NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Elkouby YM, Frank D. Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

Cover of Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development

Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development.

Show details

References

  1. Aamar, E. and Frank, D.(2004). Xenopus Meis3 protein forms a hindbrain-inducing center by activating FGF/MAP kinase and PCP pathways. Development 131, pp. 153-63.10.1242/dev.00905. [PubMed: 14660437] [Cross Ref]
  2. Adams, K. A., Maida, J. M., Golden, J. A. and Riddle, R. D.(2000). The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127, pp. 1857-67. [PubMed: 10751174]
  3. Andoniadou, C. L., Signore, M., Sajedi, E., Gaston-Massuet, C., Kelberman, D., Burns, A. J., Itasaki, N., Dattani, M. and Martinez-Barbera, J. P.(2007). Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development 134, pp. 1499–508.10.1242/dev.02829. [PMC free article: PMC2233881] [PubMed: 17360769] [Cross Ref]
  4. Augustine, K., Liu, E. T. and Sadler, T. W.(1993). Antisense attenuation of Wnt-1 and Wnt-3a expression in whole embryo culture reveals roles for these genes in craniofacial, spinal cord, and cardiac morphogenesis. Dev Genet 14, pp. 500–20. [PubMed: 8111977]
  5. Augustine, K. A., Liu, E. T. and Sadler, T. W.(1995). Interactions of Wnt-1 and Wnt-3a are essential for neural tube patterning. Teratology 51, pp. 107–19. [PubMed: 7660319]
  6. Bafico, A., Liu, G., Yaniv, A., Gazit, A. and Aaronson, S. A.(2001). Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3, pp. 683–86. [PubMed: 11433302]
  7. Bagheri-Fam, S., Barrionuevo, F., Dohrmann, U., Gunther, T., Schule, R., Kemler, R., Mallo, M., Kanzler, B. and Scherer, G.(2006). Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 291, pp. 382–97. [PubMed: 16458883]
  8. Bang, A. G., Papalopulu, N., Goulding, M. D. and Kintner, C.(1999). Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 212, pp. 366–80.10.1006/dbio.1999.9319. [PubMed: 10433827] [Cross Ref]
  9. Bartscherer, K. and Boutros, M.(2008). Regulation of Wnt protein secretion and its role in gradient formation. EMBO Rep 9, pp. 977–82.10.1038/embor.2008.167. [PMC free article: PMC2572129] [PubMed: 18787559] [Cross Ref]
  10. Basch, M. L., Bronner-Fraser, M. and Garcia-Castro, M. I.(2006). Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441, pp. 218–22.10.1038/nature04684. [PubMed: 16688176] [Cross Ref]
  11. Beck, F., Erler, T., Russell, A. and James, R.(1995). Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn 204, pp. 219–27. [PubMed: 8573715]
  12. Beddington, R. S. and Robertson, E. J.(1999). Axis development and early asymmetry in mammals. Cell 96, pp. 195–209.10.1016/S0092-8674(00)80560-7. [PubMed: 9988215] [Cross Ref]
  13. Bel-Vialar, S., Itasaki, N. and Krumlauf, R.(2002). Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129, pp. 5103–15. [PubMed: 12399303]
  14. Beland, M., Pilon, N., Houle, M., Oh, K., Sylvestre, J. R., Prinos, P. and Lohnes, D.(2004). Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol Cell Biol 24, pp. 5028–38.10.1128/MCB.24.11.5028-5038.2004. [PMC free article: PMC416402] [PubMed: 15143193] [Cross Ref]
  15. Blumberg, B., Bolado, J., Jr., Moreno, T. A., Kintner, C., Evans, R. M. and Papalopulu, N.(1997). An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, pp. 373–79. [PubMed: 9053313]
  16. Bonstein, L., Elias, S. and Frank, D.(1998). Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Dev Biol 193, pp. 156–68. [PubMed: 9473321]
  17. Bovolenta, P., Mallamaci, A., Puelles, L. and Boncinelli, E.(1998). Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech Dev 70, pp. 201–03.10.1016/S0925-4773(97)00183-4. [PubMed: 9510037] [Cross Ref]
  18. Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., Sommer, L., Boussadia, O. and Kemler, R.(2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, pp. 1253–64. [PubMed: 11262227]
  19. Broccoli, V., Boncinelli, E. and Wurst, W.(1999). The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401, pp. 164–68. [PubMed: 10490025]
  20. Brott, B. K. and Sokol, S. Y.(2002). Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol Cell Biol 22, pp. 6100–10.10.1128/MCB.22.17.6100-6110.2002. [PMC free article: PMC133995] [PubMed: 12167704] [Cross Ref]
  21. Buckles, G. R., Thorpe, C. J., Ramel, M. C. and Lekven, A. C.(2004). Combinatorial Wnt control of zebrafish midbrain–hindbrain boundary formation. Mech Dev 121, pp. 437–47.10.1016/j.mod.2004.03.026. [PubMed: 15147762] [Cross Ref]
