drives inflammation (cytokines), oxida-
tive stress, microvascular occlusions. Microvascular occlusions cause ischemia 
which can injure oligodendrocytes, myelin, axons, and vessels. Also, vessel wall 
leakiness exposes perivascular tissue to toxins from the peripheral circulation. 
Late and probably permanent microvascular-associated WM pathologies in AD 
include leukoaraiosis with loss of myelin and degeneration of axons, micro-
infarcts, perivascular tissue attrition, and vasculopenia (vessels can be destroyed 
by ischemic necrosis). Finally, microvascular disease can drive WM degeneration 
by worsening insulin resistance, oxidative stress, and inflammation.

Inflammation and oxidative stress are recognized mediators of neurodegenera-
tion in AD (26, 39, 133). Potential sources of stress and inflammation include 
increased levels of AGE and RAGE expression (107, 108, 132, 134–137), impaired 
insulin/IGF signaling through Akt pathways, lipid peroxidation linked to myelin 
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breakdown, and ceramide accumulation. Neuroinflammation in AD is associated 
with increased pro-inflammatory cytokine expression in astrocytes and microglia 
(133, 138, 139). Although TNF-α, IFN-γ and IL-1β are key players, preliminary data 
suggest that neuroinflammatory responses are broader and include activation of pro-
inflammatory and inhibition of neuroprotective cytokines/chemokines (17, 140).

CONCLUSION

Combined effects of oligodendrocyte and microvascular dysfunction interact to 
cause WM degeneration, including leukoaraiosis in AD. Insulin resistance exacer-
bation by APOE-ε4 may accelerate AD-associated WM molecular, biochemical, 
and structural pathologies linked to impaired function of oligodendrocytes 
and microvascular endothelial cells. Therefore, WM degeneration and cognitive 
impairment may be preventable or reversible by lifestyle measures that restore 
insulin responsiveness in the CNS.
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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease character-
ized by memory and language disorders, and the accumulation of amyloid-β 
and tau protein in the brain has been considered a feature of AD. The accumu-
lation of amyloid-β has been reported to be observed 15 to 20 years before the 
onset by image analysis-based diagnostic methods. In addition, it has been 
reported that AD is associated with various diseases such as type 2 diabetes, 
periodontal disease, and obesity. It is conceivable that these diseases trigger 
the onset of AD. The human gut and brain form a network called “brain–gut–
microbiota axis,” and it is suggested that the gut microbiota is involved in 
brain diseases. Recently, the microbiota has also been reported to be involved 
in diseases such as depression and Parkinson’s disease, and so attention is 
being paid to the relationship between AD and gut microbiota. This chapter 
outlines the relationship between AD and the human microbiome.
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INTRODUCTION

The cause of Alzheimer’s disease (AD) is presently unknown, but its onset has 
been shown to involve mainly genetic and environmental factors. About 700 
risk genes (as of April 2019) are registered in Alzforum (https://www.alzforum.
org/) as the genetic factors of AD. Other factors found to be involved include 
lifestyle habits such as sleep, exercise, diet, and educational history. Recently, it 
has been reported that sleep is related to the accumulation of amyloid-β, which 
is a characteristic of AD. In healthy middle-aged men, sleep reduced amyloid-β 
42 in cerebrospinal fluid by 6%, while lack of sleep abolished that reduction (1). 
In a study investigating the relationship between the Mediterranean diet and 
dementia, it was noted that the traditional Mediterranean diet that consists of a 
large amount of fruits, vegetables, and cereals reduces the risk of developing 
dementia and AD (2). In addition, Ozawa, upon following more than 1000 sub-
jects over 17 years, has reported that the incidence of AD decreased significantly 
with increased intake of milk and dairy products (3). Lifestyle plays an impor-
tant role in the prevention of AD, and dysregulation of lifestyle leads not only to 
AD but also to various other diseases. This chapter first outlines the relationship 
between lifestyle diseases and AD, and then the relationship between gut micro-
biota and AD.

AD AND DIABETES

Association of AD to diabetes led to the classification of a new category of diabetes 
called type 3 diabetes (4). Ott et al. (5) examined the association between diabetes 
and dementia in 6330 people aged 55–99 years, and the results suggest an asso-
ciation between diabetes mellitus and dementia. In addition, in a prospective 
population-based cohort study among 6370 elderly subjects, diabetes mellitus 
reportedly doubled the risk of dementia and AD. The study also reported that 
patients treated with insulin had four times higher the risk of dementia. A cohort 
study of 2574 men reported that patients with type 2 diabetes are associated with 
dementia, AD, and vascular dementia (6). The same study concluded that these 
associations are stronger in patients carrying the APOE ε4 allele (7). Furthermore, 
borderline diabetes is also associated with the increased risk of dementia and AD 
(8). Conversely, Michal et al. (9) reported that in the hippocampus of AD patients, 
diabetics had significantly lower plaque ratings than the non-diabetics. In addi-
tion, inflammation in the brain by the intake of a high-fat diet promotes accumu-
lation of amyloid in diabetes model mice, regardless of the decrease in insulin 
(10). Thus, prior studies suggest that the factors like eating habits, mild glucose 
intolerance, and onset of type 2 diabetes are involved in the onset of AD. On the 
other hand, amyloidosis is a key pathological feature of both AD and type 2 dia-
betes (11). Bacterial endotoxin lipopolysaccharide and bacterial cell wall peptido-
glycan are involved in amyloidosis, suggesting that chronic bacterial inflammation 
may link the two diseases. In addition, recent advances in gene analysis technol-
ogy have revealed the relationship between intestinal bacteria and diabetes. 
Adachi et al. (12) have reported the relationship between type 2 diabetes 
and  short-chain fatty acids (SCFAs), the metabolites of the microbiota, in the 
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Japanese population. From these studies, it can be considered that changes in the 
microbiota affect the production of SCFAs, thereby promoting the onset of type 2 
diabetes as well as AD.

AD AND PERIODONTAL DISEASE

Periodontitis is considered as a risk factor for dementia and AD. Periodontal 
disease is a chronic disease caused by gram-negative bacteria such as 
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. It has 
been clarified that this chronic inflammation is related to the accumulation of 
amyloid-β and cognitive impairment that are characteristic of AD (13). In addi-
tion, tumor necrosis factor-α and antibodies against periodontitis in plasma 
have been reported to be biomarkers of AD (14, 15), and periodontal disease 
has been suggested to be a probable trigger for AD. Recently, gingipain, a prote-
ase produced by P. gingivalis, has been detected in the brains of patients with AD 
(16). The concentration of gingipain is high in the brain of patients with AD, 
and the accumulation of tau protein is promoted, whereas the accumulation of 
amyloid-β is suppressed by the gingipain inhibitor. Furthermore, oral adminis-
tration of P. gingivalis to mice promotes the accumulation of amyloid-β (17). 
Gingipain reportedly activates microglia and causes inflammation in the brain 
(18). These activated microglia cause accumulation of amyloid-β and cognitive 
decline (19). However, Noble et al. (20) have reported that, in a cohort study of 
219 subjects (consisting of 110 patients with AD and 109 healthy volunteers), 
subjects with high serum IgG against Actinomyces naeslundii (which is associated 
with periodontal disease) were at a high risk of developing AD. Thus, the peri-
odontitis bacteria have been linked to AD through the microbial toxins, inflam-
matory substances, and serum antibodies. Chronic inflammation developed by 
these bacteria is a predisposing factor for AD.

AD AND OBESITY

Obesity is considered as one of the risk factors associated with AD. Recently, 
the relationship between obesity and AD has been studied extensively. Animal 
studies have shown that mice fed with high-fat diet significantly increases 
the accumulation of amyloid-β in the hippocampus and are involved in cogni-
tive decline (21–23). Another clinical study characterized by magnetic reso-
nance imaging (MRI) scan of the brains of 700 patients having mild cognitive 
impairment (MCI) inferred that higher body mass index (BMI) is associated 
with brain volume deficits (24). Gustafson reported the relationship between 
BMI and risk of dementia as investigated in an 18-year follow-up of 392 Swedish 
adults (aged 70–88 years) without dementia. Higher body weight was observed 
in women who developed AD compared to women without dementia (70, 75, 
and 79 years). In particular, at the age of 70 years, every 1.0 increase in BMI 
showed a 36% increase in AD risk (25). In addition, Luchsinger’s study has 
shown that the waist to hip ratio is related to a higher risk of AD (26). In the 
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Swedish, 8534 twin individuals over the age of 65 were assessed to detect cases 
of dementia. Overweight (BMI 25–30) and obesity (BMI over 30) at midlife 
were related to dementia with odds ratios of 1.71 and 3.88, respectively (27). 
However, the risk for dementia associated with obesity gradually reduced with 
increasing age (28). Obesity has been implicated as a risk factor for AD in 
middle age, whereas its associated risk decreases with increasing age. Conversely, 
weight loss and low BMI have been found to be associated with increased risk 
of AD in older adults (29).

MICROBIOTA AND AMYLOID ACCUMULATION

The relationship between microbiota and amyloid-β accumulation has been stud-
ied by Harach et al. (30). APPPS1, an AD mouse model, presents accumulation of 
amyloid-β in the brain in an age-dependent manner. The generation of germ-free 
APPPS1 mice was inhibited by the accumulation of amyloid-β. In addition, the 
microbiota of this mouse model is different from that of the wild type, and it has 
been reported that accumulation of amyloid-β increases in mice transplanted 
with the microbiota of an AD mouse model. Furthermore, Ho et al. (31) found 
that valeric acid and butyric acid, SCFAs produced by the microbiota, strongly 
inhibit the aggregation of amyloid-β in an in vitro test. Furthermore, bacterial 
endotoxin may be involved in the inflammations associated with amyloidosis and 
AD (32). Although some bacteria such as Escherichia coli produce amyloids (33), 
the relationship between the amyloid that is caused by neurodegenerative dis-
eases such as AD and bacterial amyloids has not been clarified (34). However, 
bacterial amyloid has been shown to activate signaling pathways that play a role 
in the pathogenesis of neurodegenerative diseases and AD, and microbiota is a 
noted key player that enhances inflammation associated with the accumulation of 
amyloid-β  (35). Furthermore, the lipopolysaccharide of gram-negative bacteria 
promotes accumulation of amyloid-β in mouse brain and induces cognitive dys-
function (36, 37). Hence, it has been suggested that microbiota is involved in the 
accumulation of amyloids, which is known to be a pathological feature of AD, via 
metabolites such as extracellular components and SCFAs. In addition, bacteria 
that produce amyloids are also present in the enteric bacterial groups, but it is 
thought that further research is necessary to clarify whether amyloids derived 
from the bacteria are involved in AD progression.

EFFECTS OF DAIRY PRODUCTS AND PROBIOTICS IN AD

Acute and chronic inflammation is associated with neurodegenerative diseases 
such as AD and Parkinson’s disease (38–41). Probiotics such as lactic acid bacteria 
and Bifidobacterium have attracted attention as tools to suppress this  inflamma-
tion. In the Bonfili study, administration of the probiotic cocktail  SLAB 51 
(Streptococcus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus 
acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. bulgaricus, L. brevis) 
in AD model mice (3xTg-ADmouse) affected changes in the microbiota, thus 
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affecting the content of metabolites of enteric bacteria such as SCFAs and cogni-
tive function (42). Kobayashi et al. (31) also reported that oral administration of 
B. breve A1 led to behavior impairment to the same level as donepezil, a centrally 
acting cholinesterase inhibitor, in AD model mice injected with amyloid-β into 
the ventricles. Acetic acid, which is a metabolite of Bifidobacterium, is known to 
play an important role in the improvement of AD. However, there have been cases 
where improvement in memory due to probiotics was not observed. Benton et al. 
(43) confirmed the cognitive function by following 3 weeks of probiotic milk 
drink or placebo control consumption in 124 healthy volunteers (mean age 61.8 
years), and the cognitive function was higher in the placebo consuming group 
than the probiotic drinking group upon 20 days of consumption. Furthermore, 
recent research has shown that consumption of not only these probiotics but also 
yogurt and cheese has been linked to AD and dementia. David et al. (44) reviewed 
that bioactive peptides in dairy products improve cognitive function. Ano et al. 
(45, 46) have also shown that in vivo experiments the peptides present in 
Camembert cheese improve the decline in memory and cognitive function. On 
the contrary, Rahman et al. (47), in an epidemiological study of 1056 subjects, 
reported that dietary intake of cheese is associated with a lower prevalence of 
cognitive impairment. Also, a study conducted on a total of 1006 community-
dwelling Japanese subjects without dementia, aged 60–79 years (followed up for 
a median of 15 years), reported that high intake of milk and milk products reduced 
the risk of dementia (48). Although many model animals for AD and dementia are 
produced and their application to this field is advanced, further studies are needed 
to establish the influence of probiotics and dairy products on brain function.

AD AND GUT MICROBIOTA

Recently, the development of next-generation sequencing technology has made it 
possible to estimate the gut microbiota rapidly at a low cost, and the relationship 
between various diseases and the gut microbiota has been studied extensively. The 
Vogt study compared the microbiota in 50 subjects (Healthy control HC: n = 25 
and AD: n = 25) and noted decreased microbial diversity in the AD subjects. It 
also reported a decrease in Firmicutes and increase in Bacteroidetes percentage 
abundance (49). Saji et al. (50) compared the microbiota of non-demented 
patients (n = 49) with demented patients (n = 34) among 128 Japanese subjects 
and found that Bacteroides decreased in demented patients compared to non-
demented patients (Figure 1). Furthermore, Nguyen et al. (51) reported that 
butyrate-producing bacteria involved in cognitive function have been isolated 
from the microbiota of patients with AD. Liu et al. (52) reported that in a study of 
97 subjects (AD: n = 33, MCI: n = 32, and HC: n = 32), the fecal microbial diver-
sity was decreased in AD patients compared with MCI patients and healthy vol-
unteers. In addition, it also reported a decrease in Firmicutes and increase in 
Proteobacteria abundance. There are similar reports on the relationship between 
gut microbiota and AD as the studies stated above. Therefore, further research is 
needed to clarify the difference. With the growing research in this field, future 
boom in AD cure research might as well be directed toward microbiome research.
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GUT MICROBIOTA AND BEHAVIOR

Human intestine and brain form a network called the “brain–gut–microbiota axis” 
through physiologically active substances. The gut microbiota has been shown to 
play an important role in this network. Researchers have transplanted mice with 
different microbiota and compared their response to stress with adrenocortico-
tropic hormone and corticosterone as indicators (53). Specifically, as compared 
with specific pathogen-free mice, adrenocorticotropic hormone and corticoste-
rone levels have been reported to significantly increase in germ-free mice due to 
restraint stress. In addition, the effect is also seen in mice transplanted with B. 
infantis, suggesting that the effect differs depending on the microbe transplanted 
and that the microbiota also affects neurotransmitters in the brain (54, 55). Kim 
et al. (56) reported that pregnant mice colonized with the human commensal 
bacteria (a mix of 20 human bacterial strains), which induce intestinal Th17 cells 
due to poly (I:C)-induced inflammation, produced offspring that were found to 
have increased anxiety behaviors such as increased ultrasonic vocalization, 
enhanced repetitive behavior with marble burying test, and shortened time in the 
center of the open-field arena. In contrast, these anxiety behaviors were not 
observed if the mothers were pre-treated with interleukin-17a blocking antibody, 
since interleukin-17 production of intestinal Th17 cells induced by human 

Figure 1  Relative bacterial abundance in the gut microbiota of dementia and non-dementia 
patients. It was suggested that a lower prevalence of Bacteroides is seen in the gut of 
dementia patients than non-dementia patients (50).
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commensal bacteria contributes to the development of anxiety behaviors in mouse 
offspring. Thus, it was revealed that the gut microbiota of the mother mouse is 
involved in the behavior of the offspring mouse. In addition, the authors previ-
ously reported cognitive behavior decline in germ-free mice transplanted with the 
microbiota of AD patients (57). Cognitive behavior was assessed by Object 
Location Test (OLT) and Novel Object Recognition Test (ORT). A significant dete-
rioration of cognitive function was observed through both OLT (70 and 75 weeks 
of age vs. 10 weeks of age; 55, 70, and 75 weeks of age vs. 15 weeks of age) and 
ORT (70 weeks of age vs. 10 weeks of age; 35, 55, 65, 70, and 75 weeks of age vs. 
15 weeks of age) in mice transplanted with microbiota from affected patients. 
Moreover, significant reduction of cognitive function of these mice was confirmed 
by both OLT (55 and 70 weeks of age) and ORT (55, 60, 65, and 70 weeks of age) 
in comparison with cognitive function of mice transplanted with microbiota of 
healthy volunteers (Figure 2). In this article, these data were re-analyzed by linear 
regression analysis (Figure 3). A significant decrease in cognitive function was 
confirmed in mice transplanted with microbiota from affected donors in relation 

Figure 2  Novel object recognition test in mice transplanted with microbiota. (A) Ratio of time 
spent exploring a familiar object in a new location to time spent exploring a familiar object in 
an old location. (B) Ratio of time spent exploring a novel object to time spent exploring a 
familiar object. Blue and red lines indicate the ratio of time spent by mice transplanted with 
microbiota from a healthy donor and a patient with Alzheimer’s disease, respectively. Black, 
* and ** indicate comparison between groups; red,* and ** indicate mice transplanted with 
microbiota from a patient with Alzheimer’s disease had significantly altered cognitive function 
at respectively weeks of age compared with that at 10 weeks of age; green, *, **, and *** 
indicate mice transplanted with microbiota from a patient with Alzheimer’s disease had 
significantly altered cognitive function at respectively weeks of age compared with that at 
15 weeks of age. Data are mean ± SEM. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (57).
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with age. The regression analysis results showed association between cognitive 
decline and age in mice transplanted with microbiota from affected patients, but 
not in mice transplanted with microbiota of healthy volunteers. Therefore, it was 
clear that mice transplanted with microbiota from affected patients had reduced 
cognitive function. This was further investigated by fecal metabolome analysis. 
The principal component analysis of the metabolites from individual mice exhib-
its separate clusters representing each of the mice categories (Figure 4). And the 
different metabolites from affected donors to mice transplanted with microbiota 
included gamma-aminobutyric acid, taurine, and valine, all of which are involved 
in central nervous system function. In addition, a difference in the concentration 
of other amino acids such as tryptophan, tyrosine, propionic acid, and SCFAs was 
also reported. Thus, it was suggested that the microbiota influences host behavior 
through its metabolites.

CONCLUSION

AD is known to cause deposition of amyloid-β, which is the main component of 
senile plaques in the brain. This deposition of amyloid-β is caused by the accumu-
lation of amyloid generated from the amyloid precursor protein (APP) by the action 
of two enzymes β-secretase and γ-secretase in the cerebral cortex of the brain. 

Figure 3  Regression analysis of two behavior tests. (A) Ratio of exploring novel objects in the 5 
min of OLT. Blue square and red circle indicate healthy control (HC) group and Alzheimer’s 
disease (AD) group, respectively. (B) Ratio of exploring for novel objects in the 5 min of 
object recognition test. In both panels means ± SEM are shown (57).
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It has been clarified that this accumulation of amyloid-β starts 15–20 years before 
the onset of AD. At the same time, after a decrease in cognitive function is observed, 
there is not much change in the accumulation of amyloid-β, and no effect is seen 
in a drug targeting amyloid-β. Hence, some investigators have questioned the 
involvement of amyloid-β in AD. However, further studies are needed to investi-
gate whether AD caused changes in the gut microbiota or vice versa.
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Abstract: The retina is part of the central nervous system (CNS), and therefore, in 
Alzheimer’s disease (AD), retinal and optic nerve degeneration could take place. 
This degeneration leads to neurofunctional changes that can be detected early and 
followed up throughout the evolution of the disease. As opposed to other CNS 
structures, the eye is easily accessible for in vivo observation. Retinal organization 
allows for the identification of its different neurons, and in consequence, detection 
of minimal changes taking place during neurodegeneration is possible. Functional 
vision studies performed on AD patients in recent years have shown how visual 
acuity, contrast sensitivity, color vision, and visual integration vary with the progres-
sion of neurodegeneration. The development of optical coherence tomography in 
ophthalmology has meant a breakthrough in retinal exploratory techniques, allow-
ing the obtention of high-resolution images using light. This technique enables reti-
nal analysis in the earliest stages of AD, being considered as a biomarker of neuronal 
damage. Given AD’s high prevalence and its expected increase, it is important to 
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perform easy tests that cause minimal discomfort to the patients at a low cost while 
offering abundant information on the stage of the disease.

Keywords: Alzheimer’s disease; biomarker; neurodegeneration; retina; visual system

INTRODUCTION

Alzheimer’s disease (AD) is recognized by the World Health Organization as a 
global public health priority. AD is the single principal cause of dementia, between 
50 and 75%, and is primarily a condition of aging, roughly doubling in prevalence 
every 5  years after age 65 (1). The incidence of AD increases with age, and 
the prevalence is growing as a result of the aging of the population (2); however, 
there are no disease-modifying therapies currently available, and none have been 
successful in late-stage clinical trials (3).

