U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

Show details


; ; .

Author Information and Affiliations

Last Update: August 14, 2023.

Continuing Education Activity

Crutches are medical devices designed to aid in ambulation, by transferring body weight from the legs to the torso and arms. They are mainly used to assist individuals with lower extremity injuries and/or neurological impairment. This activity describes the types of crutches, their indications, and contraindications and highlights the role of the interprofessional team in proper evaluation and training of patients needing ambulatory devices.


  • Describe the indications for crutches.
  • Review the contraindications of crutches.
  • Summarize the types of crutches available.
  • Explain the importance of improving care coordination among interprofessional team members to improve outcomes for patients needing an ambulatory device.
Access free multiple choice questions on this topic.


Crutches are medical devices designed to aid in ambulation, by transferring body weight from the legs to the torso and arms.[1]  They are mainly used to assist individuals with lower extremity injuries and/or neurological impairment.  Most crutches classify into the following three categories: axilla, forearm, and platform.


Indications for crutches are any temporary or permanent condition where compromise of lower extremity balance and weight bearing exists with a patient who has sufficient upper body strength and coordination to support and move their own body weight. 


Age is a common contraindication to crutch use.  The very old and very young may not possess the needed torso strength and coordination to use crutches successfully.  Any musculoskeletal or neurological condition that reduces the mobility, strength, and sensation can potentially be a contraindication to the short term or long-term use of crutches.   


Axilla crutches are the most common type.[2] Their ease of use makes them an excellent option for most individuals.  They are best for short-term use.  The design is intended to transfer most of the user’s body weight to the arms and torso.  Axilla crutches are not ideal for individuals with wrist problems, weak upper body strength, or impairment of coordination. Most health care facilities discharge patients with axilla crutches for immediate use.

Forearm crutches are better for long-term use. The weight of the user is transferred mainly to their entire upper arms.  The user needs good upper body strength to use these crutches properly.  Individuals with long-term disabilities looking to be more active or participate in sports may choose forearm crutches as an option.

Platform crutches are the least common of the three.  The weight of the patient is transferred mainly to the user’s forearms.  The platform allows the user more stability than the axilla and forearm crutches, but the platform crutch has less maneuverability.   They are intended for long-term use.  Individuals with long-term disabilities from severe neurological impairment of their lower extremities with decreased stability may choose platform crutches as an option.


All crutches should undergo proper fitting to the user to avoid serious injury. 

Axilla crutches: The shoulder pad should sit 2 inches (2 finger widths) below the axilla when the shoulder is relaxed.  The hand grip should be adjusted to allow for a 30-degree flexion to the elbow.  The crutch should sit about 6 inches outside of your feet, with instruction provided not to rest axilla directly on the shoulder pad.

Forearm crutches: The hand grip should allow for 30-degrees of elbow flexion.  The cuff should be 1.5 inches below the elbow, and the crutch should sit 4 inches outside of the patient's feet. 

Platform crutches: The platform can vary by design from a flat surface with hand grips to a fully adjustable composite with elbow guards and hand grips.  The fitting should ensure that the angulation promotes stability and does not allow for elbow rubbing.

Technique or Treatment

Patients can receive training for different gait patterns depending on their current injury and coordination level.

One crutch gait: This pattern utilizes only one crutch.  Crutch positioning is on the side of the uninjured lower extremity.  The crutch and the injured leg are advanced forward.  Then the uninjured leg proceeds while the crutch supports the user's weight.

Two-point gait: The left crutch and right leg move forward followed by the right crutch and left leg. 

Three-point gait:  This is the most used technique.  The left and right crutch along with the injured leg are both advanced while the uninjured leg supports the body weight.  Next, the uninjured leg is advanced.

Four-point gait: This technique provides the most support.  The left crutch is advanced followed by the right leg, right crutch and at last the left leg.

Swing-to gait: The left and right crutch are advanced.  Then the left and right legs are advanced.


The user’s strength and coordination should undergo evaluation before issuing them a set of crutches.  The use of the wrong crutches can lead to injury.  Most injuries are a direct result of falling.

Crutch palsy is observable in axilla crutch users who rest their weight on the shoulder rest.  The pressure on the brachial plexus can result in palsy to the radial and ulnar nerves.  Extra padding on the shoulder rest can aid in preventing crutch palsy. Education should be provided to patients to discourage supporting body weight on the shoulder rest. With treatment, this can be a repairable injury.[3][4][5]

Clinical Significance

Crutches are vital in the short-term and long-term management of orthopedic and neurologic injuries. Through offloading body weight to the injured extremity optimal conditions are provided to allow healing of acute injuries. Crutches provide ambulatory support and mobility options to those with neurologic injuries or chronic orthopedic injuries enabling the individual to stay mobile and active. Crutches are a vital adjunct for those with acute and chronic injuries to maintain mobility and independence. 