  22. Burstyn-Cohen, T., Stanleigh, J., Sela-Donenfeld, D. and Kalcheim, C.(2004). Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 131, pp. 5327–39.10.1242/dev.01424. [PubMed: 15456730] [Cross Ref]
  23. Canning, C. A., Lee, L., Irving, C., Mason, I. and Jones, C. M.(2007). Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev Biol 305, pp. 276–86.10.1016/j.ydbio.2007.02.009. [PubMed: 17383629] [Cross Ref]
  24. Carmona-Fontaine, C., Acuna, G., Ellwanger, K., Niehrs, C. and Mayor, R.(2007). Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev Biol 309, pp. 208–21.10.1016/j.ydbio.2007.07.006. [PubMed: 17669393] [Cross Ref]
  25. Chang, C. and Hemmati-Brivanlou, A.(1998). Neural crest induction by Xwnt7B in Xenopus. Dev Biol 194, pp. 129–34.10.1006/dbio.1997.8820. [PubMed: 9473337] [Cross Ref]
  26. Chapman, S. C., Schubert, F. R., Schoenwolf, G. C. and Lumsden, A.(2002). Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos. Dev Biol 245, pp. 187–99.10.1006/dbio.2002.0641. [PubMed: 11969265] [Cross Ref]
  27. Charite, J., de Graaff, W., Consten, D., Reijnen, M. J., Korving, J. and Deschamps, J.(1998). Transducing positional information to the Hox genes: critical interaction of cdx gene products with position-sensitive regulatory elements. Development 125, pp. 4349–58. [PubMed: 9778495]
  28. Cheung, M., Chaboissier, M. C., Mynett, A., Hirst, E., Schedl, A. and Briscoe, J.(2005). The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8, pp. 179–92.10.1016/j.devcel.2004.12.010. [PubMed: 15691760] [Cross Ref]
  29. Christian, J. L. and Moon, R. T.(1993). Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7, pp. 13–28.10.1101/gad.7.1.13. [PubMed: 8422982] [Cross Ref]
  30. Cox, W. G. and Hemmati-Brivanlou, A.(1995). Caudalization of neural fate by tissue recombination and bFGF. Development 121, pp. 4349–58. [PubMed: 8575335]
  31. Crossley, P. H., Martinez, S. and Martin, G. R.(1996). Midbrain development induced by FGF8 in the chick embryo. Nature 380, pp. 66–68.10.1038/380066a0. [PubMed: 8598907] [Cross Ref]
  32. Danielian, P. S. and McMahon, A. P.(1996). Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, pp. 332–34.10.1038/383332a0. [PubMed: 8848044] [Cross Ref]
  33. Davidson, G., Mao, B., del Barco Barrantes, I. and Niehrs, C.(2002). Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning. Development 129, pp. 5587–96.10.1242/dev.00154. [PubMed: 12421700] [Cross Ref]
  34. De Robertis, E. M. and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20, pp. 285–308.10.1146/annurev.cellbio.20.011403.154124. [PMC free article: PMC2280069] [PubMed: 15473842] [Cross Ref]
  35. Deardorff, D. R., Taniguchi, C. M., Tafti, S. A., Kim, H. Y., Choi, S. Y., Downey, K. J. and Nguyen, T. V. (2001a). A two-step procedure for the conversion of alpha,beta-unsaturated aldehydes into gamma-azido-alpha,beta-unsaturated nitriles. J Org Chem 66, pp. 7191–94. [PubMed: 11597250]
  36. Deardorff, M. A., Tan, C., Saint-Jeannet, J. P. and Klein, P. S. (2001b). A role for frizzled 3 in neural crest development. Development 128, pp. 3655–63. [PubMed: 11585792]
  37. Deschamps, J., van den Akker, E., Forlani, S., De Graaff, W., Oosterveen, T., Roelen, B. and Roelfsema, J.(1999). Initiation, establishment and maintenance of Hox gene expression patterns in the mouse. Int J Dev Biol 43, pp. 635–50. [PubMed: 10668974]
  38. Dibner, C., Elias, S. and Frank, D.(2001). XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos. Development 128, pp. 3415–26. [PubMed: 11566848]
  39. Dibner, C., Elias, S., Ofir, R., Souopgui, J., Kolm, P. J., Sive, H., Pieler, T. and Frank, D.(2004). The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain. Dev Biol 271, pp. 75–86.10.1016/j.ydbio.2004.02.029. [PubMed: 15196951] [Cross Ref]
  40. Dickinson, M. E., Selleck, M. A., McMahon, A. P. and Bronner-Fraser, M.(1995). Dorsalization of the neural tube by the non-neural ectoderm. Development 121, pp. 2099–106. [PubMed: 7635055]
  41. Domingos, P. M., Itasaki, N., Jones, C. M., Mercurio, S., Sargent, M. G., Smith, J. C. and Krumlauf, R.(2001). The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev Biol 239, pp. 148–60. [PubMed: 11784025]
  42. Dorsky, R. I., Moon, R. T. and Raible, D. W.(1998). Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, pp. 370–73. [PubMed: 9845073]
  43. Durston, A. J., Timmermans, J. P., Hage, W. J., Hendriks, H. F., de Vries, N. J., Heideveld, M. and Nieuwkoop, P. D.(1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, pp. 140–44.10.1038/340140a0. [PubMed: 2739735] [Cross Ref]
  44. Elkouby, Y. M., Elias, S., Casey, E. S., Blythe, S. A., Tsabar, N., Klein, P. S., Root, H., Liu, K. J. and Frank, D.(2010). Mesodermal Wnt signaling organizes the neural plate via Meis3. Development 137, pp. 1531–41. [PMC free article: PMC3188567] [PubMed: 20356957]