Late-onset AD is likely to be driven by a complex interplay between 
genetic  and environmental factors, implicating inflammatory, cholesterol 
metabolism and endosomal-vesicle recycling pathway (4) and the presence of 
the APOE+4 allele (5). In addition, AD is frequently associated with vascular 
dysfunctions and inflammation (6). In particular, it is now recognized to play 
a key role in AD pathogenesis the microglial activation in response to amyloid 
deposition (7).

The basis of AD has not been fully elucidated. However, the progressive accumula-
tion of β-amyloid (Aβ) plaques and abnormal forms of phosphorylated tau (tau 
tangles) within and outside of neurons and neuroinflammation, both of which could 
lead to neuronal loss and synaptic dysfunction (8), are considered to be the neuro-
pathological hallmarks (9–11).

The “amyloid cascade hypothesis” (12) is based on the progressive 
deposition of fibrillar Aβ as diffuse plaques, which activates an inflammatory 
response, altered ion homeostasis, oxidative stress, and altered kinase/
phosphatase activity, leading to the formation of NFTs and widespread synap-
tic dysfunction and neuronal death (13). Recently, it has been demonstrated 
that an Aβ plaque environment can accelerate the templated spread of tau 
pathology (14, 15).

Hyperphosphorylation of tau has numerous pathogenic effects. It reduces tau’s 
affinity for microtubules and increases its possibility to aggregate and fibrillize 
(16). This impact leads to weakening of microtubules with consequent axonal 
transport failure and neurodegeneration (15).

In the past decade, remarkable advances have been made in disease-
specific biomarkers based on the detection of amyloid or neurodegeneration. 
With the knowledge that the pathological changes occur years previous to 
symptoms, the arrival of biomarkers of Aβ and tau pathology, and nuclear 
imaging measures of atrophy, diagnostic criteria have evolved to allow for the 
diagnosis to be made both earlier and with increased molecular specificity.

These biomarkers not only enable the diagnosis of AD in the stage of 
dementia but also beforehand, in the prodromal stages of AD. However, these 
biomarkers are not applicable as population-wide screening tools because 
they are invasive, not easily applicable and expensive.
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EYE AND BRAIN: SYMBIOTIC RELATIONSHIP

Over the last few decades, in neurodegenerative diseases of the central nervous sys-
tem (CNS), the importance of ophthalmic examination has reportedly increased. It 
is not surprising that the retina, as an extension of the CNS, is impaired in patients 
with CNS degeneration (17). The eye has unique physical structures and is host to 
specialized immune responses similar to those in the brain and spinal cord (18–20). 
In fact, abnormal results were found in AD patients in test exploring visual process-
ing/visual pathways and also in those examining the retina (17).

The neuroinflammatory changes could be detected using a routinely diag-
nostic technique used in ophthalmology, the optical coherence tomography 
(OCT). OCT allows to see the anatomic detail of pathological changes in the 
retina and optic nerve. Changes in OCT measurements have been used to study 
the course of neurodegenerative diseases such AD (21–25), suggesting that the 
data compiled may be useful as a biomarker in diagnosing and treating neuro-
degenerative disease.

The retina is made up of specialized neuron layers that are interconnected via 
synapses (photoreceptors, bipolar cells, horizontal cells, amacrine cells, inter-
plexiform cells and ganglion cells) (18, 26). In the eye, the light that enters is 
captured by the photoreceptor cells in the outer retina, initiating a cascade of 
neural signals that finally reach the retinal ganglion cells (RGCs), whose axons 
form the optic nerve. These axons project to the lateral geniculate nucleus in the 
thalamus and to the superior colliculus in the midbrain, whose information is 
then transmitted to specialized visual processing centers in the brain that provide 
a perception of the world.

The first study, showing postmortem anomalies in the optic nerve of patients 
with AD, demonstrated not only widespread axonal degeneration but also a reduc-
tion in the number of RGC and the thickness of nerve fiber layer (NFL), with a 25% 
decrease of ganglion cell layer (GCL) (27–29). More recent OCT studies also found 
a decrease in the thickness of inner retinal layers (NFL and GCL) (30–41).

The presence of Aβ plaques in GCL could explain the RGC degeneration in the 
AD course (19, 27, 42). In fact, it has been demonstrated that most of the Aβ 
plaques deposited in the retina are located in the GCL (43, 44). Deposits of Aβ 
trigger a neurotoxic effect in the RGC, inducing apoptosis (45). This apoptosis is 
dose- and time-dependent (45). Some pieces of evidence showed that Aβ expres-
sion is greater in the central retina than in the periphery of the eye of an AD mouse 
model (46). As in the brain, Aβ deposits in the retina have the classical plaque 
structure, forming clusters along the blood vessels (47). Aβ accumulations were 
located inside and around melanopsin retinal ganglion cells (mRGC) and more 
evident in the superior quadrant of the retina (47).

In the last few years, it was found that mRGCs also showed a significant loss in 
postmortem AD retinas (47). These cells represent the 1–2% subpopulation of 
RGC that are intrinsically photosensitive (47, 48). The mRGC send ambient light 
information to the hypothalamus nucleus via the retinohypothalamic tract (48), 
regulating circadian rhythms, pupil size, sleep alertness, and pineal melatonin 
synthesis (49–51). This mRGC loss could contribute to circadian dysfunction in 
AD (47). Indeed, its presence in the early stages of AD of circadian dysfunction 
was postulated as the worst prognostic value in AD (47).
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All these retinal changes could be responsible, in part, for the visual deficit that 
occurs in AD patients. The acetylcholine decrease is also characteristic of this 
disease,  and therefore contributes to the visual deficit that occurs in AD patients 
because acetylcholine is essential for the correct visual process of healthy retinas (52).

VISUAL FUNCTIONAL TESTS IN THE EXPLORATION OF AD

Aging affects visual function because light transmission diminishes inside the eye, 
whereas the scattering of light increases. With age, there is not only a decrease in 
the density of photoreceptors in the retina, but there is also less efficiency in pho-
totransduction and photopigment regeneration (53). In addition to aging, visual 
processing is affected in AD patients. The brain’s visual areas are involved in AD 
pathology (in the dorsal and ventral regions), worsening the perception of move-
ment; angular and color discrimination; and form and face identification (54–60). 
There are several tests such as the visual acuity test, and the contrast sensitivity 
and color vision test to explore this visual processing in the ophthalmology 
practice.

Visual acuity

Visual acuity (VA) is a measure of the spatial resolution of the visual system to 
detect and discriminate an object. In patients with AD, it is very important to 
choose the correct VA test. It was demonstrated that VA tests present better values 
if the letters are isolated (61).

Contrast sensitivity and color vision

The contrast sensitivity (CS) test assesses the capacity of the visual system to dis-
tinguish an object from the background in which it is placed. The CS test allows 
us to ascertain the integration of the information of the ganglion cells receptor 
field and their cortical processes. CS is measured by a threshold curve in which 
the spatial frequencies examined are depicted. Color vision is an illusion created 
by the interactions of the neurons in our brain. It is intimately linked to the per-
ception of form where color facilitates detecting borders of objects (62). Parvo- 
and magnocellular ganglion cells are located in the GCL and lead to two different 
visual pathways that identify color and contrast (63). Parvocellular ganglion cells 
are smaller and more numerous than other retina ganglion cells, with smaller 
receptor fields located in the macular retinal area. They give rise to the parvocel-
lular visual pathway, specialized in pattern identification and color; and it is most 
sensitive to high spatial frequency (51). The magnocellular pathway originates in 
magnocellular retina ganglion cells, which are larger and more numerous, and 
have larger receptor fields that are more sensitive to low spatial frequencies (63). 
There is a third type of ganglion cell that is called koniocellular, which receives 
information from short wave cones. Koniocellular cells are also sensitive to blue–
yellow tones (64, 65). CS is a really important visual function. Even several stud-
ies showed that a CS loss is the best predictor of the ability of elders to perform 
daily life activities (66, 67).
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Visual fields

The visual field (VF) refers to the total space in which objects can be seen in the 
side (peripheral) vision as your eyes are focused on a central point. The fovea, 
where the cone photoreceptor density is at its highest, is the area of greatest 
sensitivity. The visual sensitivity comes down further from the fovea. Traditional 
perimetry is carried out under photopic conditions, and therefore, rod photore-
ceptors do not contribute to the visual field (68). The normal visual field extends 
to approximately 60° nasally, 90° temporally, 60° superiorly and 70° inferiorly. In 
the area of the optic nerve head, temporal part of the VF, exists a blind spot that 
indicates an area with no photoreceptors (69).

Visual integration

Identifying a visual stimulus requires not only physical input analysis but also the 
contact between the neuronal representations of the stimulus and the memories 
that the perceivers have accumulated through their life experiences with the 
objects. Object identification arises from the dynamic interaction between a sen-
sorial/physical process (upstream processing) and a cognitive process (down-
stream processing). Spatial frequency is an important physical property of the 
image. The extraction of visual sensory characteristics follows a course to a fine 
processing scheme where the low spatial frequency represents the overall infor-
mation about the shape and orientation of the stimulus, while the high spatial 
frequency corresponds to the configuration information and fine details 
(70–75).

OPHTHALMOLOGICAL METHODS FOR RETINAL ANALYSIS

Over the past decade OCT has evolved as one of the most important tests in oph-
thalmic practice. It is a non-invasive imaging technique that provides high-
resolution, cross-sectional images of the retina.

Optical coherence tomography

OCT was first demonstrated for cross-sectional retinal imaging in 1991 by a 
Massachusetts Institute of Technology (MIT) team (76). OCT synthesizes cross-
sectional images from a series of laterally adjacent depth-scans giving a non-
invasive clinical tool to evaluate the structural anatomy and the evaluation of the 
integrity of the retina.

Optical coherence tomography angiography

Optical coherence tomography angiography (OCTA) is a promising new method 
for visualizing the retinal vasculature and choroidal vascular layers. A key advan-
tage of OCTA over traditional fluorescein angiography is that it provides depth-
resolved information without contrast. The basis of OCTA is to repeatedly scan a 
region and then examine the resultant images for changes. Stationary tissue 
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structures will show little change, whereas moving structures, such as blood flow-
ing through vessels, can show changes between images. Contrast is generated 
based on the difference between moving cells in the vasculature and the static 
surrounding tissue. This imaging technique can be performed in patients for 
whom fluorescein angiography or indocyanine green angiography may not be 
indicated (77). OCTA is clinically used as an en face imaging modality, which is 
generated by summarizing the flow information within the depth range encom-
passed by the current scheme. This scheme subdivides the retinal circulation into 
two plexuses and choroidal circulation into two slabs. Angiograms, which are 
similar to fluorescein angiography or indocyanine green angiography, are also 
produced (78).

FUNCTIONAL CHANGES IN AD

Nowadays, it is known that, in AD, in addition to altering brain structures, the 
involvement of the different regions of the visual system also occurs, with a mani-
festation of distinct symptoms and signs that can be detected by clinical history 
and ophthalmological studies.

VA has proven to be a controversial test in AD. Studies have not found an 
alteration in AD patients (79–86), and others have found VA loss and linked them 
to visual hallucinations (87, 88) (Table 1). Moreover, these alterations of VA are 

TABLE 1	 Eye changes in AD patients

References

Visual alterations

Visual acuity 87, 88

Contrast sensitivity 82, 84, 85, 90–102, 103, 104

Visual field 105–109

Color vision 58, 84, 93, 110, 113–116

Visual integration 93, 117

Structural alterations

Retinal Aβ deposition 19, 27, 42–47

Optic nerve 27–29

Macular thickness

    Inner retinal layers 30–41, 138, 140–145

    Outer retinal layers 135

Peripapillary thickness 21, 24, 30–38, 120–127

Retinal vascularization 148–150

Choroid thickness 125, 148, 151–153

AD: Alzheimer’s disease; Aβ: beta-amyloid
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related to difficulties in writing and reading (89). On the other hand, recent stud-
ies have found that CS testing is a more sensitive tool than VA testing to identify 
the subclinical impairment of visual function (90, 91). CS precedes the develop-
ment of dementia at 10 years of the longitudinal follow-up in a well-phenotyped, 
prospective, community-based cohort (90, 91). It has been shown that the CS 
function is affected in AD patients. The impairment ranges from a reduction in all 
spatial frequencies (85, 92–99) to a greater decline in high (92, 93, 98, 100) or 
low spatial frequencies (82, 84, 101, 102). Such discrepancies in the affected fre-
quencies could be due to differences among the CS test used as well as the patients 
included in the studies (17, 66). Recent works show that CS is the main manifes-
tation during the initial disease stage. There is a progressive impairment through-
out the disease course (93, 103, 104) (Table 1). CS impairment in AD has 
consequences for cognitive abilities and daily functions, given that the most 
affected spatial frequencies are the higher frequencies corresponding to macular 
function (17). The presence of reduced CS years before the clinical onset of 
dementia suggests that this association is not simply a consequence of later stage 
dementia. Furthermore, reduced CS can precede the clinical onset of cortical or 
subcortical dementia neurodegeneration (90).

Visual field test requires significant cooperation from the patient. Therefore, 
the reports of VF and AD are scarce, and most are case reports (17, 68). However, 
it has been observed that decreased VF sensitivity correlated with cognitive 
impairment. A large prospective study of threshold VF perimetry in patients with 
probable AD demonstrated that the most common VF abnormality was bilateral 
inferior constriction of the VF in an arcuate-like pattern (105, 106). AD patients 
underwent a diffuse sensitivity loss and defects that involved the central field. In 
39% of AD patients, the density of plaques and tangles was greater in the cuneal 
compared with lingual gyri, supporting the theory that cortical disease is respon-
sible for the VF loss (105). Recent findings show that the side of the homonymous 
defect is predicted by lateralized occipital atrophy (107–109) (Table 1).

Another manifestation of AD is the fluctuations in color perception, which are 
mainly errors in color recognition due to the involvement of the parvocellular 
pathway (110).

In the color perception, some studies using the Farnsworth test and Ishihara 
test found no differences between AD patients and control group (96, 111, 112). 
On the other hand, some tritan-axis defects were found, showing a correlation 
with the cognitive decline (58, 84, 93, 113, 114). The discrepancy in the results 
of both studies may be due to the fact that each study used a different color vision 
method. A recent investigation showed that the Ishihara color vision test could 
discriminate between AD and vascular dementia (115). The Ishihara test may 
involve dorsal cortical pathways that extend from the occipital to the parietal 
lobes. In the Ishihara test, the patients have to identify a number occulted in a 
pattern made up of small color forms with different tones. AD patients usually 
present simultagnosia caused by an occipitoparietal dysfunction, and therefore, 
they cannot recognize the pattern that is presented in the Ishihara test. The prob-
lem does not lie in the color sense, but in the inability to reconstruct the pattern 
(115). Using the Farnsworth-Munsell 100 hue test, a significantly decreased color 
discrimination was found in AD. In addition, the number of color discrimination 
errors was inversely related to Mini-Mental State Examination scores (MMSE) 
(110). Some studies using the Farnsworth color testing methods, not influenced 
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by dorsal stream dysfunction, suggest that AD patients tend to have tritan color 
defects (58, 93) while others have found a protanomaly (116) (Table 1).

The perception digital test (PDT) is a sensitive method in mild AD patients 
developed for evaluating their visual-perception disorders (117). The test is 
designed to assess the visual recognition of familiar situations. PDT has a signifi-
cant correlation with the cognitive decline of the AD patient, indicating that 
patients with mild AD have significantly more failures in PDT than controls 
(93, 117) (Table 1).

STRUCTURAL CHANGES IN AD

The retinal nerve fiber layer (RNFL), RGC and inner retinal layers are considered 
indirect biomarkers of the CNS, allowing the prediction of brain pathology in 
patients suffering from different neurological diseases (118, 119). Many studies 
focus on the thickness of segmented peripapillary RNFL (superior, inferior, nasal, 
and temporal) in patients with AD comparing them with controls. Some works 
showed a decrease in the peripapillary RNFL thickness in all areas (30, 31, 34, 
36–38). However, others authors found that the peripapillary RNFL thinning 
occurred in the inferior and superior regions (35, 39, 40), while other works dem-
onstrated that peripapillary RNFL thinning appeared only in the superior region 
(120–124). Some studies reported thinning in the RNFL associated with a pro-
gressive cognitive decline (21, 24, 123, 125, 126) (Table 1). The variance in peri-
papillary RNFL thickness reported in AD might be due to differences in disease 
progression among patients studied since patients with greater peripapillary 
region alteration were those with a more advanced stage of AD. In any case, thin-
ner peripapillary RNFL indicates fewer RGCs in AD, which confirmed the differ-
ences in OCT measurements in AD patients (127). The loss of RGCs is matched 
with the pathologic cascade hypothesis in AD, which affects both the cerebral 
neuron and the RGCs in the retina (36). This whole peripapillary RNFL contro-
versy is the result of studies based on small size samples and important method-
ological heterogeneity (37, 128–130). In line with this hypothesis, pattern 
electroretinography showed a decrease in their wave response, suggesting that 
RGCs are directly involved in AD (38, 92, 131–133).

Some authors did not show any statistical significance with respect to the mac-
ular outer retinal thickness analysis between the neurodegenerative disease and 
control groups (134). However, other studies in the context of early AD observed 
a loss in the outer nuclear layer that could suggest retrograde transsynaptic degen-
eration (135). In AD, most of the studies have been done with OCT, and they have 
focused on the inner retinal layers, whereas less attention has been devoted to the 
outer retinal layers. The discrepancy in results could be due to technical variabil-
ity, examination time and OCT interpretation (129, 136, 137). By using human 
postmortem tissue in the eyes of severe AD patients with confirmed neuropathol-
ogy, different patterns of thinning in the superior-nasal and superior-temporal 
regions of the retina relative to the optic nerve have been found. Also, they found 
a gradient of thickness reduction whereby thinning was greatest for the inner lay-
ers of the retina, followed by the outer layers of the retina (138). This thickness 
profile matches the distribution of the retinal Aβ deposits in the mid- and 



Eye Function and Structure in Alzheimer’s Disease 167

far-periphery of the superior quadrants of these tissues as previously demon-
strated (19, 28, 29, 47, 139).

In the last few years, some studies focusing on the analysis of patients with 
mild cognitive impairment (MCI) found a thinning in the macular inner layers 
(140). By contrast, a macular volume increase was found in MCI compared with 
controls in others works (141). This finding could be explained as a possible 
inflammation and gliosis prior to neurodegeneration.

CHANGES IN THE EARLY AD AND THEIR PROGNOSTIC 
VALUE IN THE DETECTION AND FOLLOW-UP

In the most incipient AD stages, the macular RNFL thickness and total macular 
volume measured by OCT have better prognostic values in mild AD patients than 
in healthy subjects. The thickness of the inner superior macula seems to have the 
highest diagnostic value in early AD neurodegeneration. Possibly, the macular 
area is the first affected area of the retina, which may be due to the large number 
of ganglion cells in this retinal area (21, 24). Other studies have primarily assessed 
retinal thickness changes in the macula to explain the visual symptoms experi-
enced by AD patients (138). The earliest detectable structural retinal change 
associated with AD is suggested to be a decrease in macular RNFL volume, and it 
is related to neocortical Aβ accumulation in the very early AD (135). In healthy 
eyes, the macular region of the retina is physiologically very active, and this hyper-
excitation might be diminishing in the preclinical stage of AD (28). In support of 
this theory, postmortem histological studies have found pathological alteration of 
RGC in the macular region in AD patients (28, 47). In a meta-analysis of 17 stud-
ies comparing AD patients with healthy controls and in five studies comparing 
individuals with MCI with controls, there were significant decreases in the thick-
ness of the macular region in all four quadrants compared to controls, thus 
suggesting that the degenerative process affects the entire macular region (130). 
Another work, using a multivariate regression model show the existence of spe-
cific areas of thickening, interspersed with areas of thinning in the macula of AD 
and MCI patients. This finding supports the idea that inner retinal layers may be 
suffering dynamic changes during the course of AD progression (142). The retinal 
thickening in MCI was attributed to gliosis preceding neuronal loss and atrophy 
of the axonal projections in the RNFL (143). This theory has been supported by 
histopathology work, suggesting that gliosis precedes human AD pathology in the 
brain (144, 145). However, other studies in OCT suggested that the outer retinal 
thickness did not show any statistical significance between the neurodegenerative 
disease groups and controls (134). Other authors consider that many other find-
ings have been described such as a reduction in macular volume, RGC layer thick-
ness, choroid thickness and some vascular alteration. These results might be 
promising biomarkers for dementia staging and AD progression (146, 147).