Enhancing Healthcare Team Outcomes

Advances in crutch technology are ongoing.  The crutches are separated into their component parts and examined separately.  The shoulder rest of the axilla crutches can lead to crutch palsy.  Manufacturers have added softer and more pliable padding to the shoulder rest.  However, the addition of extra padding can reduce the space between the axilla and shoulder rest leading to what it was intended to prevent.  U- shaped or concave shoulder rest helps to solve the reduced space issue.[6]          

Hand grips are part of each class of crutches.  They serve as a significant connection between the crutch and the user.  Hand grips have always been adjustable in the up, down, forward and back positioning depending on the crutch.  Newer crutches have added more grip positions, which reduces the strain on the user’s wrist and aid in improved stability.  New advances in design include more comfortable grips.[7]

The ailments of the crutch user are variable.  The user’s musculoskeletal and/or neurological impairments limit the amount of weight that they can carry.  Thus, the crutch should add the least amount of weight.  The old wooden crutches are no longer in use.  Lighter weight composites such as aluminum, titanium, and carbon fiber are now the norm in designs.[8]

Crutches are mainly intended to aid the user with their mobility.  Engineers are looking at designs that will help move the user forward.  User assistant features such as spring-loaded main tubes and struts are stated to increase the user’s momentum.[9] Unfortunately, not all studies have supported this particular engineering feature.

Rubber tips connect the user to the ground.  Larger rubber tips are used to provide added stability.  Newer composites can give a more streamlined design. They can offer more grip with less surface area.  Pivoting tips may allow for more maneuverability.[10][11]

In addition to the prescribing physician, the therapist, nurse, and pharmacist can also evaluate the patient for the need for crutches. In fact, most pharmacies sell crutches and other ambulatory devices. an interprofessional team approach among all the entities just mentioned can assist the patient in crutch selection, fitting, and use to achieve optimal patient outcomes.

Before the potential user tries to use the most technological advance crutch, they must undergo proper fitting.  The user must also remember that not all the technical advances have scientific proof to back up their claims.

Review Questions


Nagasaki T, Katoh H, Arizono H, Chijimatsu H, Chijiwa N, Wada C. Analysis of Crutch Position in the Horizontal Plane to Estimate the Stability of the Axillary Pad in the Axilla during Single-crutch Walking. J Phys Ther Sci. 2014 Nov;26(11):1753-6. [PMC free article: PMC4242948] [PubMed: 25435693]
Potter BE, Wallace WA. Crutches. BMJ. 1990 Nov 03;301(6759):1037-9. [PMC free article: PMC1664010] [PubMed: 2249056]
Feldman DR, Vujic I, McKay D, Callcott F, Uflacker R. Crutch-induced axillary artery injury. Cardiovasc Intervent Radiol. 1995 Sep-Oct;18(5):296-9. [PubMed: 8846468]
Furukawa K, Hayase T, Yano M. Recurrent upper limb ischaemia due to a crutch-induced brachial artery aneurysm. Interact Cardiovasc Thorac Surg. 2013 Jul;17(1):190-2. [PMC free article: PMC3686390] [PubMed: 23529749]
Amin A, Singh V, Saifuddin A, Briggs TW. Ulnar stress reaction from crutch use following amputation for tibial osteosarcoma. Skeletal Radiol. 2004 Sep;33(9):541-4. [PubMed: 15205926]
Shoup TE, Fletcher LS, Merrill BR. Biomechanics of crutch locomotion. J Biomech. 1974 Jan;7(1):11-9. [PubMed: 4595087]
Dooley A, Ma Y, Zhang Y. The Effect of a Shock Absorber on Spatiotemporal Parameters and Ground Reaction Forces of Forearm Crutch Ambulation. Assist Technol. 2015 Winter;27(4):257-62. [PubMed: 26151882]
MacGillivray MK, Manocha RH, Sawatzky B. The influence of a polymer damper on swing-through crutch gait biomechanics. Med Eng Phys. 2016 Mar;38(3):275-9. [PubMed: 26852356]
Zhang Y, Beaven M, Liu G, Xie S. Mechanical efficiency of walking with spring-loaded axillary crutches. Assist Technol. 2013 Summer;25(2):111-6. [PubMed: 23923693]
Basford JR, Rhetta HL, Schleusner MP. Clinical evaluation of the rocker bottom crutch. Orthopedics. 1990 Apr;13(4):457-60. [PubMed: 2185461]
Nielsen DH, Harris JM, Minton YM, Motley NS, Rowley JL, Wadsworth CT. Energy cost, exercise intensity, and gait efficiency of standard versus rocker-bottom axillary crutch walking. Phys Ther. 1990 Aug;70(8):487-93. [PubMed: 2374777]

Disclosure: Warees Warees declares no relevant financial relationships with ineligible companies.

Disclosure: Lisa Clayton declares no relevant financial relationships with ineligible companies.

Disclosure: Matthew Slane declares no relevant financial relationships with ineligible companies.

Copyright © 2024, StatPearls Publishing LLC.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

Bookshelf ID: NBK539724PMID: 30969546


  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...