  45. Ermakova, G. V., Solovieva, E. A., Martynova, N. Y. and Zaraisky, A. G.(2007). The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions. Dev Biol 307, pp. 483–97.10.1016/j.ydbio.2007.03.524. [PubMed: 17511981] [Cross Ref]
  46. Erter, C. E., Wilm, T. P., Basler, N., Wright, C. V. and Solnica-Krezel, L.(2001). Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128, pp. 3571–83. [PubMed: 11566861]
  47. Esteve, P., Lopez-Rios, J. and Bovolenta, P.(2004). SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mech Dev 121, pp. 687–701.10.1016/j.mod.2004.03.003. [PubMed: 15210177] [Cross Ref]
  48. Esteve, P., Morcillo, J. and Bovolenta, P.(2000). Early and dynamic expression of cSfrp1 during chick embryo development. Mech Dev 97, pp. 217–21.10.1016/S0925-4773(00)00421-4. [PubMed: 11025229] [Cross Ref]
  49. Etheridge, S. L., Ray, S., Li, S., Hamblet, N. S., Lijam, N., Tsang, M., Greer, J., Kardos, N., Wang, J., Sussman, D. J. et al.(2008). Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 4, p. e1000259.10.1371/journal.pgen.1000259. [PMC free article: PMC2576453] [PubMed: 19008950] [Cross Ref]
  50. Faas, L. and Isaacs, H. V.(2009). Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Dev Dyn 238, pp. 835–52.10.1002/dvdy.21901. [PMC free article: PMC2701559] [PubMed: 19301404] [Cross Ref]
  51. Fainsod, A., Deissler, K., Yelin, R., Marom, K., Epstein, M., Pillemer, G., Steinbeisser, H. and Blum, M.(1997). The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63, pp. 39–50.10.1016/S0925-4773(97)00673-4. [PubMed: 9178255] [Cross Ref]
  52. Fletcher, R. B., Baker, J. C. and Harland, R. M.(2006). FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133, pp. 1703–14.10.1242/dev.02342. [PubMed: 16554360] [Cross Ref]
  53. Frohman, M. A., Boyle, M. and Martin, G. R.(1990). Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior–posterior axis is specified by mesoderm. Development 110, pp. 589–607. [PubMed: 1983472]
  54. Frohman, M. A. and Martin, G. R.(1992). Isolation and analysis of embryonic expression of Hox-4.9, a member of the murine labial-like gene family. Mech Dev 38, pp. 55–67.10.1016/0925-4773(92)90038-L. [PubMed: 1356009] [Cross Ref]
  55. Gamer, L. W. and Wright, C. V.(1993). Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev 43, pp. 71–81.10.1016/0925-4773(93)90024-R. [PubMed: 7902125] [Cross Ref]
  56. Garcia-Castro, M. I., Marcelle, C. and Bronner-Fraser, M.(2002). Ectodermal Wnt function as a neural crest inducer. Science 297, pp. 848–51. [PubMed: 12161657]
  57. Gaston-Massuet, C., Andoniadou, C. L., Signore, M., Sajedi, E., Bird, S., Turner, J. M. and Martinez-Barbera, J. P.(2008). Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 324, pp. 322–33.10.1016/j.ydbio.2008.08.008. [PMC free article: PMC3606136] [PubMed: 18775421] [Cross Ref]
  58. Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C. and Niehrs, C.(1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, pp. 357–62. [PubMed: 9450748]
  59. Godsave, S., Dekker, E. J., Holling, T., Pannese, M., Boncinelli, E. and Durston, A.(1994). Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev Biol 166, pp. 465–76.10.1006/dbio.1994.1330. [PubMed: 7813770] [Cross Ref]
  60. Gould, A., Itasaki, N. and Krumlauf, R.(1998). Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21, pp. 39–51. [PubMed: 9697850]
  61. Gradl, D., Konig, A. and Wedlich, D.(2002). Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements. J Biol Chem 277, pp. 14159–71.10.1074/jbc.M107055200. [PubMed: 11821382] [Cross Ref]
  62. Grapin-Botton, A., Bonnin, M. A. and Le Douarin, N. M.(1997). Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 124, pp. 849–59. [PubMed: 9043066]
  63. Grapin-Botton, A., Cambronero, F., Weiner, H. L., Bonnin, M. A., Puelles, L. and Le Douarin, N. M.(1999). Patterning signals acting in the spinal cord override the organizing activity of the isthmus. Mech Dev 84, pp. 41–53.10.1016/S0925-4773(99)00069-6. [PubMed: 10473119] [Cross Ref]
  64. Gray, R. S., Bayly, R. D., Green, S. A., Agarwala, S., Lowe, C. J. and Wallingford, J. B.(2009). Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. Dev Dyn 238, pp. 2044–57.10.1002/dvdy.22028. [PMC free article: PMC2782374] [PubMed: 19618470] [Cross Ref]
  65. Grigoryan, T., Wend, P., Klaus, A. and Birchmeier, W.(2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22, pp. 2308–41.10.1101/gad.1686208. [PMC free article: PMC2749675] [PubMed: 18765787] [Cross Ref]