In recent years, thanks to the development of the OCTA, several studies 
analyzed the retinal vascularization and the choroid. Most of the studies, pub-
lished in moderate AD, have found a loss of the retinal vascular density in the 
macular area with slower blood flow and an increase in the foveal avascular 
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Figure 1  Areas under the ROC curves of the psychophysical tests (A–D) and macular OCT (E–F) 
in discriminating between mild AD patients and control subjects. (A) Visual acuity (dec), 
(B) contrast sensitivity, (C) Rue 28-hue color test, (D) perception digital test, (E) fovea and 
macular volume, and (F) inner macular quadrants. Modified from (A–D) Salobrar-Garcia et al., 
2015 (93) and (E–F) Garcia-Martin et al., 2014 (21).
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zone (148–150). All these parameters presented a correlation with the disease 
stage (148). In the same way, a thinning of the choroid, measured by OCT, was 
also found (125, 148, 151–153) (Table 1).

All these changes could be explained as a consequence of the amyloid angiopa-
thy, which occurs in AD, in which amyloid deposits formed in the walls of the 
blood vessels. This process resulted in an ocular vascular occlusion and the dimin-
ishing of blood flow (120, 148, 149, 154).

It is possible that retinal AD biomarkers can only be obtained after having 
integrated various of the already cited biomarkers, which include both neuroreti-
nal (such as RFNL, GCL, macular thickness) and retinovascular parameters (ves-
sel morphology among others), in a composite biomarker (128).

The analysis of the ophthalmological tests prognostic value of AD showed that 
VA, CS, color perception, and visual integration (93) have a significant predictive 
value in early AD disease (Figure 1). The CS is the best predictive test in the diag-
nosis of the AD with an aROC between 0.857 and 0.755 (93), while the aROC 
curves of the OCT showed the best prognostic value is found in the macular area 
with values of r = 0.821 (21) (Figure 1). The focus must be centered on these tests 
to see the visual changes in the AD disease.

CONCLUSION

In conclusion, several alterations have been shown in the visual perception and 
the retinal structure in the eyes of AD patients, even in the earliest stages. The VA, 
CS, color perception, and visual integration tests, as well as macular OCT, have 
been altered in the early stages. When the disease progresses in the eyes of moder-
ate AD patients, retina alteration reaches the peripapillary area, showing the pro-
gression of neurodegeneration in the eye.
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Abstract: Language impairments in Alzheimer’s disease may appear at the prodro-
mal stage. The most significant impairment is found at the lexical-semantic pro-
cess level, which is explained either by a degradation of the areas that store the 
semantic network or by a failure at retrieving the information from that network. 
Regardless of the retrieval failure happening, there is evidence of the degradation 
of the semantic network at some levels. Several studies support the bottom-up 
breakdown, according to which the loss starts at the specific concept attribute 
level, along with the link with its coordinates, while superordinates are preserved. 
Some characteristics can affect this loss such as familiarity, age of acquisition, fre-
quency, or affective features. While classic studies have focused on concrete neu-
tral nouns, recent research is exploring the role of emotion. Since emotional 
processes strengthen the semantic relationship between concepts, it could be a 
relevant dimension for the preservation of the semantic network.
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INTRODUCTION

Language impairments appear in most Alzheimer’s disease (AD) patients early in 
the course of the disease, and by the end of it, language becomes completely 
absent. Although memory impairment is thought to be the first and more evident 
symptom, an increasing interest in the progression of the deterioration of lan-
guage throughout the disease shows that language impairments are also present 
since its prodromal stage (1). An important aspect of language impaired in AD is 
the ability to access meaning, the representation of knowledge that allows us to 
understand the world.

Language is strongly based on semantic memory, a storage of concepts linked 
to linguistic labels. These linkages allow speakers to process the meaning of a 
linguistic input and to elaborate an appropriate output in response. Language as 
a cognitive function is sustained by semantic networks, that is, a framework of 
concepts linked through verbal associations. This network system would be com-
promised in AD, as the most remarkable impairments in the early stages of AD are 
related to the lexical-semantic processes. Such difficulties are most commonly 
thought to be caused either by a progressive deterioration of the associative struc-
tures of a patient’s semantic memory, or by a degradation of their content itself (2). 
In either way, this would cause a loss of concept representation or a severe disor-
ganization of semantic knowledge, which would lead the patients to present with 
difficulties to find some words and to access to their meaning or attributes, along 
with a rising number of comprehension errors, and a reduction of the production 
of semantic features (3). In contrast to that theory, some researches state that the 
semantic network is preserved, and the difficulties may be due to an impairment 
in executive processes that causes a failure to retrieve information (4). Consequently, 
the failure to modulate semantic memory would cause errors and slowness in the 
search of words.

This chapter intends to summarize the course and characteristics of the semantic 
deterioration due to Alzheimer’s disease and to shed light on the ongoing debate about 
the underlying impairments. It will start with a brief overview of language impair-
ments, continuing with the course and characteristics of the semantic impairment.

LANGUAGE IMPAIRMENTS IN ALZHEIMER’S DISEASE

Language suffers several changes throughout the course of AD. First impairment 
to become evident is anomia and, as a consequence, a deficit in verbal fluency 
tasks (5). In the mild stages, patients show comprehension as well as production 
problems, their anomia worsens and their language is characterized by parapha-
sias, circumlocutions, and lack of content. Verbal production becomes unintelli-
gible when other symptoms such as dysarthria, echolalia, palilalia, and lack of 
coherence appear in the later stages of the disease. Lastly, the final stage is charac-
terized by mutism and a severe comprehension deficit, thus impeding any kind of 
social interaction (6).

Lexical-semantic access appears to be first impaired. This process involves 
searching for a concept in the mind, activating potential phonological candidates 
and selecting the appropriate one. Thus, the impairments on this regard are 
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evidenced by longer response time in lexical decision tasks, and patients face 
word-finding difficulties along with damage in the semantic processing (7). For 
this reason, verbal fluency and naming tasks are widely used for cognitive assess-
ment in AD. In verbal fluency tasks, patients must produce as many words as 
possible in a given time; semantic categories - semantic fluency - or letters - pho-
nemic fluency - may be used as cues. These tasks demand a significant involve-
ment of executive processes, as they require the subject to search for and organize 
proper responses, monitor their previous ones, and inhibit inappropriate 
responses. Semantic (SF) and phonemic fluency (PF) differ in the processes 
involved, and they show divergent declines: while PF relies on lexical representa-
tions, SF does so on meaning associations with a superordinate. Moreover, SF 
tasks in patients with AD are more impaired than PF ones (8), which is explained 
by the distinct involvement of semantic memory. Other tasks affected by the 
semantic memory breakdown in AD are naming tests, in which the patients pro-
duce semantic paraphasias and, as the disease progresses, an increase in the num-
ber of non-response errors, reflecting a pure anomia (9).

In a linguistic level, language production is impaired at early stages, in both writ-
ten and spoken. Using a description task, Croisile et al. (10) provided evidence of 
deterioration on both modalities. Overall, written performance was worse than oral, 
and this effect was found on healthy subjects as well. Regarding the speech of AD 
patients, they produced shorter responses with fewer information units than healthy 
older people. Written responses tended to be shorter than oral ones, but they 
were equally informative. Additionally, it was observed a significant reduction of 
word categories and an increase of semantic errors in both tasks in AD. Syntax is 
relatively preserved in the early stages (11), but it worsens through the course of the 
disease (12). In the beginning, syntax is correct and coherent, but not long after-
wards patients start to produce syntactically simplified statements, using fewer 
subordinate clauses. When maintaining a conversation, AD patients may encounter 
difficulties responding to open questions and providing new information (13). Most 
of them are caused by their impairments in comprehension and lexical-semantic 
access, although damaged verbal pragmatics seems to be also affecting.

In recent years, new techniques of voice and speech analysis have allowed 
researchers to explore oral production in AD patients. These studies aim to explore 
if the changes in language processes have behavioral consequences in the vocal 
execution. In this regard, speech in AD is characterized by changes in different 
temporal and acoustic voice parameters, such as a greater number of voice breaks 
and hesitations, more pauses when speaking, lower rate of expressive articulation, 
longer phonation time, and higher mean of the fundamental frequency. All these 
changes that can be used for early diagnosis of AD (14, 15) are not only due to 
difficulties in finding the proper word but also caused by some impairments in the 
processes involved in planning language and how the words relate to each other 
semantically and syntactically.

SEMANTIC IMPAIRMENTS: PRECLINICAL CHANGES

Iris Murdoch was a renowned British writer and philosopher. After a prolific 
career with over 40 published works that had been applauded, critics found her 
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last novel, Jackson’s Dilemma, to be disappointing. A couple of years later, 
Murdoch was diagnosed with Alzheimer’s disease. Presumably, she had written 
her last work while the cognitive impairment was already present, in the years 
leading to the diagnosis. This finding led Garrard et al. (16) to analyze Jackson’s 
Dilemma and two of her other works, written in different periods of her life, in 
search of early impaired language parameters as a consequence of AD. Among 
other subtle differences, they noted that content words (nouns, words, and 
descriptors) had an overall higher mean word frequency in Jackson’s Dilemma 
than in her previous works.

Although it may seem anecdotal, the story of Iris Murdoch is supported 
by other studies that look for preclinical language markers of the disease by com-
paring AD, mild cognitive impairment (MCI) and healthy control patients, MCI 
involves a cognitive decline that it is not explained by normal aging and does not 
interfere with everyday life. It is expected that about 18% of the people with MCI 
will develop AD (17) and that is the reason why MCI is often considered a pre-
clinical stage of the disease. In a study from Mueller et al. (18), early MCI patients 
had their speech recorded while describing the “Cookie Theft” picture from the 
Boston Diagnostic Aphasia Examination. The results showed that there was no 
decline in syntax and lexical processes; however, an interaction between age and 
cognitive status was found in semantic and fluency processes, showing a faster 
decline for patients in a preclinical phase of dementia. Therefore, semantics were 
affected, producing proportionally less nouns and more pronouns and verbs, 
which adds evidence to the notion that language may become semantically impov-
erished early on the continuum of cognitive decline. Another study used this same 
method to explore potential changes in healthy carriers of the E280A autosomal 
dominant mutation in the presenilin-1 gene in chromosome 14, which is related to 
early onset Alzheimer’s disease. These participants did not present clinical symp-
toms or cognitive problems at the time of the evaluation. Nevertheless, it was 
found that carriers produced a lower number of semantic units, used simpler 
sentences, and expressed less semantic information than their non-carriers coun-
terparts, although the number of words employed was similar in both cases. Thus, 
it can be concluded that a deterioration of the conceptual system is present since 
the preclinical phase of AD (19). This has been confirmed through classical neu-
ropsychological measures such as the Isaacs test, a semantic verbal fluency task, 
in which participants show a low performance up to 9 years prior to diagnosis of 
AD (20, 21).

Given the high rate of progression to AD, it is a current challenge to differ-
entiate those subjects with MCI who will develop AD from those who will not. 
There is evidence that semantic verbal fluency tasks could be used for that 
purpose. A study comparing AD, MCI, and healthy control patients on several 
language measures found that, while the AD group showed widespread impair-
ments on traditional semantic memory measures of naming, the MCI group did 
not differ significantly from controls, except on semantic fluency (22). In longi-
tudinal studies, it has been observed that MCI subjects that will eventually 
develop AD present with a different pattern in verbal fluency tasks, showing a 
faster decline in semantic compared to phonemic verbal fluency tasks (23–25). 
However, these results are not such a promising tool to predict MCI conversion 
into AD, as MCI patients’ patterns are still very similar to those of healthy con-
trols (26, 27).
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CHARACTERISTICS OF THE DETERIORATION OF 
THE SEMANTIC NETWORK IN AD

Semantic impairments in AD patients have been well documented through several 
cognitive tasks. Confrontation naming tasks consist on presenting images of 
items, animals, or famous person in order for them to provide the target name. As 
mentioned before, AD patients progress from subtle difficulties to find words to 
pure anomia. The pattern of errors produced by AD patients in confrontation 
naming tasks is characterized by a tendency to produce semantic or visuo-
perceptive errors. Semantic errors usually result from producing the name of the 
correspondent category instead of that of the target, from mentioning another 
word from the same category as the target, or from committing circumlocutory 
errors by giving correct information about the target but not its proper name. As 
the disease progresses, first type of error become more prevalent, while the oppo-
site occurs to circumlocutory errors. This suggest that less and more inaccurate 
information is available (28). Overall, this pattern seems to suggest the existence 
of a disruption in semantic knowledge. However, this might not be the case. Several 
studies suggest that the pattern is similar for healthy, MCI, and AD groups and 
that they only differ quantitatively in the number of errors and non-response 
errors, but not qualitatively. This, added to the fact that AD patients can improve 
their performance by using phonological clues, suggests that the semantic net-
work might be preserved longer than thought as the information can still be 
accessed, and the disruption only occurs at later stages, when the non-response 
errors are more common (29, 30).

Another impaired task that gives clues about the state of the semantic associa-
tive network is verbal fluency, in which the participant must produce as many 
words as possible when given a cue. These tasks are widely used for assessing 
dementia of the Alzheimer’s type due to the consistency of the impairment results 
found (31, 32). AD patients produce fewer exemplars per category than healthy 
controls and tend to produce more general category labels. Although the most 
common measure is the number of words produced, some other data from this 
task can be useful to explore the semantic network in AD. For instance, clustering 
(producing words within subcategories) and switching (shifting between subcat-
egories) are two components that predict performance on verbal fluency tasks. 
Clustering would be related to the state of the semantic storage with an implica-
tion of the temporal lobe, while switching would be related to control, laying on 
the frontal lobe. According to Troyer et al. (33), AD patients produce smaller 
clusters than healthy controls, for both semantic and phonemic fluency tasks, but 
only in the semantic task they show significantly less number of switchings. 
Therefore, they conclude that the impairment found in fluency tasks is due to an 
impoverished semantic memory.

The organization of semantic knowledge seems to be compromised as well. In a 
series of studies using multidimensional scales and pathfinder analysis, Salmon et al. 
(34) checked the semantic network of AD patients. These techniques can be used to 
elaborate cognitive maps representing the distant and relationships between concepts 
by using different semantic tasks measures. In this kind of map, individuals who have 
never developed a degree of knowledge on an item or who have lost it get a chaotic 
representation with many unnecessary nodes and that is the case for AD patients. 
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For instance, these studies showed how healthy participants tended to produce clearly 
differentiated clusters of wild and domestic animals, while AD participants tended to 
mix them. Assuming that verbal fluency represents the activation spreading through 
the semantic network, this would mean that for AD, that differentiation is not clear 
and the network is disorganized (35).

Concepts are the basic units of semantic memory. They are constituted by 
attributes or characteristics and they appear to be structured in a hierarchical way 
on multiple levels based upon their relationships: super ordinates, coordinates, 
and subordinates. In AD, these levels of semantic associative relationships show a 
distinct deterioration. The bottom-up theory states that attributes and coordinates 
are earlier impaired while the higher level of super ordinates connections remain 
longer intact. As knowledge of attributes allow individuals to perceive and distin-
guish an object, the loss of this knowledge would affect different processes such 
as naming, comprehension, and encoding (36). Semantic priming tasks provide 
evidence of this theory. When pairing concepts with their attributes, AD patients 
show a significant slower response time. However, this degradation is not homo-
geneous as the more salient and significant the attributes are, the longer they are 
preserved. AD patients are still able to identify the core attributes, that is, those 
with a higher relative importance for the meaning of the concept (37, 38).

On the other hand, semantic priming tasks with pairs of words with a coordinate 
relationship show the opposite effect. A significant facilitatory effect for coordinate 
concepts appears in AD patients (39, 40). Semantically close concepts are defined 
by the number of attributes that they share and by those distinctive features that 
belong to only one of them. For example, both tiger and lion have fur, but only the 
tiger has stripes. According to this, the semantic priming effect should be related to 
the overlap of features between the prime and the target. In fact, it has been 
found that when a pair of words share many attributes and have few distinctive 
features, the priming effect is larger (41). These results of hyperpriming support the 
idea that semantic memory is suffering a progressive deterioration that starts with 
the loss of specific attribute information, and as a consequence, AD patients are no 
longer capable of distinguishing between two coordinate concepts. Lasney et al. 
(42) conducted an experiment based on the semantic priming paradigm in which 
words were paired either by a category coordinate or by an attribute relationship. In 
addition, they distinguished between close or distant relationships for coordinates, 
and between shared or distinctive attributes. They found the hyperpriming effect in 
both close and distant coordinates. On the attributes condition, an impaired prim-
ing effect was observed for the distinctive attributes at the beginning of the disease. 
Only at later stages, shared attributes were affected and showed a weak prime effect. 
Therefore, as mentioned earlier in the chapter, features shared by many concepts 
are more resilient to the damage caused by AD, while the distinctive features are 
more vulnerable. In this sense, the confusion between close concepts that causes the 
hyperpriming effect would be explained by a loss of distinctive attributes.

DEGRADED NETWORK OR FAILURE TO RETRIEVE?

Up to this point, we have described the characteristic deterioration of the seman-
tic associative network of AD patients. Now, the challenge is to explain why 
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this happens. There are two possible explanations for the impairments described. 
The first theory states that the impairment is linked to a breakdown in the organi-
zation and structure of the semantic network. The degradation of the neocortical 
association areas, that are assumed to store the representation of concepts and 
their attributes, would cause an actual loss of this knowledge. Contrarily, the other 
theory defends that the cause is a failure to retrieve information from a preserved 
semantic network, due to impairments in the executive processes involved in 
accessing such representations (43). While many researchers think that the con-
sistency of semantic impairments through different tasks proves the deterioration 
of the network, others argue that the fact that AD patients still can do most of 
the tasks—although slower than healthy controls—or that they can benefit from 
phonological cues supports the idea of troubled retrieval mechanisms.

Such controversy has been explored through tasks that imply different cog-
nitive demands. AD patients’ distinct performance on phonemic and semantic 
fluency tasks supports the notion that they may be experiencing a loss or a 
breakdown in the organization of the semantic memory rather than suffering 
from difficulties  in the retrieval of semantic knowledge. Both phonemic and 
semantic modalities imply similar executive control demands, and therefore, 
the main difference is the implication of the semantic memory. This would sug-
gest a degradation of the semantic store (31, 44). Rohrer et al. (45) conducted a 
study asking AD patients to produce words within small categories subsets, and 
it was found that they produced items faster than controls. This finding could 
be explained therefore by a loss of associations between concepts within the 
semantic memory. The degradation of the network would cause a reduction on 
the potential items that could be activated. Hence, as less items would be avail-
able, less time would be needed to reach to them.

The studies by Chan et al. (46) about the organization of semantic network 
also seem to support the hypothesis of a degraded storage. By analyzing the clus-
ters in verbal fluency tasks, they concluded that AD patients tend to rely more on 
the size or other perceptual dimensions rather than on abstract features such as 
wilderness, compared to healthy controls. The distinct difficulties in accessing 
words through perceptual or through abstract features seem quite laborious to be 
explained by the retrieval deficit theory. However, this kind of breakdown can be 
explained by a disorganized network, the loss of associative relationships and the 
establishment of new atypical ones.

Errors in naming tasks and their relationship with the integrity of the semantic 
network has also been explored. There is a relationship between the ability of an 
AD patient to name an object and their knowledge of that same object. When they 
are asked to define an object whose name they cannot access, their descriptions 
are impoverished, providing less attributes, and even losing core features (8, 47).

On the other hand, it has been argued that the impairment found in explicit 
semantic memory tasks would be caused by the implication of attentional and 
executive control systems. Therefore, tasks that allow researchers to assess the 
integrity of the semantic memory while minimizing the influence of those systems 
can shed light on the matter. That is the case of implicit semantic priming para-
digm, which is based on the idea that spreading activation throughout the seman-
tic network requires intact connections within the system. If the network 
disappears, it should not be possible to prime the target at all. The evidence 
provided by this task, therefore, strongly supports the retrieval mechanisms 
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impairment, since different studies using it consistently found an intact semantic 
priming in AD patients (48–50). Nevertheless, it seems that this intact network is 
limited to superordinates, as AD patients show a decline in priming for coordi-
nates and attributes. In this sense, there would be at least a partial disruption in 
the semantic storage (43).

As can be seen, there is evidence that support both perspectives and there-
fore there is not a clear conclusion for the debate. One way to address the ques-
tion would be to demonstrate the complete loss of a concept, which would 
imply that the person cannot access to the word consistently in different tasks 
and times, they cannot benefit from semantic cueing and they lose knowledge 
about the item. Hodges et al. (2) made an attempt to explore that, in which they 
assessed the semantic memory of AD patients through several tests. They found 
that when patients were not able to use an item in one task, it was likely to be 
absent in other task using that same item as a target, thus evidencing a storage 
degradation. Nonetheless, the aforementioned evidence of an intact semantic 
network cannot be ignored. Therefore, it seems likely that both impairments 
occur and have consequences on the performance of AD patients. Neuroimaging 
seems to support this notion, as an abnormal functioning in the semantic con-
trol network and its connections with several areas involved in the semantic 
processing has been found (51). A conciliatory approach that has been pro-
posed states that, at early stages, the retrieval deficit could be causing the diffi-
culties to which later the degradation is added (52) causing, in the end, a total 
breakdown.