  66. Guo, C., Qiu, H. Y., Huang, Y., Chen, H., Yang, R. Q., Chen, S. D., Johnson, R. L., Chen, Z. F. and Ding, Y. Q.(2007). Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134, pp. 317–25.10.1242/dev.02745. [PubMed: 17166916] [Cross Ref]
  67. Gutkovich, Y. E., Ofir, R., Elkouby, Y. M., Dibner, C., Gefen, A., Elias, S. and Frank, D.(2010). Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. Dev Biol 338, pp. 50–62.10.1016/j.ydbio.2009.11.024. [PubMed: 19944089] [Cross Ref]
  68. Hamblet, N. S., Lijam, N., Ruiz-Lozano, P., Wang, J., Yang, Y., Luo, Z., Mei, L., Chien, K. R., Sussman, D. J. and Wynshaw-Boris, A.(2002). Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129, pp. 5827–38.10.1242/dev.00164. [PubMed: 12421720] [Cross Ref]
  69. Haremaki, T., Tanaka, Y., Hongo, I., Yuge, M. and Okamoto, H.(2003). Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3. Development 130, pp. 4907–17.10.1242/dev.00718. [PubMed: 12930781] [Cross Ref]
  70. Harland, R.(2000). Neural induction. Curr Opin Genet Dev 10, pp. 357–62. [PubMed: 10889069]
  71. Hashimoto, H., Itoh, M., Yamanaka, Y., Yamashita, S., Shimizu, T., Solnica-Krezel, L., Hibi, M. and Hirano, T.(2000). Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217, pp. 138–52.10.1006/dbio.1999.9537. [PubMed: 10625541] [Cross Ref]
  72. Hemmati-Brivanlou, A., Kelly, O. G. and Melton, D. A.(1994). Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, pp. 283–95.10.1016/0092-8674(94)90320-4. [PubMed: 8168135] [Cross Ref]
  73. Hemmati-Brivanlou, A. and Melton, D. A.(1994). Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, pp. 273–81.10.1016/0092-8674(94)90319-0. [PubMed: 8168134] [Cross Ref]
  74. Hollyday, M., McMahon, J. A. and McMahon, A. P.(1995). Wnt expression patterns in chick embryo nervous system. Mech Dev 52, pp. 9–25.10.1016/0925-4773(95)00385-E. [PubMed: 7577679] [Cross Ref]
  75. Holowacz, T. and Sokol, S.(1999). FGF is required for posterior neural patterning but not for neural induction. Dev Biol 205, pp. 296–308.10.1006/dbio.1998.9108. [PubMed: 9917365] [Cross Ref]
  76. Hong, C. S., Park, B. Y. and Saint-Jeannet, J. P.(2008). Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. Development 135, pp. 3903–10.10.1242/dev.026229. [PMC free article: PMC2888028] [PubMed: 18997112] [Cross Ref]
  77. Hoppler, S., Brown, J. D. and Moon, R. T.(1996). Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10, pp. 2805–17.10.1101/gad.10.21.2805. [PubMed: 8946920] [Cross Ref]
  78. Hoppler, S. and Moon, R. T.(1998). BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71, pp. 119–29.10.1016/S0925-4773(98)00004-5. [PubMed: 9507084] [Cross Ref]
  79. Hume, C. R. and Dodd, J.(1993). Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119, pp. 1147–60. [PubMed: 7916678]
  80. Ikeya, M., Lee, S. M., Johnson, J. E., McMahon, A. P. and Takada, S.(1997). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, pp. 966–70. [PubMed: 9353119]
  81. In der Rieden, P. M., Vilaspasa, F. L. and Durston, A. J. (2010). Xwnt8 directly initiates expression of labial Hox genes. Dev Dyn 239, pp. 126–39. [PubMed: 19623617]
  82. Isaacs, H. V., Pownall, M. E. and Slack, J. M.(1998). Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. Embo J 17, pp. 3413–27.10.1093/emboj/17.12.3413. [PMC free article: PMC1170678] [PubMed: 9628877] [Cross Ref]
  83. Itasaki, N., Sharpe, J., Morrison, A. and Krumlauf, R.(1996). Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 16, pp. 487–500. [PubMed: 8785047]
  84. Joly, J. S., Maury, M., Joly, C., Duprey, P., Boulekbache, H. and Condamine, H.(1992). Expression of a zebrafish caudal homeobox gene correlates with the establishment of posterior cell lineages at gastrulation. Differentiation 50, pp. 75–87.10.1111/j.1432-0436.1992.tb00488.x. [PubMed: 1354191] [Cross Ref]
  85. Katahira, T., Sato, T., Sugiyama, S., Okafuji, T., Araki, I., Funahashi, J. and Nakamura, H.(2000). Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91, pp. 43–52.10.1016/S0925-4773(99)00262-2. [PubMed: 10704829] [Cross Ref]
  86. Kawano, Y. and Kypta, R.(2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116, pp. 2627–34.10.1242/jcs.00623. [PubMed: 12775774] [Cross Ref]
  87. Kazanskaya, O., Glinka, A. and Niehrs, C.(2000). The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 127, pp. 4981–92. [PubMed: 11044411]
  88. Kazanskaya, O. V., Severtzova, E. A., Barth, K. A., Ermakova, G. V., Lukyanov, S. A., Benyumov, A. O., Pannese, M., Boncinelli, E., Wilson, S. W. and Zaraisky, A. G.(1997). Anf: a novel class of vertebrate homeobox genes expressed at the anterior end of the main embryonic axis. Gene 200, pp. 25–34.10.1016/S0378-1119(97)00326-0. [PubMed: 9373136] [Cross Ref]