THE ORGANIZATION OF THE SEMANTIC NETWORK

There is an intense debate about the existence of amodal or modality-specific 
domains in the representation of semantic knowledge, with certain deficits pro-
viding evidence for both of them. Although it is not the objective of this chapter 
to discuss the principles by which semantic network is organized, it is noteworthy 
the amount of research questioning whether it exists category specific deficits or 
other features that determine that organization. Neurological pathologies with a 
localized lesion strongly support the notion that separated neural systems process 
different semantic domains, but the fact that in AD the deterioration affects many 
cortical regions and patients still seem to show specific domain impairments has 
created controversy.

It has been commonly reported a differential deficit for living and non-living 
things in which living things show a better performance (53–55). This difference 
is usually explained by a sensory-functional view, according to which the seman-
tic representations of living things are identified by sensory properties while non-
living things are so by functional properties. On the other hand, some authors 
have not found such effect or, having done it, they have attributed it to method-
ological issues (56–58). Moreover, they argued that the diffuse pattern of deterio-
ration affecting many cortical regions would not justify a differential loss. 
Furthermore, the fact that some studies find an advantage of non-living things, or 
no difference at all, may be explained by the election of the tasks or the heteroge-
neity of the impairments of people with AD.
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There are several factors that could be influencing the categorical deficits, such 
as word frequency, familiarity, imageability or age of acquisition (59, 60). All those 
variables are related to performance in several language tasks like naming, read-
ing, or priming. Age of acquisition has been studied as a relevant variable due to 
the possible similarity to the impairment observed in autobiographical memory. 
That is, the same way that episodic memory for recent events deteriorates faster 
than for distant memories, concepts acquired later in life could be more easily 
affected by neural degeneration while early learned words would be more resilient 
(61, 62). In this regard, the patterns of deterioration would mirror the acquisition 
of semantic associative networks in life-span development.

The role of emotion in the processing of concepts is a fairly unexplored factor. 
Most studies have been conducted with neutral words. However, some recent 
studies have focused on the affective information of concepts. Although contro-
versial, the idea of the emotional connotation of words having a role on semantic 
processes is interesting due to its implications. As emotional processes are rela-
tively preserved in the early stages of AD compared with other domains, the affec-
tive value of concepts could support the preservation of semantic information 
and, therefore, it could be useful for communication with the patient. In AD 
patients, the affective information of concepts is longer preserved than other fea-
tures (63), which would allow AD patients to retain links between close emotional 
concepts.

Concreteness is another ignored factor. The previous idea leads to the study of 
concreteness of concepts because there is an interaction between emotional and 
abstract ones, as the latter usually refer to internal states of the body. In healthy 
participants, the concreteness effect refers to a faster and more accurate processing 
of concrete concepts than abstract ones. In AD, as well as in other neurodegenera-
tive diseases, this effect has been noted to suffer a reversal. Giffard et al. (64) 
conducted a study in which they compared the processing of different concrete 
and abstract words that could either have a positive, neutral or negative emotional 
valence. Their result supports the concreteness effect for neutral concepts, while 
there is no effect for emotional concepts. This suggest that the emotional compo-
nent of words is the most relevant feature that binds abstract concepts and influ-
ences the reversal of the concreteness effect.

CONCLUSION

Further research on the impairments found in the semantic network of people 
with AD is required, as most questions concerning the mechanisms that store 
and retrieve meaning still have to be solved. For instance, the debate about the 
underlying processes that cause such impairments remains still open. It seems to 
be a growing agreement that both deterioration of the network and difficulties in 
retrieval have a role to some extent. It is noteworthy that in recent years, the 
discussion has moved from the reason why the semantic network becomes dis-
rupted to how it does it. This is the result of an increasing interest in the way the 
brain processes meaning and stores semantic information. In this regard, 
Alzheimer’s disease can teach us a lot about the pathological and, by extension, 
normal functioning of the brain, and contribute to increase the understanding of 
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cognitive processes. At the same time, the priority is to help those who suffer 
from AD or other neurodegenerative diseases by finding ways to support their 
abilities and preserve their communication.
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Abstract: Alzheimer’s disease is an irreversible, progressive brain disorder that 
damages memory, behavioral, and cognitive skills. This condition causes brain 
cells to degenerate and die leading to many cognitive issues. Although the exact 
cause is unknown, it is thought to be due to a combination of genetic, lifestyle, 
and environmental factors. Due to its progressive nature, symptoms can vary from 
mild memory loss to complete lack of ability to respond to one’s surroundings. 
The memory impairments brought on by this disease can lead to specific prob-
lems with memory interference, which may be caused by dysfunction in working 
and semantic memory. When conducting experiments on Alzheimer’s patients, 
there is also the added difficulty of the individual having trouble remembering the 
instructions and needing external cues to complete memory tasks. This chapter 
outlines the disease, its symptoms, risk factors, how it affects memory, and how 
exercise may be a prevention and treatment option.
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INTRODUCTION

Alzheimer’s disease is an irreversible, progressive brain disorder which damages 
memory, behavioral, and cognitive skills (1–4). This condition causes brain cells 
to degenerate and die, leading to many cognitive issues (4). It is the most com-
mon cause of dementia, accounting for 60 to 80% of dementia cases (2). Although 
the exact cause is unknown, it is thought to be due to a combination of genetic, 
lifestyle, and environmental factors (2). Due to its progressiveness, there are 
different signs and symptoms throughout the stages (1, 5). Typically, Alzheimer’s 
disease progresses through stages, including mild (early stage), moderate (middle 
stage), and severe (late stage) (6). Since the condition affects people in different 
ways, individuals may have a unique experience to each stage. In the early stage, 
an individual may experience mild memory loss or difficulty remembering newly 
learned information, whereas in the late stage, individuals may lose the ability to 
function independently or respond to their surroundings (2, 5). Early-stage signs 
include forgetting names, appointments, recent events, trouble following instruc-
tions, keeping track of responsibilities (e.g., remembering to pay the bills), or 
difficulty using familiar items in their home (e.g., how to operate the thermostat) 
(1, 2, 4–7). The middle stage is usually the longest stage in the disease progres-
sion and involves more serious signs of the first stage (6). An individual may have 
greater difficulty performing certain tasks and be more likely to become frus-
trated or withdrawn due to memory impairments (6). Signs of middle stage 
Alzheimer’s disease include repeating statements or questions, routinely misplac-
ing objects, getting lost in familiar places, losing track of the passing of time 
(e.g., forgetting which season it is), decreased or poor judgment, withdrawal 
from work or social activities, or changes in mood and personality (1, 2, 4–6). 
Personality and behavior changes often include depression, apathy, social with-
drawal, mood swings, distrust, irritability, aggression, wandering, or delusions (4). 
Late stage is the final stage of Alzheimer’s disease. The dementia symptoms are 
severe and individuals lose the ability to function independently or to react 
appropriately to their environment (6). During this stage, individuals may also 
lose their ability to control their motor movement and they will likely experience 
severe personality changes (6). At this stage, it is likely that the individual will 
need a full-time caregiver (6). Late-stage patients also become vulnerable to 
infections and other conditions due to memory impairment (e.g., dehydration, 
malnourishment) (6). Alzheimer’s disease is the sixth leading cause of death 
in the United States, and on average, individuals live for 4 to 8 years after 
diagnosis (1). It is possible for people with Alzheimer’s disease to live as long as 
20 years post-diagnosis, but it is less common since it mostly occurs in individu-
als who are already 65 years or older (1).

RISK FACTORS

The greatest known risk factors for developing Alzheimer’s disease is increasing 
age, as most individuals with Alzheimer’s disease are 65 years or older (2). Another 
risk factor is family history (8). Individuals that have parents or siblings that have 
developed Alzheimer’s disease are more likely to develop the disease (4, 8). 
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The risk increases as members of the family with a diagnosis increase. Genetics 
also play a role in developing Alzheimer’s themselves (4, 8). Genes for developing 
Alzheimer’s disease have been found to be both deterministic and risk genes, 
meaning that they both cause the disease and increase the risk of developing the 
disease (4, 8). The deterministic gene, which almost guarantees the individual will 
develop the disease, only occurs in less than 1% of the Alzheimer’s cases (4). 
Experiencing a head injury is also a possible risk factor for Alzheimer’s disease (8). 
The most effective ways to prevent head injury are wearing seatbelt in any motor 
vehicle, wearing helmets, and “fall-proofing” homes for the elderly (8). An exam-
ple of fall-proofing is placing non-slip mats in strategic areas of the home, espe-
cially in the bathroom and in the shower.

Sex, a common risk factor for many diseases (e.g., breast cancer), is not a risk 
factor for Alzheimer’s disease (8). More women than men are diagnosed with 
Alzheimer’s disease mainly due to the fact that women live longer than men – 
making them more likely to develop Alzheimer’s disease (8). Race may also play a 
role. Latinos and African Americans are more likely than Whites to develop 
Alzheimer’s disease. This is not well understood, but it may be due to their 
increased rates of vascular disease (4, 8). Heart health and brain health are directly 
related, as dementia is associated with conditions that damage the heart and blood 
vessels (e.g., heart disease, stroke, high blood pressure, and high cholesterol) 
(4, 8). There is also evidence that plaques and tangles (physical evidence of 
Alzheimer’s disease in the brain) are more likely to cause symptoms of dementia if 
damage to the brain’s blood vessels is also apparent (4, 8).

Other lifestyle risk factors include lack of exercise, obesity, smoking, and 
poorly controlled type 2 diabetes (4, 8). All of these conditions are related to poor 
heart and brain health and can be modified by living a healthy active lifestyle that 
focuses on a whole food plant based diet (8). The Physician’s Committee for 
Responsible Medicine recommends exercising regularly, limiting saturated and 
trans fats, eating plant based foods, eating foods rich in vitamin E, and taking a 
B12 supplement daily to prevent Alzheimer’s disease (9). There is an increased 
risk for developing Alzheimer’s disease in individuals with Down syndrome, 
which is most likely due to having three copies of chromosome 21, which 
also includes having three copies of the gene that is associated with Alzheimer’s 
disease (8). Symptoms of Alzheimer’s disease usually appear 10 to 20 years earlier 
in people with Down syndrome compared to individuals without it (8).

EARLY-ONSET ALZHEIMER’S DISEASE

When the condition occurs in individuals younger than 65, it is referred to as 
early-onset Alzheimer’s disease (2). Early-onset Alzheimer’s disease is less com-
mon, making up less than 5% of the population with Alzheimer’s disease 
(around 200,000 people in the United States), and primarily affects people in 
their 40s and 50s (3). Since memory complications are less common in those 
under 65, it can be difficult to diagnosis early-onset Alzheimer’s disease. The 
cause of early-onset is unclear, but there have been a few rare inherited genes 
that may play a factor in symptoms developing as early as 30 years old, referred 
to as “familial Alzheimer’s disease” (3).
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TREATMENT

There is no cure for Alzheimer’s disease, but treatments for symptoms are avail-
able as research into the condition continues (2). These drug or non-drug treat-
ments may relieve some symptoms or slow the rate of mental decline. Their goal 
is to increase quality of life for the individuals and their caregivers (10).

Drug treatment

Drug options to help with memory loss include cholinesterase inhibitors and 
memantine, which treat cognitive symptoms (memory loss, confusion, etc.) (10). 
These medications may not prevent the degradation of neuronal cells, but they 
can slow the speed at which they degenerate (10). They are usually well tolerated 
by patients, and side effects may include nausea, vomiting, and loss of 
appetite (10). The stage of disease will determine the dosage and type of medica-
tion prescribed (10).

Behavioral treatment

Behavioral treatment addresses behavior problems that may arise, such as irritability, 
anxiety, and depression (7). These symptoms may lead to difficulties caring for an 
individual with Alzheimer’s disease, especially for the caregiver (7). Avoiding drastic 
changes is an imperative factor of behavioral treatment (7). Change can be stressful 
and increase the individual’s fear and frustration as they are trying to make sense of 
the situation with their impaired cognitive function (7). Situations that may trigger 
frustration include moving to a new residence, admission to hospitals, or being 
asked to alter appearance (7). Sometimes, medications can increase these symptoms 
of fear and anxiety (7). As a caregiver, behavioral treatment can include avoiding 
confrontation with the individual, redirecting their attention, creating a calm envi-
ronment, and allowing the individual adequate rest (7). These behaviors can not 
only prevent triggering episodes but also make the individual feel more at home. 
There are also medications that can assist with behavior modification if behavioral 
treatment is ineffective, including antidepressants for low mood, antipsychotics for 
delusions and aggression, and anxiolytics for anxiety or restlessness (7). The use of 
antipsychotics for Alzheimer’s disease is a very hazardous option, as it has been asso-
ciated with an increased risk of stroke and death in older adults with dementia (7).

MEMORY

Our memories define our character and have a completely unique perspective than 
everyone else’s experiences. Creating a memory involves three stages. The first, 
encoding, occurs when a stimulus results in the formation of a new memory 
(11–13). This new formation is often referred to as an engram, which is thought to 
be a physical memory trace in the brain (14). This trace is very susceptible to decay 
until the next stage occurs, consolidation (14). Consolidation is the process in 
which a memory becomes stable and is assimilated into previously acquired knowl-
edge (14). The final stage, retrieval, occurs when the memory is recollected (14).
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Sometimes when we create a memory, it only lasts for a short period of time, 
when other memories last a lifetime (15, 16). Memories are temporally defined as 
long term or short term depending on the length of time the memory lasts. Short-
term memories last less than 2 min, whereas long term memories can last 2 min 
to a lifetime (15, 16). Short-term memories usually are comprised of working 
memory (15, 16). Working memory typically involves small amounts of informa-
tion that we only need to retain for a couple seconds, for example, the prices two 
items when comparing costs while shopping.

Types of memory

There are multiple types of memory and subdivisions within each type. The main 
two types are explicit (declarative) and implicit (nondeclarative) (15). When a 
memory is explicit, the individual is consciously aware of the memory, whereas 
with implicit memory, the individual is not (15). There are two subsets within 
explicit memory: episodic and semantic. Episodic, or autobiographical memories, 
include a what, where, and when aspect of the memory (16–18). Semantic memo-
ries are facts about the world around us (15). An example of semantic memory 
may be knowing that baseball is a sport, whereas an episodic memory may be 
remembering the first time you went to a baseball game. Implicit memories also 
have two subdivisions: procedural and priming (15). Procedural memories 
include motor skills and other actions we complete automatically without con-
scious thought (e.g., walking and writing) (15). Priming occurs when an individual 
is exposed to a stimulus that influences their response to a later stimulus (15). 
An example of priming may be seeing a flash of an image on a computer while 
taking a computer-based memory task.

Forgetting

Why are some memories retained yet others are lost? There are many reasons 
that we forget information we have learned or events we have experienced 
(19–21). The act of forgetting can occur actively or passively. Passive forget-
ting occurs through natural decay, or biological degradation, of neurons 
within a memory engram (19). Partial decay of an engram can make it chal-
lenging to activate the memory during retrieval (19). Active forgetting can 
occur through several mechanisms: interference, motivated forgetting, or 
retrieval-induced forgetting (19). Interference, which will be detailed later in 
this chapter, occurs when competing information makes it difficult to retrieve 
the correct memory (19). Motivated forgetting often occurs when an individ-
ual actively suppresses a memory due to some unpleasant quality (e.g., guilt, 
shame, and embarrassment) (19). Finally, retrieval-induced forgetting occurs 
when only parts of a memory are normally recalled, causing the other parts to 
degrade over time (19).

Memory Interference

As stated in the previous section, memory interference (MI) is a cause of forgetting. 
There are two types of MI, proactive and retroactive. Proactive interference (PI) 
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occurs when previously acquired information interrupts the recall of newly learned 
information (old → new). For example, calling your new boyfriend by your old 
boyfriend’s name. Retroactive interference (RI) occurs in the opposite direction, 
newly acquired information interrupts the recall of old information (old ← new). 
Following the previous example, this would be calling your old boyfriend by your 
new boyfriend’s name. Interference can be benign to serious memory disruption 
depending on the situation. Interference is also linked to similarity of the content. If 
the competing material is similar, interference is more likely to occur.

In experiments, MI is measured using paired associate learning tasks. These 
tasks are typically comprised of lists of word pairs or figure pairs (e.g., “bread 
knife” or ♦♣) that a participant is asked to memorize as a pair. Research partici-
pants memorize lists of the word or figure pairs and subsequently recall them 
(e.g., bread - ___ or ♦ - ___). There are multiple models of paired associate 
tasks, but ones commonly used include AB–CD, AB–AC, AB–ABr, and AB–DE 
AC–FG. For the models, the letter pairs (e.g., AB and CD) signify one list each 
(e.g., AB = List 1, CD = List 2), each letter in the name (e.g., AB–CD) stands for 
one word (A = bread B = knife), and the combined letters (e.g., AB) represent one 
word-pair (breadknife). Examples of measuring MI using various models are 
summarized in tables 1–4.

Alzheimer’s disease and MI

Alzheimer’s disease causes the decay of neurons which eventually leads to mem-
ory impairment (1, 4, 5, 9). Although there are a lot of research fields focusing on 
how Alzheimer’s disease damages memory, there is less research focusing directly 
on MI effects on patients with Alzheimer’s disease.

When investigating patients with Alzheimer’s disease and those with mild cogni-
tive impairments without Alzheimer’s disease, Dewer et al. found that memory 
retention is much higher in these patients when there is minimal interference com-
pared to a normal MI paradigm (22). Their findings align with previous literature 

TABLE 1	 AB–CD example

List 1 (AB) List 2 (CD)

BABY HUNTER SPIDER CANDLE

SUPPER SHERIFF ARROW THEATER

WEDDING MOVIE CHERRY MONEY

APPLE DIAMOND TIGER HOTEL

MONKEY GARDEN CANNON HAMMER

FOREST BATTLE LADY BUTTER

In this model, AB signifies the first list and CD the second list. There are no repeating letters in the title of the model, 
meaning there are no repeating words within the lists. Each list consists of unique words with no overlap. Participants 
may be exposed to both lists (learn List 1 then List 2) and then asked to recall only one of them. To measure PI, the 
participants will learn List 1 (AB), List 2 (CD), then recall List 2. For RI, the participants will learn List 1 (AB), List 2 
(CD), then recall List 1.
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TABLE 2	 AB–AC example

List 1 (AB) List 2 (AC)

BABY HUNTER MOVIE WEDDING

SUPPER SHERIFF APPLE CANNON

MONKEY GARDEN BABY SALAD

FOREST BATTLE MONKEY ENGINE

MOVIE CHERRY FOREST CITY

APPLE TIGER SUPPER JACKET

Similar to the previous model AB–CD, this model’s first list (AB) has no repeating words, but as we can see “AC” has 
a repeating “A” word. This signifies that the “A” words from List 1 (AB) and List 2 (AC) will repeat, while the “B” and “C” 
words will not. When testing for PI, the participant will learn List 1, List 2, and then recall List 2. For RI, the participant 
will learn List 1, List 2, and then recall List 1.

TABLE 3	 AB–ABr example

List 1 (AB) List 2 (ABr)

BABY HUNTER SHERIFF CHERRY

SUPPER SHERIFF DIAMOND BABY

WEDDING MOVIE BATTLE SUPPER

SPIDER CANDLE FOREST HUNTER

MONKEY GARDEN MONEY MOVIE

FOREST BATTLE SPIDER GARDEN

CHERRY MONEY APPLE WEDDING

APPLE DIAMOND CANDLE MONKEY 

This model repeats all of the words from List 1 (AB) in the second list (ABr) except the words are rearranged into 
new word pairs. To reiterate, List 1 and List 2 comprised of the same words, but the way in which they are organized 
is different for List 2. This model can cause severe interference since the words are so similar. Participants learn List 1, 
List 2, then recall either List 1 or List 2 depending on the interference being measured.

demonstrating that memory dysfunction in patients with Alzheimer’s disease is 
associated with an increased susceptibility to MI (22). The authors hypothesize that 
this may be due to a decline in the ability to consolidate new memories (22). The 
interference paradigm utilized in this experiment is strong at predicting which 
patients with mild cognitive impairments will or will not progress to Alzheimer’s 
disease within 2 years, with 80% sensitivity and 100% specificity (22).

In term of semantic memory, or facts about the world (e.g., baseball is a sport), 
patients with Alzheimer’s disease perform worse on these memory tasks, which 
may be due to a deficit in working memory and attention (23). As stated previ-
ously, working memory is short-term memory that lasts for a very short period of 
time with a concurrent interfering stimulus. Hartman describes how, in her exper-
iment, there was no evidence that the patients with Alzheimer’s disease utilized 



Crawford L and Loprinzi PD200

semantic knowledge (relatedness) of word pairs during recall (23). When patients’ 
working memory is impaired, as is typical in Alzheimer’s disease, it is more diffi-
cult to retain relevant information about the relationships of words in paired asso-
ciate tasks (23). Despite this experiment’s focus on working memory, its results 
shed light on MI impairments since semantically relating words is a typical strat-
egy utilized when memorizing word pairs in paired associate tasks. When detail-
ing the symptoms of Alzheimer’s disease, we noted that difficulty remembering 
and following instructions is common (23). This may also influence performance 
on memory tasks. Repeatedly needing external cues or verbal instructions may 
alter outcome scores, as mentioned elsewhere (23). Another study that focused 
specifically on proactive and RI compared mildly demented Alzheimer’s disease 
patients, patients with mild cognitive impairment without Alzheimer’s disease, 
and healthy elderly patients on interference tasks (24). When controlling for 

TABLE 4	 AB–DE AC–FG example

List 1 (AB, DE)

Cued recall 1

A__, D__ List 2 (AC, FG)

Cued recall 2

A__, F__

MMFR

A__ __

D__ __

F__ __

BABY HUNTER SPIDER _______ FOREST CITY ARROW ______ BABY ___ ___

SUPPER SHERIFF FOREST _______ ARROW THEATER FOREST ______ CHERRY ___ ___

WEDDING MOVIE BABY ________ BABY SALAD TIGER ______ ARROW ___ ___

SPIDER CANDLE CHERRY ______ TIGER HOTEL SUPPER ______ SUPPER ___ ___

MONKEY GARDEN MONKEY ______ MONKEY ENGINE LADY _______ TIGER ___ ___

FOREST BATTLE SUPPER _______ LADY BUTTER CANNON ____ WEDDING ___ ___

CHERRY MONEY APPLE ________ CANNON HAMMER BABY _______ MONKEY ___ ___

APPLE DIAMOND WEDDING ____ SUPPER JACKET MONKEY _____ LADY ___ ___

SPIDER ___ ___

FOREST ___ ___

APPLE ___ ___

CANNON ___ ___

This paired associate task is more complex than the other designs because it includes control word pairs within 
each list, allowing for the measurement of proactive and RI within the same experiment. As before, List 1 (AB–DE) 
has repeating “A” words as List 2 (AC–FG). In this case, DE and FG are the control word pairs and AB and AC are the 
interfering word pairs. To use this model for an experiment, participants learn List 1, recall it, learn List 2, recall it, then 
recall the Modified Modified Free Recall (MMFR) list which is comprised of all of the word pairs from List 1 and List 2 in 
a pseudorandomized order.
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overall memory impairment, mild Alzheimer’s disease patients demonstrated 
higher rates of PI, but equal amounts of RI when compared to the cognitively 
impaired patients (24). As expected, the healthy elderly participants experienced 
the least amount of interference (24). Vulnerability to semantic interference may 
reflect early signs of the onset of Alzheimer’s disease (24).

EXERCISE AND ALZHEIMER’S DISEASE

As stated previously, physical inactivity is a risk factor for developing Alzheimer’s 
disease and is even considered the highest population attributable risk (25). In one 
systematic review, the majority of experiments demonstrated that physical activity 
was inversely associated with risk of developing Alzheimer’s disease (26). Exercise 
has also been demonstrated to improve multiple types of memory, including long-
term and short-term memory (27–33). Exercise may even prevent the onset of 
Alzheimer’s disease by decreasing the risk of cardiovascular disease, increasing cere-
bral blood flow, increasing hippocampal volume, and improving neurogenesis (34). 
Higher levels of physical activity are associated with a reduced risk of developing the 
disease (34), with long-term prospective studies demonstrating that walking regu-
larly is associated with a twofold reduced risk in cognitive impairment (25).

During exercise, many chemicals are released in the body, including brain-
derived neurotrophic factor, which is directly associated with learning and mem-
ory (35). Research also demonstrates that regular physical activity prevents mental 
decline and improves thinking in populations with vascular cognitive impair-
ment (34). It has been used clinically in the treatment of preclinical and late-stage 
Alzheimer’s disease, as well as a prevention strategy (34). Recent prospective 
work, that compared sedentary individuals to those who were the most active, 
demonstrated a 38% reduction in incidence of Alzheimer’s disease (36). In animal 
studies, mice with Alzheimer’s disease that completed 16 weeks of treadmill exer-
cise have been shown to elicit changes in therapeutic parameters at the cellular 
and molecular level, providing biological plausibility to exercise as a therapy (37).

In order to reduce the risk of developing Alzheimer’s disease, to lessen the 
effects for those already suffering from memory loss, individuals should partici-
pate in regular physical activity. The American national guidelines suggest at least 
150 min per week of moderate to vigorous physical activity (38). Meta-analyses 
have demonstrated mixed findings on which mode of exercise is best for improv-
ing specific types of memory; however, walking, cycling, and jogging are three of 
the most common exercises implemented, all of which have demonstrated ben-
eficial effects (33, 39). Multicomponent exercise programs have also been effec-
tive in improving cognitive function in institutionalized older adults with mild to 
moderate Alzheimer’s disease (40). One particular study found that incorporat-
ing a program that included supervised aerobic, muscular resistance, flexibility, 
and postural exercises for 45–55 min sessions twice per week for 6 months 
significantly improved patients’ cognitive function when compared to a control 
group (40). These findings suggest that incorporating a variety of physical activi-
ties may be an effective non-pharmacological method for improving cognitive 
function, along with physical function, in those with Alzheimer’s disease (40).
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CONCLUSION

In summary, individuals with Alzheimer’s disease may be more susceptible to MI, 
due to dysfunction of working memory and semantic memory. This can cause 
even more confusion, as patients already cope with a myriad of memory problems 
and other symptoms. The literature on Alzheimer’s disease and MI is sparse, and 
therefore, it is imperative that the field continues to grow and search for methods 
to attenuate interference in this population – for example, through exercise, which 
has been demonstrated to increase memory performance. Experiencing MI, or 
difficulty recalling information because of competing memories, can be very frus-
trating and debilitating for anyone, but especially for patients with Alzheimer’s 
disease. In experimental settings, paired associate tasks are often utilized to mea-
sure interference, but there are also other methods that are suitable. Due to the 
debilitating nature of Alzheimer’s disease, it is important to focus on prevention 
and delaying the condition by keeping your mind and body active, eating a 
healthy diet, and wearing safety equipment to avoid head injury.
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INTRODUCTION

As human beings, we need to know that we are and who we are. We need to be 
proud of our abilities and feel respected by other persons. These experiences can 
often be hard to achieve for persons with dementia, partly due to symptoms of 
dementia and to a great extent due to other persons’ reactions. There are reports 
that persons with dementia lose their self and also that it is at least partly preserved. 
A systematic review revealed that studies performed with quantitative methods 
generally described that among persons with dementia self was affected, while 
qualitative studies tended to find that self was at least partly preserved (1). These 
results are in line with Sabat (2) who argued that self should be investigated by 
sensitive methods.

The Latin root of the term dementia means to be out of one’s mind (3), and 
dementia has been described as leading to affected persons losing their self and 
becoming non-persons (4). Thus, it seems reasonable that the term dementia has 
been subject to criticism, and the American Psychiatric Association has replaced 
it with the phrase “major neurocognitive disorder” in the Diagnostic and Statistical 
Manual (DSM-5) (5). Sabat (6) argues that we should not reduce persons to brains 
but see the persons behind the dysfunctional symptoms and remember our shared 
humanity. Those living with dementia are semiotic persons, that is, their behavior 
is driven by meaning, as they, for example, have the capacity to show shame and 
pride and to feel concern for other persons’ well-being (7). They are also relational 
beings and their behavior is an effect of neuropathology, their reaction to these 
effects, others’ ways of treating them and their reaction to that treatment (8). 
Healthy persons often use negative stereotyping of persons with dementia which 
may lead to these persons themselves using self-stereotyping (9).

There are several types of dementia diseases, with Alzheimer’s disease as the 
most common type. The disease progresses from a mild stage, via a moderate 
stage, to an advanced stage in which affected persons are dependent on others in 
most situations (10). In the literature about care, the term “dementia” is some-
times used and sometimes the type of dementia is identified. Here, I use the term 
“dementia” when I refer to literature using the terms “Alzheimer’s disease” or 
dementia without further specification.

SYMPTOMS OF DEMENTIA

The cognitive symptoms of dementia can be described as four A’s, namely amnesia 
(impaired memory), apraxia (impaired ability to organize sequences of movements 
in space), agnosia (impaired perception), and aphasia (impaired language ability) 
(11). Amnesia affects first the short-term memory and later also the long-term 
memory. A decreasing autobiographic memory (incident memory about specific per-
sonal events including context and personal semantic memory such as names of 
friends) affects sense of self (12). In interviews, persons with moderate dementia can 
often provide short accounts of their experiences. They may narrate fragments of 
their life story: childhood, education, family life and professional life. Several persons 
describe specific events such as leaving home to go to school (13, 14) and narrate 
thoughts about their future life, that is, about possible selves (15). Apraxia causes 
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problems with performing everyday tasks like, dressing, eating, grooming, and 
walking. Agnosia causes difficulties in recognizing, for example, colors, persons, 
objects, odors, shapes, and sounds. Aphasia leads to difficulties with both speaking 
and comprehending speech (16). Persons with dementia use circumlocutions and 
paraphrases as they forget words, and they need prolonged time to understand the 
meaning of what has been said, and to formulate answers (17). They also often can 
compensate by using extralinguistic means such as gestures and tone (18).

SELFHOOD

There is no consensus about the meaning of the concepts of identity, person, per-
sonhood, self, and selfhood. The terms are often used interchangeably although 
there are many different conceptualizations (19–20). Studies on the sense of self 
in persons with dementia have used various concepts or failed to describe the 
concepts used. Here, I use the term “self” also when I refer to authors who use the 
terms “identity” or “personhood”. Thus, I use these terms as interchangeable.

The psychologists Sabat and Harré have together (21), separately (17, 22), and 
together with other researchers (23) published about a social constructionist the-
ory of selfhood in persons with dementia.

The embodied, material human being they label “person,” and the linguistic 
expressions we use to refer to ourselves they label “self.” Selfhood is expressed 
both as speech and behavior in public discourse. Sabat and Harré describe self as 
tripartite: Self 1, Self 2 and Self 3. Self 1 (the self of personal identity) expresses 
our embodied experience of being singular continuous persons located in space, 
time and in a local moral order. We experience this aspect of selfhood in that each 
of us has one single point of view of the world, that is, our continuous experiences 
of events that form the narrative of our lives. Through the use of first-person sin-
gular pronouns, we take responsibility for our actions, feelings, and experiences 
as being our own and tell autobiographical stories. We manifest Self 1 when we 
speak in first-person indexicals (“I,” “me,” “mine,” “my,” “our”) or indicate Self 1 
nonverbally for example by pointing to ourselves (21, 24). Self 1 is a necessary 
condition to be able to reflect on our personal attributes (Self 2) and exhibit them 
in appropriate social situations (Self 3).

Self 2 is comprised of how we perceive our physical and mental attributes 
such as eye pigmentation, height and weight, educational achievements, political 
and religious convictions, sense of humor, and vocational pursuits. We have 
beliefs about our attributes, such as that they are adequate or outdated and also 
emotions related to them such as pride or disdain. Some Self 2 attributes have 
long histories such as being a daughter, while some may be more recent such as 
being diagnosed with dementia. Self 2 can be restricted and unrestricted. The 
restricted Self 2 is about how we perceive ourselves to be in the moment, while 
the unrestricted Self 2 includes both how we are in the present, how we were in 
the past and may develop in the future, that is, our relatively constant, temporary 
or ever-changing attributes, such as traits, skills, and our beliefs regarding these 
attributes. We manifest multiple Selves 2 (22).

As persons with advanced dementia usually remember past attributes better 
than recent ones, they may feel proud of already lost attributes (25). For persons 
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with dementia, new Self 2 attributes include deficits connected to the neuropa-
thology of the disease (24) and results of their attempts to adapt to the 
disease (26).

Self 3 (social personae) is a complex concept, in that it includes the perspec-
tives of both the displayer and the perceiver. It is the display of Selves 1 and 2 to 
other persons. How we display Self 3, depends on the situation, on how other 
persons position us and how we position ourselves to them through actions or 
inner dialogues (23, 27–28). Persons with dementia may lose their sense of self-
worth and feel depersonalized, depressed, and angry when healthy persons 
behave in manners that can be classified as “malignant positioning” (28–30). 
Previous research has described both the negative positioning of persons with 
dementia (27) and the understanding and support that they sometimes 
receive (13). It is obvious that support from other persons is important for pre-
serving a sense of self (20, 30). If others focus on dysfunctional Self 2 attributes 
of  persons with dementia, their Self 3 (social persona) is restricted to “the 
patient” (28). If other persons focus on remaining healthy Self 2 attributes, it is 
possible for the afflicted persons to construct worthy Self 3 that makes them 
experience pride and satisfaction. (24). We manifest multiple Selves 3 that are 
constantly reconstructed in the interplay among persons (22).

Studies based on the Harré–Sabat theory of selfhood have shown that among 
persons with mild to moderate dementia, Self 1 was not affected during the course 
of dementia, whereas Selves 2 and 3 were (13–15). A few studies using that theory 
concern persons with advanced dementia (e.g., 24, 31–33). Studies that do not 
use the Harré–Sabat theory have found that some aspects of sense of self were 
preserved while other aspects were reduced among persons with advanced 
dementia (e.g., 34–37). Kontos (38) argued that selfhood is an embodied dimen-
sion of human existence persists even with advanced dementia. These persons 
have several preserved abilities despite losses of cognitive functions, for example 
being able to assess their own internal state of being such as feeling cold (39) and 
experiencing pain (40). Here, I use the term “advanced dementia” to describe 
information in articles about persons with moderate to advanced dementia as well 
as with advanced dementia.

PERSONS WITH ADVANCED DEMENTIA

Having advanced dementia involves many strains. Neighboring persons, carers, 
and everyone who meets these persons need to provide them support.

Awareness and lucidity

Although persons with advanced dementia are often described as having lost their 
self (4), their sensory and perceptual awareness has been found retained (41). 
These persons show distinct individual reactions to particular kinds of stimuli, 
and they, for example, differentiate between pleasant and unpleasant experiences, 
or various pieces of music (42–44). If the self is lost, it is difficult to understand 
the meaning of moments of lucidity (cognitive fluctuations) that have been identi-
fied when persons with advanced dementia that seem “not there” suddenly show 
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that they understand, remember, and care (42, 45). It was evident that lucidity 
during conversations with a women with advanced dementia occurred when her 
communication partner supported her by showing that he shared her expressed 
view, repeating and reformulating her words, using positive words and state-
ments, helping by suggesting words and starting, completing and ending sen-
tences and not emphasizing errors in her speech (46).

Suffering

Living with advanced dementia includes several negative experiences. When writ-
ing about suffering among persons with advanced dementia, several researchers 
write about experiences of pain and bodily distress (47). Few writers have explic-
itly focused on the other various experiences of suffering in persons with advanced 
dementia although carers often feel that these persons indeed suffer.

Eriksson (48) described three categories of suffering: “suffering of life” (for 
example grief due to the death of a friend, or feeling abandoned when friends do 
not pay visits to the nursing home), “suffering of illness” (effects of having demen-
tia such as not feeling at home, having problems communicating), and “suffering 
of caring” (distress caused by received care). An example of “suffering of illness” is 
that several persons with advanced dementia have neuropsychiatric symptoms 
such as apathy, depression, irritability, agitation, sometimes delusions, hallucina-
tions, and sleeping disorders (49). Examples of “suffering of care” are reports that 
carers have been observed treating persons with advanced dementia as object (50) 
which reasonably cause them suffering. Living with advanced dementia can also 
be experienced as a relative well-being (29) mainly through carers’ compensating 
for problems related to the disease (51).

Anosognosia

Many persons with advanced dementia have been reported to suffer from explicit 
or implicit “mnemonic anosognosia” anosognosia that makes them seem unaware 
of deficits caused by neurodegeneration although they may demonstrate implicit 
awareness (52–54). Their memory deficits can make their sense of self become a 
“petrified self,” that is frozen in time and sometimes reflects the features that were 
accurate in early adulthood and perhaps even in childhood. Thus, memory 
impairments hinder the persons to update information about self. Sometimes, 
they may register impairment but they cannot integrate the information into a 
coherent picture of their situation. This may lead to stable but inaccurate evalua-
tion of experiences and actions (54).

Moments of homecoming

Feeling at home is a fundamental aspect of human existence (55), and it is impor-
tant for our sense of self (56). Thus, losing one’s home is losing one’s self. To feel 
at home through the life cycle has been described as feeling related to oneself, 
significant activities, significant others, significant places, significant things, and 
to feeling a sense of transcendence (57). Persons with advanced dementia often 
appear to feel homeless, they may walk around, asking where they are and 
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searching for their home. They have problems feeling at home both in their for-
mer homes and in their new places of residence (58). The understanding of how 
important the experience of at-homeness is for our sense of self and well-being 
has led to an endeavor to create care environments where persons with advanced 
dementia can feel at home. However, although carers try to furnish the rooms as 
homely as possible it is often hard to document positive effect on the persons’ 
daily life (59). Observation of nursing home residents with advanced dementia 
showed that they alternated between expressing feeling at home (at-homeness) 
and not feeling at home (homelessness) both verbally and nonverbally. They 
showed often short lived moments of homecoming that were characterized by 
“being released from burdens and demands (e.g., not being required to make 
choices), being united with actions (e.g., being helped to use previously familiar 
routines when getting dressed), and being reached by language (e.g., being spo-
ken to with familiar words)” (60). One woman seemed to live and feel at home in 
two worlds simultaneously, that is, she interpreted some things that happened at 
present as something that happened earlier in her life (61). In her “remembered-
world,” she took care of her small children and had coffee with her friends and 
expressed astonishment about the fact that some nice and friendly persons entered 
her room, made her bed and invited her to dinner. In her “care home-world,” she 
could tell her carers about her grandchild having taken an exam.

Communication

Persons with advanced dementia may show some retained abilities to communi-
cate, they for example sometimes are using politeness when communicating (62). 
Their communication difficulties are, however, more often acknowledged. They can 
show lack of interactional synchrony such as integrating verbal and nonverbal 
communicative cues to a whole and synchronize their actions with their commu-
nication partners by adequate turn-taking. First the carer talks, then the person 
answers, then the carer answers, then the person shifts theme etc. The lack of 
synchrony makes behavior chaotic and fragmented. The persons’ sensitivity to 
representative meaning and less to affective meaning is reduced due to decreased 
arousal and attentiveness. They often send vague undifferentiated verbal and non-
verbal cues that are difficult to interpret for the communication partner. They also 
show problems interpreting the communication partners’ cues and they need pro-
longed time for responding to their partner. They may use short sentences but 
more often single words or even react with primitive reflexes (63). Communication 
partners sometimes have to impute or attribute meaning to the vague cues, that is, 
they make guesses that are based on their previous experiences with the person in 
question and with other similar persons or on empathy or intuition (50, 64). 
Sometimes, the communication can depend on the communication partners imi-
tating each other (65). When I tried to help a person with advanced dementia to 
eat and the person did not seem to understand, I demonstrated what I meant by 
opening my own mouth, chewing and swallowing. I ate an air meal. Suddenly, the 
person seemed to understand and started eating (The author’s experience). Both 
imputation of meaning to vague cues and imitation can help the persons feel like 
partners being answered, that is strengthening the Self 3.

At the end state, persons with advanced dementia may become mute (66). 
Hughes (67) argues that there are other means to understand persons with 
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dementia than understanding the words they use. It is about sharing a form of life, 
it is about understanding the context, and feeling what the persons express. This 
is like using affect attunement, that is, the carer tuning into the persons’ affective 
state to be able to help them to reduce negative affect and increase positive affect 
(68, 69). In this way, communion between the partners is created. According to 
Stern (70), the sense of self starts with the parent and infant being in communion, 
that is, participating in and sharing emotions and vitality effects that, for example, 
are expressed through intensity and rhythm. Later, the sense of self gradually 
develops through interaction with others throughout one’s history to also include 
cognitive dimensions. As their cognitive abilities decrease, persons with advanced 
dementia increasingly need to be in communion with carers to preserve their 
vulnerable self. Söderlund et al. (71) reported positive results from using the Feil’s 
validation method during one-to-one conversations with persons with advanced 
dementia. The focus was not the facts about what was expressed but rather the 
feelings behind what the persons tried to talk about and the aim was to treat them 
as adults and increase their feelings of self-worth and well-being. Eggers et al. (72) 
described two somewhat different ways of interpreting the communicative cues of 
persons with advanced dementia, partly by establishing communion with them 
through affect attunement and partly by putting various fragments together until 
a picture of the meaning of utterances and behavior appeared. This was like com-
pleting a puzzle.