  89. Keenan, I. D., Sharrard, R. M. and Isaacs, H. V.(2006). FGF signal transduction and the regulation of Cdx gene expression. Dev Biol 299, pp. 478–88.10.1016/j.ydbio.2006.08.040. [PubMed: 16982047] [Cross Ref]
  90. Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. and Moon, R. T.(1995). Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, pp. 1787–99. [PubMed: 7600994]
  91. Kelly, G. M., Lai, C. J. and Moon, R. T.(1993). Expression of wnt10a in the central nervous system of developing zebrafish. Dev Biol 158, pp. 113–21.10.1006/dbio.1993.1172. [PubMed: 8330668] [Cross Ref]
  92. Kiecker, C. and Niehrs, C.(2001). A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, pp. 4189–201. [PubMed: 11684656]
  93. Kikuta, H., Kanai, M., Ito, Y. and Yamasu, K.(2003). gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 228, pp. 433–50.10.1002/dvdy.10409. [PubMed: 14579382] [Cross Ref]
  94. Kim, C. H., Oda, T., Itoh, M., Jiang, D., Artinger, K. B., Chandrasekharappa, S. C., Driever, W. and Chitnis, A. B.(2000). Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407, pp. 913–16. [PMC free article: PMC4018833] [PubMed: 11057671]
  95. Kobayashi, M., Nishikawa, K., Suzuki, T. and Yamamoto, M.(2001). The homeobox protein Six3 interacts with the Groucho corepressor and acts as a transcriptional repressor in eye and forebrain formation. Dev Biol 232, pp. 315–26.10.1006/dbio.2001.0185. [PubMed: 11401394] [Cross Ref]
  96. Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. and Kawakami, K.(1998). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, pp. 2973–82. [PubMed: 9655819]
  97. Koenig, S. F., Brentle, S., Hamdi, K., Fichtner, D., Wedlich, D. and Gradl, D.(2010). En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. Dev Biol 340, pp. 318–28.10.1016/j.ydbio.2010.02.011. [PubMed: 20171202] [Cross Ref]
  98. Kolm, P. J. and Sive, H. L.(1995). Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors. Dev Biol 167, pp. 34–49.10.1006/dbio.1995.1005. [PubMed: 7851655] [Cross Ref]
  99. Kolm, P. J. and Sive, H. L.(1997). Retinoids and posterior neural induction: a reevaluation of Nieuwkoop’s two-step hypothesis. Cold Spring Harb Symp Quant Biol 62, pp. 511–21. [PubMed: 9598385]
  100. Kos, R., Reedy, M. V., Johnson, R. L. and Erickson, C. A.(2001). The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128, pp. 1467–79. [PubMed: 11262245]
  101. Krauss, S., Korzh, V., Fjose, A. and Johansen, T.(1992). Expression of four zebrafish wnt-related genes during embryogenesis. Development 116, pp. 249–59. [PubMed: 1483391]
  102. Kudoh, T., Wilson, S. W. and Dawid, I. B.(2002). Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129, pp. 4335–46. [PubMed: 12183385]
  103. Kunz, M., Herrmann, M., Wedlich, D. and Gradl, D.(2004). Autoregulation of canonical Wnt signaling controls midbrain development. Dev Biol 273, pp. 390–401.10.1016/j.ydbio.2004.06.015. [PubMed: 15328021] [Cross Ref]
  104. LaBonne, C. and Bronner-Fraser, M.(1998). Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, pp. 2403–14. [PubMed: 9609823]
  105. LaBonne, C. and Bronner-Fraser, M.(2000). Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev Biol 221, pp. 195–205.10.1006/dbio.2000.9609. [PubMed: 10772801] [Cross Ref]
  106. Lagutin, O. V., Zhu, C. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., Russell, H. R., McKinnon, P. J., Solnica-Krezel, L. and Oliver, G.(2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17, pp. 368–79.10.1101/gad.1059403. [PMC free article: PMC195989] [PubMed: 12569128] [Cross Ref]
  107. Lamb, T. M. and Harland, R. M.(1995). Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior–posterior neural pattern. Development 121, pp. 3627–36. [PubMed: 8582276]
  108. Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S. E., Economides, A. N., Stahl, N., Yancopolous, G. D. and Harland, R. M.(1993). Neural induction by the secreted polypeptide noggin. Science 262, pp. 713–18.10.1126/science.8235591. [PubMed: 8235591] [Cross Ref]
  109. Lavado, A., Lagutin, O. V. and Oliver, G.(2008). Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135, pp. 441–50.10.1242/dev.010082. [PubMed: 18094027] [Cross Ref]
  110. Lee, H. Y., Kleber, M., Hari, L., Brault, V., Suter, U., Taketo, M. M., Kemler, R. and Sommer, L. (2004a). Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303, pp. 1020–23. [PubMed: 14716020]
  111. Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P.(1997). Evidence that FGF8 signalling from the midbrain–hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, pp. 959–69. [PubMed: 9056772]