AGENCY AND COMMUNION

Agency and communion have been described as fundamental modalities in 
human beings’ lives (73). Communion is the urge to be connected and unified 
with others. The positive themes of communion are love/friendship, dialogue, 
caring/help, and unity/togetherness, whereas the negative themes are separation, 
rejection, disillusionment about people, and another’s misfortune (74) Agency 
implies a quest for autonomy, self-realization, and separation from other people. 
The positive themes of agency are self-mastery, status/victory, achievement/
responsibility, and power/impact, and the negative themes are, failure/weakness, 
losing face, ignorance, and conflict (75). For a positive sense of self, we need 
agency (individuality) and communion (togetherness). Experiences of agency and 
communion have been assessed among persons with dementia (76). Although 
there are no clear-cut borders between the modalities, it seems as communion is 
more relevant for Self 1 and Self 3 and agency for Self 2.

Strengthening Self 1 communion

Being treated and even feeling as a non-person reasonably means suffering. 
Therefore, it is important to help persons feel as persons with a sense of self. 
Research has shown that the Self 1 is preserved among persons with advanced 
dementia. Even when they almost entirely answer “yes” or “no” to questions, they 
still show that they can experience themselves as “I” (32, 60). Still it seems reason-
able to suggest that we can help persons preserve their feeling of being an I by 
making them feel that they are seen and listened to, that is that they are. This kind 
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of behavior has often been labeled confirming actions and seems a type of 
communion.

The concept confirmation is based on Martin Buber’s philosophy and is 
described by Cissna and Sieburg (77, p. 254–260) as the process through which 
we endorse others by showing them recognition, acknowledgement and accep-
tance of their self-definition. Thereby they get help forming and maintaining 
human relationship. Cissna and Sieburg emphasize that confirmation includes 
four key elements: (i) The element of existence (the individual sees self as exist-
ing). (ii) The element of relating (the individual sees self as being-in-relation with 
others). (iii) The element of significance, or worth. (iv) The element of validity of 
experience. Observations at a small group living for persons with advanced 
dementia revealed that staff confirmed persons by accepting the ways they spoke 
and acted by making them feel accepted and allowed to be just as they were. 
A  person who thought the ward is a church was not corrected as long as he 
appeared to feel good. Another person who found it meaningful to carry things 
around was allowed to do that as long as no one else was disturbed (78). It seems 
reasonable that confirmation could be seen as strengthening persons’ Self 1.

Strengthening Self 2 agency

Experiences of using motoric and other abilities can be understood as part of 
agency. Because Self 2 concerns persons’ perceptions of their abilities, it seems 
logical that there is a need that they both get opportunities to use their abilities 
and also get help to remember how they previously used their abilities. They most 
easily remember what happened during their childhood (54) and often express 
they are proud of these memories. In articles about needs of persons with advanced 
dementia, agency is mentioned (51, 78). To my knowledge, there are few studies 
presented about agency among persons with advanced dementia. There are, how-
ever, articles about topics that could be seen as agency. Together with their respec-
tive co-workers Kihlgren (79) and Ekman (80) analyzed video-tapes of morning 
care sessions with persons with advanced dementia and carers. The carers were 
taught about the Erikson (81) theory of eight stages of man and encouraged to, in 
a concrete way, promote the persons’ experiences of trust, autonomy, initiative, 
industry, identity, intimacy, generativity, and integrity during morning care ses-
sions. The comparison of behaviors and speech before and after the intervention 
showed that the persons with dementia displayed more and more ability (79) and 
that carers who spoke the persons’ mother tongue (Finish) were most successful 
in helping them use their latent abilities than carers who only spoke Swedish (80).

Persons with advanced dementia may get help to recognize and remember 
important themes or episodes from their life history. As the ability to recognize is 
better preserved than the ability to recall, they might remember a phenomenon 
when reminded although they cannot recall it (17). They can have an uncon-
scious or implicit memory of past experiences (38) and often remember emotions 
better than facts (81). As persons with dementia best remember their life before 
the debut of dementia and later their earliest memory, they most easily can express 
their experiences by referring to memories from their childhood (54). They may 
for example call their mother when they feel unsecure (82). When they perceive 
the emotions in a conversation, they can go back in memory to an experience 
with the same emotions to understand what the conversation is about (83). 
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Thus, when a person with advanced dementia asks a carer: You are my mother, 
aren’t you, this does not have to mean that she thinks the carer really is her mother. 
Instead it might mean that the interaction with the carer made the person feel 
being loved and when she sought an experience with the same emotional tone 
from the past, she found memories of her mother.

At the last stages of life, persons with advanced dementia often experience eat-
ing difficulties, especially swallowing problems (84–85). By participant observa-
tions of meals Eggers (86) described fragmentation when the persons with 
advanced dementia did not seem to recognize what was going on, the persons 
involved, the things used, or recognize themselves in the meal situation. Carers 
counteracted fragmentation by showing attentive interest in the interaction, valu-
ing the persons as human beings, considering the symptoms of the dementia, and 
striving for mutual interpretation of the meal situation.

Strengthening Self 3 communion

Strengthening persons’ Self 3 seem to mainly concern themes of communion. Self 3 
has been found especially vulnerable when persons with dementia are negatively 
positioned and do not get support of others (17, 28). This means that actions that 
promote the wellbeing of these persons are strengthening their Self 3. Few articles 
about well-being concern persons with advanced dementia due to the fact that they 
cannot take part in studies that require answering complicated questions. They can, 
however, take part in easy conversations and become observed, thus in qualitative 
research (87). Kaufmann and Engel (51) included persons with advanced dementia 
in a study based on a Tom Kitwood’s model of needs and described well-being 
according to the themes comfort (small pleasures of life providing relaxation, conso-
lation); attachment (company with human beings, animals and objects, support); 
inclusion (being part of a community, feeling recognized); occupation (e.g., listening 
to the radio, exercise, participation in activities); identity (role maintenance, 
recognition, familiar rhythms and habits). Jetten et al. (12) reported that life satisfac-
tion that was lower among persons with mild dementia than among persons with 
advanced dementia. Reasonably this could be related to anognosia among person 
with advanced dementia (54). There are several means to improve the sense of well-
being among persons with advanced dementia such as using multisensory stimula-
tion for example including music and massage (88), singing (89), dancing (90), 
animals (91) and dolls (92). Listening to well-known songs or music and to positive 
stories from their own lives can strengthen the feeling of being important. Music, 
touch, dance and rocking can mean comfort for persons with advanced dementia 
(43, 69). The stimulation of the senses can be combined with ordinary nursing 
actions. A review of 21 intervention studies on persons with advanced dementia, in 
which aromatherapy, music, simulated presence (for example, listening to a tape 
recording of their partner), touch and multisensory stimulation, have been used, 
showed no proven scientific evidence but carers’ proven experience that the meth-
ods are effective, sometimes they fit, sometimes not (93).

As a positive Self 3 means that the persons with advanced dementia feel proud of 
themselves, loved and acknowledged other persons’ acts toward them are of utmost 
importance, actions that promote the persons feeling dignified certainly would 
strengthen self 3. Manthorpe et al. (94) described dignity as a phenomenon involving 
an inherent self-respect and feelings of worthiness, and being respectfully recognized 
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and confirmed by others. Nordenfelt (95) wrote about four variants of dignity: 
Menschenwurde (human dignity), which is overall other variants of dignity, that is as 
it is part of being human it is the same for all people; dignity as merit (e.g., being a 
leader), dignity as moral stature (e.g., being an altruistic person) and dignity of iden-
tity (concerns self-image, self-respect, worth and value ascribed by oneself or others). 
Persons’ dignity of identity can change over time, for example depending on if the 
persons are afflicted by dementia and how they are treated of others, which can result 
in physical, psychological, or emotional change or harm. Dignity of identity is con-
nected to sense of self, and it is threatened if the persons have forgotten who they are.

The dignity as moral stature is about our moral actions. We can show that we 
know about their previous good properties and actions as persons with advanced 
dementia cannot upgrade their identity (54). Persons with advanced dementia 
should be cared so they can keep their experiences of human dignity , dignity as 
merit, dignity as moral stature and dignity of identity. When persons with 
advanced dementia are seen as having lost their self (4), their human dignity is 
questioned and there is a risk that they become treated as objects.

SPIRITUAL AND CONSOLING CARE AT THE END OF LIFE

There is so far, no cure for AD. Within approximately 4 to 8 years, dementia usu-
ally leads to dying and death, although some persons live up to 20 years after being 
diagnosed (96). Persons may die with dementia due to various causes (97) or due to 
dementia as it is a lethal disease (98).

There are few reports about needs during end of life among persons with advanced 
dementia. A review of 10 articles published 1993–2013 mentioned physical, social, 
psychological, spiritual, supportive, environmental needs and needs related to indi-
viduality. The authors emphasized that as persons with advanced dementia 
have severe communication difficulties, we need more research about views of stake-
holders (99). Analyses of focus-group discussions at four nursing homes showed that 
dying was silent and silenced, emotions were put into the background and death was 
talked about after a person’s death. The staff did not talk about death neither with 
each other nor with the residents (100). This seems unfortunate as several residents 
have revealed that they were aware of the fact that they soon would die. One person 
emphasized that she was waiting to go to her real heavenly home. Another resident 
said that she was only living at the ward temporarily until she would meet her 
deceased spouse again and another one said that she wanted to listen to gospels 
while dying. Some did not speak about death and dying but reasoned about their 
funeral (60). At the last stages of life persons with advanced dementia often experi-
ence eating difficulties, especially swallowing problems (84–85). Several qualitative 
studies have reported that persons with advanced dementia at the end of life often 
exhibit aversive refuse-like eating behavior (101). There have been discussions about 
whether tube-feeding or comfort feeding should be used (102–103). The American 
Geriatrics Society (96) has recommended comfort feeding.

Spirituality has been regarded as “an integral, even fundamental, element of 
what it is to be a human being” (93, p. 765) and if we regard persons with 
advanced dementia as human beings it follows that they have spiritual needs. 
Spirituality among persons with advanced dementia has not, however, been 
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extensively studied. A literature review of scientific articles about spirituality did 
not report any study about persons with dementia (104) and another review study 
found expressed spiritual needs in 2 out of 10 articles (99). According to Kverno 
(93) there is a diversity of definitions of spirituality such as being connected to 
meaning-making. Spirituality should be understood as involving the dimensions 
of time and/or social space and stresses it’s longitudinal, habitual dimension, that 
is, “the values, meaning and practices most deeply ingrained at the heart of ‘who 
we are’ are those which have been repeated and reinforced over and over again 
from our infancy” (p.773) and held together with other persons. Perkins et al. 
(105) reported that even persons with advanced dementia were able to engage in 
spiritual practices that provide life meaning in accordance with their values. 
Observations in a nursing home showed that some persons expressed a need for 
religious expression or participating in religious rituals (106).

Thinking about or even experiencing that one interacts with deceased dear 
loved ones can provide satisfaction (60). This finding seems to represent a ten-
dency to gerotranscendence (107) and can be understood as related to the fact 
that among persons with advanced dementia memory for past events is better 
preserved than memory of recent events (12). Swinton (108) argued that spiritual 
practices can be beneficial for Christian persons with advanced dementia. When 
their memory fails their bodily memory can be reclaimed. He referred to Bergson’s 
writing about a memory synonymous with recollection that represents particular 
things that have happened in the past and inscribes the past in the present (54). 
Swinton emphasized that we are embedded in our memories even when we can-
not recall them, we are our memories. Persons with other religions or life views of 
course also need spiritual care adopted to their needs. Nursing home residents 
with moderate dementia expressed that religion is consolation for them (109). 
Persons with advanced dementia need consoling care (69, 110). The most impor-
tant ingredient in consolation for these persons certainly is communion (69, 111) 
and it may provide them a feeling of being at home (112). However, it is most 
probable that they can get some moments of homecoming (60).

CONCLUSION

Persons with dementia lose parts of their self which can be noticed when consid-
ering symptoms such as amnesia, agnosia, aphasia, and apraxia. Their own sense 
of self can be preserved during the entire course of dementia partly due to the fact 
that their amnesia makes it difficult for them to upgrade their life story. Of utmost 
importance is that other persons understand that persons with advanced demen-
tia still are persons and support them to feel valuable.
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Abstract: Although depression and Alzheimer’s disease fundamentally result 
from distinct pathophysiological events, their coincidence is far from a rare 
occurrence. In addition to the difficulty in the diagnosis of depression in the 
patients with a cognitive impairment, care givers and even physicians are mostly 
unaware that depression and Alzheimer’s disease can coexist. While depression 
has already a devastating impact on quality of life by itself, coinciding depression 
and Alzheimer’s disease may advance to a cataclysmic magnitude. This chapter 
underlines obstacles in the recognition of depression in the Alzheimer’s patients 
following a brief introduction to the concept of depression. Depression and 
Alzheimer’s disease appear to intersect in the cholinergic and serotonergic sys-
tems which may engender an exquisite strategy in the treatment of both disorders. 
Therefore, potential cholinergic and serotonergic targets are also emphasized.
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INTRODUCTION

Depression is an affective disorder as old as mankind. Hippocrates has defined 
depressive psychological state as “melancholia,” which means “black bile” in 
Greek, by the words of “despair, apathy, unwillingness, insomnia, anxiety, 
incompetence, gloominess, sadness and fear” in around 400 BC (1). The brief 
description of depression is being possessed by unhappiness, moodiness and 
unwillingness (2). However, its description as a medical condition is continually 
evolving with the efforts of classification to make differential diagnosis clearer. 
Depression is an additional mental burden in Alzheimer’s patients who already 
struggle with cognitive impairments. Both depression and Alzheimer’s disease 
lower quality of life and harden daily activities of the patients who are mostly 
elders. Alzheimer’s disease often does not have a good prognosis whereas depres-
sion is a reversible, but recurrent disorder. Almost one-third of the Alzheimer’s 
patients suffer depression (3, 4). This chapter focuses on the interrelation between 
depression and Alzheimer’s disease, and discusses common properties of these 
neuropsychiatric disorders.

HOW DO WE RECOGNIZE DEPRESSION?

Diagnostic and Statistical Manual of Mental Disorders (DSM) by the American 
Psychiatric Association is the main guideline to diagnose depressive disorders 
whereas International Classification of Diseases (ICD) by the World Health 
Organization is the global system for reporting health conditions. According 
to the fifth edition of DSM, depressive disorders are categorized as major 
depressive disorder, dysthymic disorder, disruptive mood disorder, premen-
strual dysphoric disorder, substance or drug related depressive disorder, 
depressive disorder due to a medical condition, and otherwise undifferenti-
ated depressive disorder (5). With the system of ICD, the most commonly 
diagnosed depressive disorders are single depressive episode, recurrent 
depressive disorders, and persistent mood disorders (6). Depression is the 
most prevalent psychiatric disorder among general population (7). The 
patients with depression often have low self-esteem, suffer overwhelming 
unwillingness, and are afflicted by attention and concentration deficits which 
result in cognitive impairments (6, 8). Depression may exceed being an affec-
tive problem and lead to physical abnormalities. It can coincide with and 
aggravate existing physical pathologies (2, 6, 8). On the other side, chronic 
diseases can also generate depressive disorders (2, 9, 10). Together with its 
complications including the aggravation of physical health conditions, depres-
sion is a serious public health concern which also creates an important eco-
nomic burden (10–12). Concerningly, depression has become the leading 
cause of disability (13). This insidious pandemic urges a better understanding 
of its pathophysiological mechanism and so, development of more advanced 
treatment options.
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COGNITIVE DYSFUNCTION MAY LOOK ALIKE DEPRESSION

Although depression occurs frequently, it should not be mistaken as its diagno-
sis is unchallenging, particularly for the patients with cognitive impairment. 
Depressive symptoms are summarized above; however, the cognitive impair-
ment can easily be confused with depression and vice versa. Lowered self-esteem, 
self-blame, forgetfulness and indecisiveness are shared behavioral symptoms of 
depression and cognitive impairment. Furthermore, hypomimia, apathy, psy-
chomotor slowness, fatigue, and reluctance to communicate are the signs a 
physician may notice in a depressive patient which again resemble cognitive 
dysfunction (14, 15). Therefore, in the patients with cognitive impairment, 
diagnosis of depression often requires scrutinization of medical history and 
discrimination of the affective disorder with overlapping signs of cognitive 
inability. Depression can emerge at any age, but its prevalence is higher in adults, 
especially between 55 to 74 years old (16). Also, women are reported to experi-
ence depression about two times more than men (11, 16), indicating that sex is 
a risk factor for depression (17). Besides, there are numerous other factors that 
create a tendency toward depression such as divorce, separation, loneliness, and 
low socioeconomic status. (18).

THE COINCIDENCE OF DEPRESSION AND 
ALZHEIMER’S DISEASE

Epidemiological and longitudinal studies indicate that there is a relation between 
Alzheimer’s and depression. However, it is debatable whether depression is a 
symptom arisen from the neurodegeneration or a reaction against cognitive 
inabilities. Some authors are defending that depression is a preceding pathology 
and a risk factor for Alzheimer’s disease whereas some others suggest that depres-
sion co-occurs in Alzheimer’s disease, and it becomes apparent as a component of 
Alzheimer’s (4, 19).

A yearly increase in elderly population is predicted in almost all countries 
(20). Because age is an individual risk factor for Alzheimer’s disease (3), an aging 
population means more patients with Alzheimer’s disease. About 5% of the people 
over 65 years have dementia and an additional 5% increases every 5 years. Thus, 
the prevalence of dementia is as high as 40% after 95 years of age (21). Today, it 
is estimated that there are 35 million demented people all around the world and 
this number is projected to be 115 million in 2050 (22).

Alzheimer’s disease is the most common form of dementia (23). One-ninth peo-
ple over 65 years of age and one-third over 85 years struggle with Alzheimer’s 
disease (3). Alzheimer’s disease affects more than 5 million people only in the United 
States and it is reported to be the fourth cause of death (24). Furthermore, coincid-
ing pathologies can significantly increase the incidence of the disease. For example, 
the risk for Alzheimer’s disease is 3 to 5 times more in Down’s syndrome (25).
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Depression is an affective disorder that can afflict who takes a medical treat-
ment and also, it is more prevalent in inpatients and elders under nursing care (3). 
Depression is a notable problem for overall elderly health. It has higher recurrence 
rates in elders than middle-aged people (26). Depression soars the death ratio 
independently of any medical interventions in patients under the nursing 
care (27). Suicide is the gravest consequence of depression and depressive elders 
have the highest suicide rates in all ages (28). Startlingly, suicidal ideation has 
been reported in 45% of the patients with concurring depression and Alzheimer’s 
disease (29).

Depression is considered to be a “syndrome” rather than a “disease” which 
presently lacks a definitive biomarker and hence, is diagnosed by subjective ques-
tionnaire inventories. These inventories mainly aim to inspect neuropsychiatric 
symptoms such as negative emotional state, changes in personality and psychotic 
signs. The emotional and psychotic symptoms are relatively common in the 
Alzheimer’s patients (30). Dysphoria, anxiety, aggressiveness, psychomotor agita-
tion, loss of interest, and sleep disorders are the most frequent depressive 
symptoms. These symptoms encumber the care of Alzheimer’s patients which is 
already difficult without them (Figure 1).

Clinical studies suggest that depression coincides with Alzheimer’s disease in 
more than a half of the patients (29). Besides, depression in Alzheimer’s disease 
often resembles severe depression, but with a variety of ambiguous symptoms. 

Figure 1  Depression and Alzheimer’s disease are often manifested with similar 
neuropsychological symptoms and signs.
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For example, depression in Alzheimer’s disease can be represented with social 
isolation, self-abnegation or aggressiveness (3, 4). However, apathy and loss of 
interest remains to be the most common symptoms in coinciding depression and 
Alzheimer’s disease (4, 31).

Diagnosis of depression in Alzheimer’s disease is a strenuous task due to the 
lack of an objective and repeatable laboratory test to identify depression. Because 
of similarities with the patients with Alzheimer’s disease, depression inventories 
can be misguiding. Accordingly, it is important to emphasize that the incidence of 
depression gradually increases from mild to moderate cognitive impairment 
whereas decreases sharply in severe dementia (32). This decrease in incidence is 
a clear indicator of the obstacle in the diagnosis of coexisting depression in 
Alzheimer’s disease.

WHAT DOES LIE BEHIND COINCIDING ALZHEIMER’S 
DISEASE AND DEPRESSION?

As mentioned above, the coincidence of Alzheimer’s and depression is not a rare 
occurrence, and it creates a serious challenge to the diagnosis and quality of life. 
Although the two pathologies converge on behavioral and cognitive disturbances, 
they apparently do not originate in a common pathophysiological basis. However, 
they have a number of overlapping features that may explain the high comorbid-
ity of Alzheimer’s disease and depression.

The first report hinting the relation between Alzheimer’s and depression dates 
back to late 1920s. Herz and Fünfgeld (33) have described depression as a pre-
ceding disorder that is immediately followed by deteriorations in memory in 
Alzheimer’s patients. Numerous subsequent researches confirmed this link up to 
now, but post-mortem studies are peculiarly important since there is not a defini-
tive ante-mortem diagnostic tool for Alzheimer’s disease (34). Because longitudi-
nal studies are invaluable means to reveal if there is a relation between seemingly 
distinct conditions, we will briefly discuss the prominent longitudinal studies in 
which post-mortem diagnosis was established.

In 2004, Milwain and Nagy (35) examined 89 histopathologically con-
firmed Alzheimer’s patients with depression and found that the patients in 
the intermediate stage of the disease scored lower in CAMCOG, a neuropsy-
chological battery to assess cognition (36), than the patients without 
depression. The worsened cognition in depressive Alzheimer’s patients was 
implying a deterioration in the neuropathology, although this was not evi-
denced in that report. Rapp et al. (37) have investigated the post-mortem 
brains of 95 patients with clinically diagnosed Alzheimer’s disease, of which 
44 had a life-time history of major depressive disorder and 51 without 
depression. They noted that the Alzheimer’s patients who suffered a life-time 
depression had about two times more amyloid plaques and neurofibrillary 
tangles in their hippocampi. In another longitudinal study that presents 
patient data from almost 40 years, Brunnström et al. (38) emphasized that the 
onset of dementia is lower in the depression sufferer Alzheimer’s patients 
compared to those without depression.
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Alzheimer’s disease and depression appear to have a reciprocal relationship. 
Depression is an individual risk factor for Alzheimer’s disease (39) even when the 
latency between the two pathologies is as late as more than 25 years (40). Preceding 
depression is a specifically notable predictor of Alzheimer’s disease for the patients 
who do not carry apolipoprotein E (ApoE) є4 allele which is an Alzheimer’s-
associated polymorphism (41). Thereby, non-ApoE4 allele carriers with depres-
sion have higher risk for Alzheimer’s disease when compared with whom without 
depression. Furthermore, depression can have an outrageously high frequency in 
Alzheimer’s disease. Usman et al. (42) have reported that depression was observed 
in three-fourths of the Alzheimer’s patients without considering sex as a variable, 
and the prevalence was as high as 90% in females. This is particularly important 
because depression does not only aggravate amyloid pathology, but also worsens 
the clinical progress in Alzheimer’s disease (43).

The mentioned interrelation points out some shared molecular features in 
Alzheimer’s and depression even though they apparently originate from diverse 
pathological processes. Disturbances in the neurotransmitter systems and hypo-
thalamic-pituitary-adrenal axis are prevailing peculiarities shared in the two 
pathologies. Indeed, the functions of the brain cannot be accredited to any indi-
vidual neurotransmitter or neuromodulator because all systems should be opera-
tional in a stupendous harmony to achieve an efficient function. However, 
aberrations in the cholinergic, monoaminergic and serotonergic transmission are 
evident in both Alzheimer’s disease and depression which compose a pathophysi-
ological intersection.

Cholinergic system in the central nervous system consists of two sub-systems 
as nicotinic and muscarinic. Although cholinergic projections are clustered in 
distinct regions, both nicotinic and muscarinic receptors are widely distributed 
throughout the brain and hence, cholinergic transmission involves in numerous 
brain functions that are carried out by diverse brain areas (44). The nicotinic 
system works out through the neuronal nicotinic acetylcholine receptors which 
are simply cation channels (45) whereas the muscarinic system employs any of 
the five muscarinic acetylcholine receptors (M1-5) which all are G-protein cou-
pled receptors (46). It is long known that cholinergic dysfunction is a problem 
in Alzheimer’s disease (47). The cholinergic hypothesis of Alzheimer’s disease 
proposes that the deterioration in the cholinergic signaling is responsible for 
learning and memory deficits, a condition which also can be experimentally 
mimicked by the administration of anti-cholinergic drugs (48). This hypothesis 
is supported by symptom relieving effects of acetylcholine esterase inhibitors 
whereas disapproved by the presence of cholinesterase inhibitor-resistant 
patients (48). Nevertheless, the cholinergic system is evidently disturbed in a 
remarkable portion of the patients and it shows a correlation with cognitive 
inabilities (49). This is probably because the cholinergic neurons are particu-
larly affected by the amyloid accumulation (50). With regard to the cholinergic 
system, the relation between Alzheimer’s and depression seems to be paradoxi-
cal, considering that reduced cholinergic signaling is linked to cognitive decline. 
The involvement of the cholinergic system in depression is known for almost 
50 years (51) and preliminary studies have underlined the hyperactivity in the 
cholinergic signaling in depression (52). Consecutive researches have noted 
that enhanced cholinergic transmission leads to depression (53, 54) and 
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antagonizing nicotinic signaling can exert an anti-depressant-like effect (55). 
Contrarily, the activation of a sub-type of nicotinic receptors, alpha7 receptor, 
has been shown to alleviate depression in mice through restoring the hippocam-
pal function (56). Therefore, instead of a widespread contribution of the cholin-
ergic system to depression, its influence on hippocampus should be taken 
into  account. As illustrated in Figure 2, decreased cholinergic innervation 
diminishes the hippocampal neurogenesis and function, and improving the 
cholinergic transmission by means of cholinesterase inhibitors reverses this 
consequence (53). In regard to alterations in the cholinergic system, the hip-
pocampus is the crossroad where cognitive deficits meet with depressive 
behaviors. This probably explains the finding of that cholinesterase inhibitors 
improve neuropsychiatric symptoms in some Alzheimer’s patients (57, 58). On 
the other side, it should be kept in mind that cholinergic hyperactivity created 
by cholinesterase inhibitors can result in depression (59) and hence, fine dose 
adjustment and a strict follow-up are particularly important issues in the 
Alzheimer’s patients with a history of depression.

The other neurotransmitter system that bridges between Alzheimer’s disease 
and depression is the serotonergic system that is named after its neurotransmitter, 
serotonin (5-hydroxytryptamine; 5-HT). Serotonin has 7  families of receptors 
(5-HT1–7) which are all G-protein coupled except for the ionotropic 5-HT3 

Figure 2 The cholinergic depletion reduced hippocampal neurogenesis that contributes to 
cognitive impairments.
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receptor (60). The most commonly prescribed anti-depressants, selective sero-
tonin reuptake inhibitors (SSRIs), aim the restoration of serotonin in the cen-
tral nervous system. The alleviation of depression with SSRIs constitutes the 
foundation for the serotonin hypothesis of depression in which depressed 
mood and its complications are accredited to reduced serotonergic neurotrans-
mission and neuromodulation (61). Besides the serotonin transporter (SERT), 
three sub-types of serotonin receptors, 5-HT1A, 5-HT1B and HT2A, which are 
mainly localized in the limbic system, appear to bear higher importance in 
depression (61). Recently, 5-HT4 and 5-HT6 receptors have been suggested to 
have a role in depression. The stimulation of 5-HT4 receptors has been shown 
to lead to an anti-depressant-like effect that is similar to fluoxetine (62, 63). 
Moreover, 5-HT4 stimulation has been found to restore cognitive abilities that 
are altered in depression (63). An opposite link has been revealed for 5-HT6 
receptors which are abundant in the hippocampus (64). The inhibition of these 
receptors has been suggested to exert an anti-depressant-like effect (65). 
Indeed, the strongest relation between Alzheimer’s disease and depression may 
lie behind the serotonergic system. The patients with Alzheimer’s disease dis-
play depleted serotonin and 5-hydroxyindoleacetic acid, the main metabolite 
of serotonin, in their frontal and temporal cortices (49). Amyloidogenic activity 
increases in the post-menopausal period and this may be originated in decreased 
serotonergic signaling due to decreased estrogen (66) which is in accordance 
with the epidemiological data of higher prevalence of Alzheimer’s disease in 
women (67). The Alzheimer’s patients have a decreased 5-HT1A receptor 
expression particularly in their hippocampi and raphe nuclei, and the 
hippocampal receptor decrement is correlated with worsened clinical symp-
toms (68, 69). Similarly, 5-HT2 receptors decrease up to 69% in Alzheimer’s 
disease as documented by decreased setoperone binding, a 5-HT2 ligand that 
has particular affinity to 5-HT2A receptors (70), and by decreased altanserin 
binding, a 5-HT2A ligand (71). More recently discovered 5-HT4 and 5-HT6 
receptors, which are novel anti-depressant treatment targets, also involve in the 
pathophysiology of Alzheimer’s disease. Similar to that for depression, 5-HT4 
agonism alleviates Alzheimer’s amyloidogenic pathology whereas 5-HT6 antag-
onism augments memory and learning in the Alzheimer’s patients (72). 
Moreover, a decrease in SERT accompanies the decrease in the receptors of 
interest which results in an extensive disruption in the serotonergic signaling 
in Alzheimer’s disease (73). Overall, the serotonergic system, as summarized in 
Figure 3, plays a crucial role in both Alzheimer’s disease and depression and 
constitutes a highly promising treatment target which may ease depressive 
mood while soothing cognitive deficits in the Alzheimer’s patients with 
depression.

In addition to current treatment targets of cholinergic and serotonergic sys-
tems in Alzheimer’s disease and depression, they share some other pathophysi-
ological features such as disturbances in the hypothalamic-pituitary-adrenal 
axis, inflammation and oxidative stress (74). However, it is not clear whether 
these disorders are reasons or consequences. Nonetheless, it is evident that the 
treatments targeting either cholinergic or serotonergic systems can reduce coin-
ciding immunohumoral and oxidative disruptions to some degree in both 
diseases (75, 76).
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CONCLUSION

Alzheimer’s disease and depression are debilitating disorders which need fur-
ther scrutinization to understand their pathophysiological properties and to 
develop novel treatment options. Alzheimer’s disease is an incurable neurode-
generative disorder, at least for now, and undiagnosed/untreated depression in 
Alzheimer’s patients creates a serious problem since it worsens neurodegenera-
tion while causing further cognitive deficits and lowering quality of life. 
Considering abovementioned shared molecular features of both disorders, 
awareness among clinicians of the possibility of depression in Alzheimer’s 
patients would let them prescribe not only against cognitive symptoms, but 
also affective disturbances which can benefit to both Alzheimer’s disease and 
depression.
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Figure 3 The serotonergic system is similarly altered in both depression and Alzheimer’s disease.
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Abstract: After the age of 60, earlier in many cases, patients who experience 
perseverations, forgetfulness, and difficulties with daily living are often referred 
by their physicians for a neuropsychological evaluation. A neuropsychological 
evaluation consists of a variety of tests that illustrate a patient’s cognitive func-
tioning that include attention, concentration, verbal memory, visual memory, 
problem-solving, and cognitive flexibility. It further clarifies a range of diagnostic 
criteria that distinguish Alzheimer’s disease (AD) from other mental health-
related disorders. Depression presents in a very similar pattern to early stages of 
AD. Therefore, the neuropsychological evaluation will rule in or out diagnostic 
criteria and pinpoint which medication should be recommended. A collabora-
tive approach between psychologists, physicians, and caretakers is crucial in 
obtaining an accurate diagnosis to develop an appropriate treatment plan. 
Results from the neuropsychological assessment provide physicians with infor-
mation to develop a medication regimen that helps treat a patient’s cognitive and 
behavioral symptoms. Additionally, this information provides caretakers with 
psychoeducation to help understand the current functioning of their loved ones. 
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The  neuropsychological test findings coupled with a medical intervention is 
imperative to help patients and their families to develop adaptive methods that 
may help minimize the difficulties of daily living.

Keywords: Alzheimer’s; attention; cognitive rehabilitation; dementia; emotional 
functioning; memory; neuropsychology

INTRODUCTION

Evaluating dementia, particularly Alzheimer’s disease (AD), varies across settings. 
In this chapter, we will introduce what is neuropsychology, neuropsychological 
testing for possible or probable AD, as well as the importance of collaboration 
between the doctors involved in treatment of the patient with AD. In particular, 
we will describe what a medical doctor can expect from neuropsychological 
testing. Among countless batteries that are performed by neuropsychologists, we 
will emphasize the following phenomena: depression, substance use, decision-
making, co-occurring mental health disorders, as well as the role that technology 
plays in neuropsychological testing. The importance of neuropsychological test-
ing is priceless to patients. Results from neuropsychology testing can aid in con-
firming and/or ruling out often otherwise misdiagnosed syndromes that may 
require a different treatment plan and hence may impede and/or lead to success 
for appropriate treatment. For instance, neuropsychological testing may confirm 
AD and rule out depression and vice versa. Our hope is that readers will be more 
familiar with neuropsychological testing and its role in treatment for patients as 
well as their loved ones.

WHAT IS NEUROPSYCHOLOGY?

Neuropsychology is a scientific term that encompasses studying the central 
nervous system, including the brain and spinal cord, and how it influences an 
individual’s cognitions and behaviors. This field within psychology has experi-
enced a growth for over the last 40 years, with interest for about 120 years 
within the modern scientific psychology (1). Neuropsychology utilizes special-
ized knowledge of foundational neuroanatomy, principles of neuroscience, 
brain development, neurological disorders and etiologies, neurodiagnostic 
techniques, normal and abnormal brain functioning, and neuropsychological 
and behavioral manifestations of neurological disorders. In addition to this 
diverse amount of knowledge, neuropsychologists gather relevant historical 
information, conduct a neuropsychological examination, analyze and integrate 
data and findings, and provide feedback to the referral source. Neuropsychologists 
attempt to answer the question of “What mechanisms are responsible for 
human thinking, learning, and emotion, how do these mechanisms operate, 
and what are the effects of changes in brain states upon human behavior?” (1). 
This specialty applies principles of assessment and evidence-based interven-
tions to the study of human behavior as it relates to normal and abnormal 
functioning of the central nervous system. The combination of extensive 
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training, knowledge, and education with the process of obtaining and analyzing 
information allows for neuropsychologists to solve questions about the mind 
that otherwise cannot be solved.

As the main focus for neuropsychology is to determine the brain and behav-
ior relationship with each patient exhibiting their own unique presentation, this 
has pushed to develop the field toward becoming an essential discipline for 
diagnosing and treating cognitive mental health disorders. Neuropsychology uti-
lizes mechanisms to elicit activation in the multiple areas of the brain to deter-
mine their individual levels of functioning. In particular, these areas are referred 
to as cognitive domains. These cognitive domains studied by neuropsychologists 
include “perception, attention, learning, memory, processing of spoken and 
written language, thinking, reasoning, or belief formation, with the aim of learn-
ing more about the normal functional architectures of the cognitive processing 
systems used to carry out these activities” (2). As a result of testing the function-
ing in all the above-mentioned domains, there are a wide range of disorders that 
may be diagnosed including dementia, vascular disorders, Parkinson’s disease, 
and other neurodegenerative disorders, traumatic brain injury, seizure disorders, 
learning disabilities (LD), neuropsychiatric disorders, infectious disease affecting 
the central nervous system (CNS), neurodevelopmental disorders, metabolic 
disease and neurological effects of medical disorders or treatment. Achieving a 
diagnosis allows individuals, their loved ones, their caretakers, and their physi-
cians to gain awareness of the presenting problem and understand effective treat-
ment recommendations to manage the diagnosis.

It is important to understand the direct correlation between cognitions and 
behaviors for neuropsychologists. This relationship that is observed is an indi-
vidual’s natural response to their environment, which may experience fluctuations. 
Neuropsychologist’s main role is to attempt to distinguish where there are abnor-
malities and how it may cause dysfunction that may impact an individual’s ability 
to properly function in their daily lives. Dysfunctions that a patient may experi-
ence may present in one or more of the domains of cognitive functioning. Each 
domain plays a crucial role in how individuals function in their personal and 
professional lives. These dysfunctions may present at different severities. In gen-
eral, the minimal symptoms are not noticed by the patients; however, the more 
pronounced are usually noticed by their significant others. Many times, when a 
cognitive domain begins to decline, the patient may have minimal or no present-
ing symptoms, while others may have a severe presentation from the beginning. 
Such presentation depends on the domain that is impacted and possible other 
co-occurring medical complications. While there may be an overlap between the 
areas that present with similar problems, each has their own focus on how they 
contribute to the brain and cognition relationship.

One of the main impacts to the cognition and behavior relationship is a type 
of brain damage or trauma. The damage or trauma can range from a direct impact 
to the head to an organic occurrence in the brain. Regardless of the type of brain 
trauma, when it occurs, it can be localized or generalized throughout the brain. 
The area of where the impact occurs will influence the patient’s presentation. It 
may be difficult to pinpoint where the impact occurred, but the neuropsychologi-
cal evaluation will pinpoint impairments within each cognitive domain. The neu-
ropsychological evaluation is pertinent as it will discern clusters of symptoms that 
may belong to psychiatric symptoms, medical conditions, as well as emotional 
presentation.
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The primary reason for a neuropsychological evaluation is to create a 
diagnosis and eliminate other disorders that may seem relevant but may not 
apply to the individual’s presentation. Neuropsychological assessments specifi-
cally target parts of the brain through measuring the different cognitive domains 
of functioning. Cognitive functions are processes that help individuals carry 
out tasks requiring attention, memory, language, judgment, and problem 
solving. While it is well known that certain domains of cognitive functioning 
have their main centers, they also may be spread across several parts of the 
brain. Neuropsychological assessments elicit activity in different parts of the 
brain when activated with test tasks. A thorough analysis of the integrated data 
from the neuropsychological evaluation, will not only pinpoint given cognitive 
strengths but also weaknesses. Such analysis is most likely driven by patterns 
within the testing battery which as a result renders a diagnosis. This is why a 
neuropsychological evaluation contains a set of tests that measure similar cog-
nitive functioning, rather than utilizing screening assessments. On that note, 
the neuropsychological evaluation is a lengthy process which oftentimes 
requires several hours of testing. While the several hours may seem long and 
daunting, it presents accurate data, rather than screening alone. Each neuro-
psychological battery is designed for an individual’s ability to withstand long 
testing hours. In those situations a focused neuropsychological battery is con-
ducted and a single cognitive domain may be tested (i.e., attention). Hence it 
is not uncommon that testing may vary in length from one to several hours, 
depending on the setting. For instance, testing may be shorter within an inpa-
tient bedside setting and longer for a patient seeking an evaluation for a high-
profile employment position, in an outpatient setting. In spite of the long hours 
of testing, it is our experience that patients and their family members appreci-
ate the time that they engage in the testing, as this allows for a thorough 
evaluation. Patient’s family members especially their children, appreciate the 
knowledge as they may carry similar genetic load and hence can utilize 
measures for prevention.

Individual results of the neuropsychological evaluation are compared to norms 
that will then indicate the level of functioning of this individual. The neuropsy-
chological evaluation will render normative data that will indicate whether a 
patient is in the above average, average, or impaired range of functioning. The 
neuropsychological evaluation provides the clinician with twofold data. First, it 
delineates the pre-morbid functioning level that allows the neuropsychologist to 
understand whether the impairment is significant, as this may vary from one indi-
vidual to another. For instance, if the tested individual has never experienced 
difficulties in school, it is expected that their premorbid functioning would dem-
onstrate intact cognitions that are impaired during the time of testing. It is crucial 
to highlight here, the importance of having accurate norms to which the results 
are compared. The neuropsychological testing norms on several tests include 
norms not only for AD but also for patients with stroke, head trauma, LD, PTSD, 
and schizophrenia as compared to a control group. To further delineate neuropsy-
chologists’ work it is also important to note that each neuropsychological assess-
ment presents not only an understanding of the cognitive domains in the human 
brain but also its characteristics that then determine diagnostic criteria and the 
appropriate treatment plan.
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For the purpose of diagnosing probable AD, clinical neuropsychology is the 
main discipline to determine its presentation and severity. As aforementioned, AD 
impacts several areas of the brain and may present as several different diagnoses. 
It is imperative then to utilize the neuropsychological assessment results to deter-
mine an appropriate diagnosis and rule out other possibilities, as those treatment 
recommendations may be drastically different.