  112. Lee, Y. H., Aoki, Y., Hong, C. S., Saint-Germain, N., Credidio, C. and Saint-Jeannet, J. P. (2004b). Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus. Dev Biol 275, pp. 93–103. [PubMed: 15464575]
  113. Lekven, A. C., Thorpe, C. J., Waxman, J. S. and Moon, R. T.(2001). Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1, pp. 103–14.10.1016/S1534-5807(01)00007-7. [PubMed: 11703928] [Cross Ref]
  114. Lewis, J. L., Bonner, J., Modrell, M., Ragland, J. W., Moon, R. T., Dorsky, R. I. and Raible, D. W.(2004). Reiterated Wnt signaling during zebrafish neural crest development. Development 131, pp. 1299–308.10.1242/dev.01007. [PubMed: 14973296] [Cross Ref]
  115. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. and De Robertis, E. M.(1997). Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, pp. 747–56.10.1016/S0092-8674(00)81921-2. [PMC free article: PMC3061830] [PubMed: 9118218] [Cross Ref]
  116. Li, B., Kuriyama, S., Moreno, M. and Mayor, R.(2009). The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136, pp. 3267–78.10.1242/dev.036954. [PMC free article: PMC2808295] [PubMed: 19736322] [Cross Ref]
  117. Li, L., Mao, J., Sun, L., Liu, W. and Wu, D.(2002). Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J Biol Chem 277, pp. 5977–81.10.1074/jbc.M111131200. [PubMed: 11742004] [Cross Ref]
  118. Lickert, H. and Kemler, R.(2002). Functional analysis of cis-regulatory elements controlling initiation and maintenance of early Cdx1 gene expression in the mouse. Dev Dyn 225, pp. 216–20. [PubMed: 12242722]
  119. Lin, K., Wang, S., Julius, M. A., Kitajewski, J., Moos, M., Jr. and Luyten, F. P.(1997). The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc Natl Acad Sci U S A 94, pp. 11196–200. [PMC free article: PMC23413] [PubMed: 9326585]
  120. Liu, A., Losos, K. and Joyner, A. L. (1999a). FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126, pp. 4827–38. [PubMed: 10518499]
  121. Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R. and Bradley, A. (1999b). Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22, pp. 361–65. [PubMed: 10431240]
  122. Loosli, F., Koster, R. W., Carl, M., Krone, A. and Wittbrodt, J.(1998). Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 74, pp. 159–64.10.1016/S0925-4773(98)00055-0. [PubMed: 9651515] [Cross Ref]
  123. Lopez-Rios, J., Esteve, P., Ruiz, J. M. and Bovolenta, P.(2008). The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Dev 3, p. 19.10.1186/1749-8104-3-19. [PMC free article: PMC2542364] [PubMed: 18715500] [Cross Ref]
  124. MacDonald, B. T., Adamska, M. and Meisler, M. H.(2004). Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131, pp. 2543–52.10.1242/dev.01126. [PubMed: 15115753] [Cross Ref]
  125. MacDonald, B. T., Tamai, K. and He, X.(2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17, pp. 9–26. [PMC free article: PMC2861485] [PubMed: 19619488]
  126. Maczkowiak, F., Mateos, S., Wang, E., Roche, D., Harland, R. and Monsoro-Burq, A. H.(2010). The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. Dev Biol 340, pp. 381–96.10.1016/j.ydbio.2010.01.022. [PMC free article: PMC3755748] [PubMed: 20116373] [Cross Ref]
  127. Mancilla, A. and Mayor, R.(1996). Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev Biol 177, pp. 580–89. [PubMed: 8806833]
  128. Mao, B. and Niehrs, C.(2003). Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302, pp. 179–83.10.1016/S0378-1119(02)01106-X. [PubMed: 12527209] [Cross Ref]
  129. Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B. M., Delius, H., Hoppe, D., Stannek, P., Walter, C. et al.(2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, pp. 664–67. [PubMed: 12050670]
  130. Mao, B., Wu, W., Li, Y., Hoppe, D., Stannek, P., Glinka, A. and Niehrs, C.(2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, pp. 321–25. [PubMed: 11357136]
  131. Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A. B., Volpin, D., Bressan, G. M. and Piccolo, S.(2003). Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100, pp. 3299–304.10.1073/pnas.0434590100. [PMC free article: PMC152286] [PubMed: 12626757] [Cross Ref]
  132. Marom, K., Shapira, E. and Fainsod, A.(1997). The chicken caudal genes establish an anterior–posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech Dev 64, pp. 41–52.10.1016/S0925-4773(97)00043-9. [PubMed: 9232595] [Cross Ref]
  133. Martinez-Barbera, J. P., Rodriguez, T. A. and Beddington, R. S.(2000). The homeobox gene Hesx1 is required in the anterior neural ectoderm for normal forebrain formation. Dev Biol 223, pp. 422–30.10.1006/dbio.2000.9757. [PubMed: 10882526] [Cross Ref]
  134. Martinez, S., Crossley, P. H., Cobos, I., Rubenstein, J. L. and Martin, G. R.(1999). FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126, pp. 1189–200. [PubMed: 10021338]
  135. Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M. and Lassar, A. B.(2001). Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15, pp. 316–27.10.1101/gad.855501. [PMC free article: PMC312622] [PubMed: 11159912] [Cross Ref]
  136. Matsunaga, E., Katahira, T. and Nakamura, H.(2002). Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129, pp. 5269–77. [PubMed: 12399317]
  137. McClintock, J. M., Kheirbek, M. A. and Prince, V. E.(2002). Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129, pp. 2339–54. [PubMed: 11973267]
  138. McGrew, L. L., Hoppler, S. and Moon, R. T.(1997). Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69, pp. 105–14.10.1016/S0925-4773(97)00160-3. [PubMed: 9486534] [Cross Ref]
  139. McGrew, L. L., Lai, C. J. and Moon, R. T.(1995). Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172, pp. 337–42. [PubMed: 7589812]
  140. McGrew, L. L., Otte, A. P. and Moon, R. T.(1992). Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate. Development 115, pp. 463–73. [PubMed: 1425335]
  141. McGrew, L. L., Takemaru, K., Bates, R. and Moon, R. T.(1999). Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev 87, pp. 21–32. [PubMed: 10495268]
  142. McMahon, A. P., Joyner, A. L., Bradley, A. and McMahon, J. A.(1992). The midbrain–hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, pp. 581–95.10.1016/0092-8674(92)90222-X. [PubMed: 1534034] [Cross Ref]
  143. McNulty, C. L., Peres, J. N., Bardine, N., van den Akker, W. M. and Durston, A. J.(2005). Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects. Development 132, pp. 2861–71.10.1242/dev.01872. [PubMed: 15930115] [Cross Ref]
  144. Megason, S. G. and McMahon, A. P.(2002). A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, pp. 2087–98. [PubMed: 11959819]
  145. Merzdorf, C. S. and Sive, H. L.(2006). The zic1 gene is an activator of Wnt signaling. Int J Dev Biol 50, pp. 611–17.10.1387/ijdb.052110cm. [PubMed: 16892174] [Cross Ref]
  146. Meyer, B. I. and Gruss, P.(1993). Mouse Cdx-1 expression during gastrulation. Development 117, pp. 191–203. [PubMed: 7900985]
  147. Mii, Y. and Taira, M.(2009). Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136, pp. 4083–88.10.1242/dev.032524. [PubMed: 19906850] [Cross Ref]
  148. Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H. and Muller-Tidow, C.(2007). The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 21, pp. 1638–47.10.1038/sj.leu.2404732. [PubMed: 17554387] [Cross Ref]
  149. Millet, S., Campbell, K., Epstein, D. J., Losos, K., Harris, E. and Joyner, A. L.(1999). A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, pp. 161–64. [PubMed: 10490024]
  150. Molven, A., Njolstad, P. R. and Fjose, A.(1991). Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. Embo J 10, pp. 799–807. [PMC free article: PMC452719] [PubMed: 2009859]
  151. Monsoro-Burq, A. H., Fletcher, R. B. and Harland, R. M.(2003). Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, pp. 3111–24.10.1242/dev.00531. [PubMed: 12783784] [Cross Ref]
  152. Monsoro-Burq, A. H., Wang, E. and Harland, R.(2005). Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell 8, pp. 67–78. [PubMed: 15691759]
  153. Morales, A. V., de la Rosa, E. J. and de Pablo, F.(1996). Expression of the cCdx-B homeobox gene in chick embryo suggests its participation in rostrocaudal axial patterning. Dev Dyn 206, pp. 343–53. [PubMed: 8853984]
  154. Moury, J. D. and Jacobson, A. G.(1990). The origins of neural crest cells in the axolotl. Dev Biol 141, pp. 243–53.10.1016/0012-1606(90)90380-2. [PubMed: 2210034] [Cross Ref]
  155. Muhr, J., Graziano, E., Wilson, S., Jessell, T. M. and Edlund, T.(1999). Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23, pp. 689–702.10.1016/S0896-6273(01)80028-3. [PubMed: 10482236] [Cross Ref]
  156. Muhr, J., Jessell, T. M. and Edlund, T.(1997). Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron 19, pp. 487–502.10.1016/S0896-6273(00)80366-9. [PubMed: 9331343] [Cross Ref]
  157. Murphy, P. and Hill, R. E.(1991). Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111, pp. 61–74. [PubMed: 1673098]
  158. Niehrs, C. and Shen, J.(2010). Regulation of Lrp6 phosphorylation. Cell Mol Life Sci. 67, pp. 2551–62.10.1007/s00018-010-0329-3. [PubMed: 20229235] [Cross Ref]
  159. Nieuwkoop, P. D.(1952). Activation and organization of the central nervous system in amphibains. III Synthesis of a new working hypthesis. J. Exp. Zool. 120, pp. 83–108.