NEUROPSYCHOLOGICAL TESTING FOR POSSIBLE OR 
PROBABLE AD

AD is a neurodegenerative disorder. It is the most common type of dementia, with 
an estimate of 5 million individuals in the United States (65 or older) who were 
diagnosed with AD and related dementias in 2014 and an estimated 13.9 million 
projected to be diagnosed with the disease by the year 2060 (3). According to the 
World Health Organization, worldwide there are an estimated 47 million indi-
viduals affected by the disease currently (4). According to Braak and Braak (5), 
AD is “characterized by neuronal atrophy, synapse loss, and the abnormal accu-
mulation of amyloidogenic plaques and neurofibrillary tangles in medial temporal 
lobe limbic structures (e.g., entorhinal cortex and hippocampus) and the associa-
tion cortices of the frontal, temporal, and parietal lobes” (6). Several brain regions 
are affected by AD including the anterior cingulate cortex, the frontal lobes, as 
well as the medial temporal lobes (7).

According to Groth-Marnat (8), AD is referred to as a “cortical” dementia 
due to it affecting the cortical regions in the brain, as opposed to other 
types of dementia that affect the subcortical regions in the brain and cause 
impairments in attention and visuoconstruction. To further explain, the 
cortical dementias are characterized by more difficulties with memory and 
learning and sub-cortical effect more problems within attention and 
visuoconstruction.

The first cognitive symptom of AD is an impairment in episodic memory func-
tioning, and later on as the disease progresses it impacts the frontal cortex, which 
impairs executive functioning (9). Based on a study conducted by Reed and col-
leagues (9), it was found that “Pathologically defined cases of Alzheimer’s disease 
had verbal and non-verbal memory scores that averaged about 1 SD lower than 
their executive function scores.” According to Smith and Bondi (10), the types of 
cognitive deficits observed in AD include impairments in areas such as memory 
and episodic learning, language and semantic knowledge, visuospatial, and exec-
utive functioning such as difficulties with problem-solving and abstract thinking 
as well as set-shifting. According to the Diagnostic and Statistical Manual of 
Mental Disorders (5th Edition), procedural memory and social cognition may be 
preserved for a longer period of time. Smith and Bondi further indicate that indi-
viduals with AD can experience anosognosia, in which they lack awareness of the 
cognitive problems they may experience (10). This lack of awareness may result 
in delayed diagnosis and treatment. Most patients are tested due to family con-
cerns who notice the most salient characteristics such as perseveration and lack of 
new learning.
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Physicians may refer patients who experience forgetfulness, changes in their 
behavior and functioning, and/or a decline in the ability to complete activities of 
daily living independently, for a neuropsychological evaluation. When the referral 
question is for memory decline, it is important to conduct a thorough and detailed 
clinical interview. In such cases where the referred individual may have difficulties 
reporting relevant information and is deemed to be an unreliable historian, it is 
important when possible that the clinician attempts to obtain collateral 
information. This information may be obtained from the referred individual’s 
caregiver or family member regarding the onset/frequency/severity of the indi-
vidual’s symptoms and functioning. Information obtained from the clinical inter-
view guides the clinician to choose which test or series of tests need to be 
administered to the referred patient to address the referral question.

A standard neuropsychological testing battery to assess for possible or proba-
ble AD should include measures assessing several domains of functioning includ-
ing: Attention, Processing Speed, Memory, Language, Executive Functioning and 
Dementia Severity (11). Simple attention continues to remain intact as patients 
with intact verbal skills, who present with severe impairments, are able to repeat 
5 digits forward correctly (12). With regards to language abilities, individuals with 
AD often demonstrate impairments in verbal fluency, semantic fluency, and nam-
ing objects. Tests are administered to assess areas of visual and verbal memory, as 
well as the individual’s performance in areas of immediate and delayed memory, 
and ability to learn new information. With regards to memory, patients with AD 
have difficulty encoding new information, the learning curve is flat across trials, 
and new information is not consolidated (13). Additionally, recognition is 
impaired and delayed recall of information is also poor, even after a short period 
of time (13). According to Delis et al. 1991, “…AD patients rapidly forget infor-
mation over time and are equally impaired (relative to age-matched controls) on 
recognition and free recall components of the tasks. This pattern of performance 
is consistent with impaired consolidation rather than ineffective retrieval of new 
information” (14).

In addition to other criteria that must be met for a diagnosis of Major 
Neurocognitive Disorder Due to AD, the Diagnostic and Statistical Manual 
of Mental Disorders (5th Edition) indicates that there must be “clear evidence of 
decline in memory and learning and at least one other cognitive domain (based 
on detailed history or serial neuropsychological testing)” (15).

DEPRESSION AND AD

Neuropsychological tests help with determining if the patients have symptoms of 
dementia, depression, or both. As discussed above, depression and dementia 
share similar characteristics, but neuropsychologists know the differences. 
Neuropsychologists have the clinical capacity to rule out and state either diagnosis. 
Such luxury helps medical doctors and/or prescribing psychologists to design the 
most efficient treatment plan available for a patient.

There are many alternate diagnoses that may interfere with an accurate assess-
ment of probable or possible AD. Depression is among one of the most common 
misdiagnoses due to the number of overlapping symptoms it shares with AD. 
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The most common overlapping symptoms include loss of interest in enjoyable 
activities and hobbies, social withdrawal, problems with memory, lack of sleep 
or over-sleeping, and impaired concentration (16). The difficulty in differentiat-
ing AD from depression depends on several factors, which may include inaccu-
rate information provided by the patient and/or family members, normal effects 
of aging, dementia and depression comorbid conditions (17). The causal rela-
tionship between dementia and depression is supported by findings that people 
with dementia appear to have a higher prevalence of depression (18). However, 
in many cases patients may not have AD or dementia and may just have 
depression. In such cases, particular attention is placed on depressive symptoms 
which are less common in dementia alone. These symptoms may include feel-
ings of hopelessness, expressions of guilt, feelings of worthlessness, and thoughts 
of self-harm (19).

There have been correlations found between mild, moderate, and major 
depressive disorder and insomnia with regard to AD risk (20). Insomnia and 
depression share a complex relationship. Depression may cause sleep problems 
and sleep problems may cause or contribute to depressive disorders (21). 
However, in terms of diagnosing AD when lack of sleep and depression occurs, 
the challenge becomes greater, as the symptoms overlap. Some of the symptoms 
such as memory loss, poor judgment and taking longer to complete normal daily 
tasks, all may contribute to lack of sleep, depression, and/or AD itself. Again this 
is why a full neuropsychological evaluation is necessary as it encompasses evalu-
ating sleep patterns, symptoms of depression, as well as highlights hallmarks of 
AD. It is also crucial to state here that a neuropsychologist needs to work very 
closely with the patient’s primary care physician, psychiatrist, and/or prescribing 
psychologist, as the medications that the patient is taking may also have a crucial 
impact on his/her functioning. “A survey in the United States of a representative 
sampling of 2206 community dwelling adults (age 62–85 years) was conducted 
by in-home interviews and use of medication logs between 2010 and 2011” (22). 
“At least 1 prescription medication was used by 87%, 5 or more prescription 
medications were used by 36%” (22). In summary, it is well known that an adult 
population that is most susceptible to AD takes about 1–5 different medications 
a day. Those medications include not only medication related to systemic failures 
and/or inadequacies including steroids, diabetes medication, vascular problems, 
to list a few and they may cause side effects stimulating not only metabolic system 
problems, arrythmias, but also sleep problems.

In summary, a crucial part of the neuropsychological evaluation is evaluating 
sleep habits and to differentiate sleep difficulties related to emotional problems, 
side effects of medications, as well as poor sleep hygiene as they all require dif-
ferent interventions. Furthermore, Alhola and Polo-Kantolastate that attention, 
working memory, long term memory and decision making abilities can be 
impaired due to sleep deprivation (23). Moreover, metabolic functioning may 
also be impaired due to lack of sleep. While the body sleeps, a plumbing method 
called the glymphatic system opens up channels in the brain and allows fluid to 
flow rapidly throughout the brain, in order to flush out toxins or interstitial 
protein deposits (24) that may be accumulating in the brain (25). During sleep 
deprivation this accumulation of proteins or toxins may cause cognitive impair-
ments, as our brain is unable to function at an optimal level. Although AD may 
not be the actual cause of these cognitive impairments for patients who lack 
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sleep, the diagnosis of dementia becomes a viable conclusion. Most likely, this 
is due to the fact that when older individuals do not have quality sleep as well 
as struggle with other medical complications, they may simply develop func-
tional impairment that may constitute dementia.

Anxiety can interfere with a person’s everyday life and it is also the most com-
mon symptom throughout the different stages of dementia (26). Anxiety and agi-
tation become more apparent in the early stages of AD as people begin to recognize 
their losses and the seriousness of the disease. They may become anxious about 
being left alone or abandoned, while any changes in the daily routine can also 
trigger anxiety and agitation (27). The prevalence of depression in AD is fairly 
high, with rates reported as high as 87% and averaging 30%. Therefore, it is con-
ceivable that comorbid anxiety and depression may affect a large percentage of 
patients with AD (28). The correlation is unknown between AD and anxiety; 
however, a recent study has shown that anxiety predicts risk of Alzheimer’s disease 
(n = 26,193 out of seven studies, hazard ratio 1.53, 95% CI 1.16–2.01, P < 0.01) 
and vascular dementia (n = 4916 out of two studies, odds ratio1.88, 95% CI 
1.05–3.36, P < 0.01) (29). Although anxiety does not directly associate with the 
likelihood of having dementia or AD, it may reflect neurodegeneration in patients 
who experience symptoms of AD or dementia.

WHAT DO NEUROPSYCHOLOGISTS HAVE TO OFFER 
MEDICAL DOCTORS AND HOW IMPORTANT IS THEIR 
COLLABORATION

Neuropsychologists are able to collaborate with primary care physicians and other 
specialty driven doctors in a variety of ways, including answering referral ques-
tions and establishing and clarifying diagnostic criteria related to dementia. 
Neuropsychologists use countless tests that are established to be a crucial part of 
dementia assessments in various situations. A few are described below.

The most common question with which patients, their family members, and 
their doctors come to neuropsychologists on an outpatient basis is regarding the 
gravity of dementia. In most cases, medical doctors complete the Mini Mental 
Status Exam (MMSE) to screen a patient’s memory and attention. Typically, 
patients with dementia fail such questions. In other words, when patients are 
provided three words to learn and later recall, they do not remember the three 
words or they remember only one of the three words provided. In most situations, 
the patient that failed the memory and/or orientation tests are sent to a neurologist 
so an MRI and/or CT scan can be ordered to indicate the presence of any notable 
changes in the patient’s brain scan. Sometimes, impaired patients may have nor-
mal MRIs or an MRI may show significant changes even while the patient’s cogni-
tive functioning seems intact. This is most likely explained by neuroplasticity. In 
such situations when the MRI and/or CT results do not correlate with the patient’s 
self-report, neuropsychological testing is taken into consideration.

Another well-known issue establishing the need for completion of neuropsy-
chological testing is the fact that patients remember previously learned tasks from 
the Mini-Mental Status Exam administered by their doctors. Repetition of similar 
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tasks, for instance remembering three words, results in inconclusive data as the 
screening does not evaluate new learning but rather recall of previously learned 
information. Similar phenomenon is observed when adult children do not recog-
nize symptoms of dementia in their parents. This happens due to repetition of 
similar conversations concerning daily tasks and/or activities that do not change.

Patients also tend to minimize their impairments when explaining them to 
their doctors, and their family members are unable to provide correct informa-
tion about the patients’ functioning because their loved ones have their routines. 
Usual rituals for family members often include calling the patient and asking 
them the same questions over and over. The questions they ask are most likely 
about the patient’s eating habits and medication-taking rituals. Since going for a 
walk with the dog is not a novel task, the patients appear healthy and free from 
any cognitive problems. Neuropsychologists spend a lot of time with a patient’s 
family, explaining to them that such routine is a very common phenomenon that 
promotes lack of accurate judgment about a family member’s cognitive 
functioning. In fact, if the medical doctor and/or neuropsychologist hear any 
complaints relating to a family member’s decreased cognitive functioning, such as 
perseverations and forgetfulness, the patient is most likely already in the advanced 
stages of dementia. Unfortunately, many patients reside alone and their beginning 
signs of dementia are not detected or are explained away as part of the normal 
aging process.

THE ROLE OF ALCOHOL CONSUMPTION IN DEMENTIA

Not all medical doctors choose to speak to their patients about their alcohol 
consumption. Most doctors that treat AD are younger than their patients. Both of 
these factors may often result in ambiguity and discomfort that may impede the 
doctor–patient dialog about alcohol use. However, most doctors of clinical psy-
chology are well-equipped and clinically trained to discuss the topic of alcohol 
use with their patients.

Despite the toughness of this issue, it is well known that patients with AD are 
not immune to drinking alcohol. In fact, many dementia patients drink. Drinking 
causes falls, broken bones, and brain injuries. It also causes cognitive problems 
such as poor planning and organizational skills, poor decision-making and judg-
ment, problems with impulsivity, difficulty controlling emotions, problems with 
attention and slower reasoning, lack of sensitivity to others’ feelings, and behavior 
that is socially inappropriate. On the other hand, a systematic review by Peters 
and colleagues indicates that “in older people, small to moderate amounts of alco-
hol consumption are associated with reduced incidence of dementia and 
Alzheimer’s disease (AD)” (30).

While there are more problems related to alcohol consumption, dementia and 
AD patients are getting contraindicated recommendations about drinking alcohol 
from their primary care physicians. In contrast, clinical psychologists with neuro-
psychology specialties are not only trained to treat alcohol use but are also able to 
perform neuropsychological tests that can characterize the type and extent of a 
patient’s cognitive deficit as well as denote which symptoms belong to AD and 
which ones to alcohol use. In this way, rehabilitation efforts are maximized.
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The importance of neuropsychological testing in matters of AD and alcohol 
consumption was delineated by Robert Heirene, Bev John, and Gereth 
Roderique-Davies. The authors reviewed the available data and agreed that cogni-
tive screening is limited and is trumped by far by comprehensive neuropsycho-
logical testing following screening to ensure a correct diagnosis (31). The authors 
stated that neuropsychological testing establishes crucial characteristics of alcohol 
related cognitive decline that mostly includes a decline in executive functioning 
and episodic, autobiographical, procedural, and working memory. They also dis-
cussed the issue of confabulation that may be related to both dementia itself and 
an alcohol related impairment (30).

AD AND DECISION-MAKING CAPACITY

Another type of neuropsychological referral encompasses denoting the gravity of 
AD symptoms, as well as the patient’s decision-making capacity. Indeed, the vast 
majority of outpatient referrals relate to the individual who resides at home, and 
his/her family members worrying about their cognitive functioning. Patients with 
detected and undetected AD spend time alone at home. During those moments, 
they are vulnerable to burglary, deceit, and even death because their judgment is 
impaired. For instance, there have been individuals who opened the door to a 
stranger, soliciting them to withdraw money from the bank; as well as patients 
selling health insurance, buying homes, and even moving to another state without 
having a previous discussion or agreement with the rest of their family members 
about their plans. This demonstrates the lack of judgment, rational thinking, and 
insight which may be characteristic of individuals with dementias.

Another very important aspect for the need to complete neuropsychological 
testing regarding decisional capacity is the fact that many AD patients are in the 
hospital and are unable to make decisions regarding their health. Unfortunately, 
without completion of neuropsychological tests, many AD patients seem to cog-
nitively function well to not only their family members but also to their doctors. 
Those are the patients that refuse certain treatments that may be very vital to their 
life. Those are the patients that lie in their hospital beds, seem unconcerned about 
their health, and lack an understanding about the gravity of their illnesses. Those 
are the patients that have shallow humor and tend to answer their doctors’ ques-
tions with short answers that indicate their disinterest. For example, they tend to 
state that they do not care for politics hence they do not know who is the current 
president, and they tend to fail orientation tests even when the correct date was 
written by a nurse in front of them.

Families of AD patients have the tremendous task of accepting that their par-
ents, uncles, aunts, and other family members who used to be sharp, have lost the 
ability to make decisions. The family members also vicariously deal with their 
own stress responses, facing the possibility that they may have similar genetic 
loads and that they may also develop AD. All of the above mentioned constraints 
lead to missing the symptoms, which then leads to the most dangerous problem: 
not doing anything.

After completion of the neuropsychological testing, the report and recommen-
dations are delineated. One of the possible recommendations may be cognitive 
rehabilitation. Another recommendation may encompass an evaluation for a 
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cognitive enhancer. Recommendations may also include possible counseling/psy-
chotherapy and or a support group for the family members/caregivers to process 
their fears, help them develop skills to deal with their family member that has AD, 
and start the process of establishing a power of attorney.

AD AND OTHER MENTAL HEALTH PROBLEMS

Doctors of psychiatry often refer their patients for neuropsychological evaluations 
to rule out AD and possibly diagnose depression. They also seek neuropsycho-
logical evaluations to determine possible attention problems and undiagnosed LD 
that can all resemble early dementia.

It is our experience that more than a few referrals from psychiatrists include 
ruling out stress in patients as young as 50 years old that presented with dementia 
like symptoms. Those patients seem to have dementia, but neuropsychological 
evaluations are able to detect severe stress that results in their poor job performance. 
In such situations a conclusive diagnosis is crucial, as the treatment for stress as 
well as burnout differs from treatment for dementia.

Neuropsychological evaluations can also detect LD that have not previously 
been diagnosed. Nowadays, with more and more jobs requiring computer skills, 
this phenomenon occurs, even with those jobs that are considered computer-free. 
For instance, a 55-year-old janitor is now required to login to the computer to 
check memos, request days off, or perform required training. In this situation, a 
LD may mirror early dementia and hence lead to inappropriate treatment. Again, 
a neuropsychologist will not only test this individual’s cognitive functioning but 
also recommend training, teach compensation skills, etc.

AD AND TECHNOLOGY

Typically, the older population does not do well with computerized testing, even 
though these kinds of tests are well-prepared for inexperienced computer users. 
Since computers were first used at schools in the eighties in the USA, patients that 
have never used a computer to study or work are included in this population. 
Hence, most patients that are at least 50 years old who lack the required computer 
skills, may be considered in this group. At our clinic, any time a computerized test 
was administered to an older population member, it has been observed that the 
cognitive abilities tested on the computer were lower than on paper and pencil 
tests. Hence, doctors using computer screening tests for cognitions may obtain 
inaccurate results. When in doubt about a patient’s results, it is recommended that 
the patient be referred for a full neuropsychological testing battery.

AD AND MARIJUANA USE

Much of the older population in the United States recreationally consumes and/
or smokes marijuana, as it is now prescribed as well as highly available. When 
asked what their purpose for smoking is, most people state that it is healthy and 
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that it helps them with sleeping and managing their pain. Research on smoking 
marijuana and its effects on cognitions vary, but in our practice it has been 
observed on several occasions, that severe delirium followed ingestion of 
cannabis. Cannabis use can result with hallucinations, as it is a hallucinogenic 
agent. It may also quicken cognitive decline, especially memory problems. 
While this has little to do with neuropsychological testing and AD, it is crucial 
to state here that all healthcare providers should consider referring any, but 
especially older patients, to neuropsychologists because the underlying causes 
of marijuana ingestion can be detected, processed, and potentially diminished; 
all of which would better their patient’s quality of life. In other words, it is our 
belief that if an individual decides to smoke marijuana, he or she has reasons to 
do so. Those reasons may be depression, anxiety, withdrawal, loneliness, or 
many other problems. No matter the reason, in the therapeutic room of a skilled 
psychologist, those problems can be addressed, diminished, and/or possibly 
resolved.

AD AND THE N-648

The N-648 is a form that is used by medical doctors and psychologists to help 
immigrants obtain United States citizenship without passing the English profi-
ciency and United States history exams. We believe that this form cannot be com-
pleted without normative data concerning the patient’s memory. It is the 
neuropsychological testing that can actually determine whether an individual 
with probable or possible AD is capable of learning English and United States his-
tory, which are required to become a United States citizen.

CONCLUSION

Neuropsychological testing is underutilized and it is our hope that its use will be 
prevalent and treated as a necessity especially in patients with AD. Time spent 
on neuropsychological testing can change the patient’s life tremendously. For 
instance, a depressed patient that actually has dementia after a neuropsychologi-
cal assessment will not be prescribed anti-depressants. Conversely, a patient 
with dementia will be prescribed cognitive enhancers rather than anti-depressants. 
As mentioned above, testing may last from an hour to several hours, but the 
knowledge after it is completed is priceless and appreciated by the families we 
have served thus far. The neuropsychological testing not only helps the patient 
but also their families. We have spent countless hours working with our patients’ 
families to not only help them with appropriate care, but also with the fact that 
they may be facing similar future presenting concerns. Those family members 
that worked with us had a tremendous advantage over their parents, as their 
anticipation and the possibility to carry similar genetic load allowed them to 
plan for the future and to initiate anything they can to avoid and/or delay AD. 
The neuropsychological reports written in our clinic are not only for the patients 
and their doctors, but also caregivers who can better understand the level of 
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impairment, as well as learn skills to be a better support system. In other words, 
a few hours of neuropsychological testing is worthwhile for everyone that is 
involved with the AD patient.
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