  160. Nordstrom, U., Jessell, T. M. and Edlund, T.(2002). Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5, pp. 525–32.10.1038/nn0602-854. [PubMed: 12006981] [Cross Ref]
  161. Nordstrom, U., Maier, E., Jessell, T. M. and Edlund, T.(2006). An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 4, p. e252.10.1371/journal.pbio.0040252. [PMC free article: PMC1502144] [PubMed: 16895440] [Cross Ref]
  162. O’Hara, F. P., Beck, E., Barr, L. K., Wong, L. L., Kessler, D. S. and Riddle, R. D.(2005). Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132, pp. 3163–73.10.1242/dev.01898. [PMC free article: PMC1361118] [PubMed: 15944182] [Cross Ref]
  163. Onai, T., Sasai, N., Matsui, M. and Sasai, Y.(2004). Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling. Dev Cell 7, pp. 95–106. [PubMed: 15239957]
  164. Oppenheimer, J. M.(1936). Transplantation experiments on developing teleosts (Fundulus and Perca). J. Exp. Biol. 72, pp. 409–437.10.1002/jez.1400720304. [Cross Ref]
  165. Panhuysen, M., Vogt Weisenhorn, D. M., Blanquet, V., Brodski, C., Heinzmann, U., Beisker, W. and Wurst, W.(2004). Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Mol Cell Neurosci 26, pp. 101–11.10.1016/j.mcn.2004.01.011. [PubMed: 15121182] [Cross Ref]
  166. Papalopulu, N. and Kintner, C.(1996). A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, pp. 3409–18. [PubMed: 8951057]
  167. Piccolo, S., Sasai, Y., Lu, B. and De Robertis, E. M.(1996). Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, pp. 589–98.10.1016/S0092-8674(00)80132-4. [PMC free article: PMC3070603] [PubMed: 8752213] [Cross Ref]
  168. Pilon, N., Oh, K., Sylvestre, J. R., Savory, J. G. and Lohnes, D.(2007). Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 134, pp. 2315–23.10.1242/dev.001206. [PubMed: 17537796] [Cross Ref]
  169. Popperl, H., Schmidt, C., Wilson, V., Hume, C. R., Dodd, J., Krumlauf, R. and Beddington, R. S.(1997). Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124, pp. 2997–3005. [PubMed: 9247341]
  170. Prinos, P., Joseph, S., Oh, K., Meyer, B. I., Gruss, P. and Lohnes, D.(2001). Multiple pathways governing Cdx1 expression during murine development. Dev Biol 239, pp. 257–69.10.1006/dbio.2001.0446. [PubMed: 11784033] [Cross Ref]
  171. Ragland, J. W. and Raible, D. W.(2004). Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction. Dev Biol 276, pp. 16–30. [PubMed: 15531361]
  172. Ramel, M. C., Buckles, G. R., Baker, K. D. and Lekven, A. C.(2005). WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol 287, pp. 237–48.10.1016/j.ydbio.2005.08.012. [PubMed: 16216234] [Cross Ref]
  173. Ramel, M. C. and Lekven, A. C.(2004). Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, pp. 3991–4000.10.1242/dev.01277. [PubMed: 15269175] [Cross Ref]
  174. Re’em-Kalma, Y., Lamb, T. and Frank, D.(1995). Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development. Proc Natl Acad Sci U S A 92, pp. 12141–45.10.1073/pnas.92.26.12141. [PMC free article: PMC40312] [PubMed: 8618860] [Cross Ref]
  175. Reece-Hoyes, J. S., Keenan, I. D. and Isaacs, H. V.(2002). Cloning and expression of the Cdx family from the frog Xenopus tropicalis. Dev Dyn 223, pp. 134–40.10.1002/dvdy.1234.abs. [PubMed: 11803576] [Cross Ref]
  176. Rhinn, M., Lun, K., Ahrendt, R., Geffarth, M. and Brand, M.(2009). Zebrafish gbx1 refines the midbrain–hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Dev 4, p. 12.10.1186/1749-8104-4-12. [PMC free article: PMC2674439] [PubMed: 19341460] [Cross Ref]
  177. Rhinn, M., Lun, K., Luz, M., Werner, M. and Brand, M.(2005). Positioning of the midbrain–hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 132, pp. 1261–72.10.1242/dev.01685. [PubMed: 15703279] [Cross Ref]
  178. Ribisi, S., Jr., Mariani, F. V., Aamar, E., Lamb, T. M., Frank, D. and Harland, R. M.(2000). Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev Biol 227, pp. 183–96. [PubMed: 11076686]
  179. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D. and Nusse, R.(1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, pp. 649–57.10.1016/0092-8674(87)90038-9. [PubMed: 3111720] [Cross Ref]
  180. Rossel, M. and Capecchi, M. R.(1999). Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126, pp. 5027–40. [PubMed: 10529420]
  181. Ruiz i Altaba, A. and Jessell, T. M. (1991). Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, pp. 945–58. [PubMed: 1682132]
  182. Saint-Jeannet, J. P., He, X., Varmus, H. E. and Dawid, I. B.(1997). Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc Natl Acad Sci U S A 94, pp. 13713–18.10.1073/pnas.94.25.13713. [PMC free article: PMC28371] [PubMed: 9391091] [Cross Ref]
  183. Sakai, D., Tanaka, Y., Endo, Y., Osumi, N., Okamoto, H. and Wakamatsu, Y.(2005). Regulation of Slug transcription in embryonic ectoderm by beta-catenin-Lef/Tcf and BMP-Smad signaling. Dev Growth Differ 47, pp. 471–82.10.1111/j.1440-169X.2005.00821.x. [PubMed: 16179074] [Cross Ref]
  184. Salzberg, A., Elias, S., Nachaliel, N., Bonstein, L., Henig, C. and Frank, D.(1999). A Meis family protein caudalizes neural cell fates in Xenopus. Mech Dev 80, pp. 3–13.10.1016/S0925-4773(98)00187-7. [PubMed: 10096059] [Cross Ref]
  185. Sasai, N., Mizuseki, K. and Sasai, Y.(2001). Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, pp. 2525–36. [PubMed: 11493569]
  186. Sasai, Y., Lu, B., Steinbeisser, H. and De Robertis, E. M.(1995). Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–36.10.1038/376333a0. [PubMed: 7630399] [Cross Ref]
  187. Sato, T., Araki, I. and Nakamura, H.(2001). Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128, pp. 2461–69. [PubMed: 11493563]
  188. Sato, T., Sasai, N. and Sasai, Y.(2005). Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm. Development 132, pp. 2355–63.10.1242/dev.01823. [PubMed: 15843410] [Cross Ref]
  189. Satoh, N.(2003). The ascidian tadpole larva: comparative molecular development and genomics. Nat Rev Genet 4, pp. 285–95.10.1038/nrg1042. [PubMed: 12671659] [Cross Ref]
  190. Schmidt, C., McGonnell, I. M., Allen, S., Otto, A. and Patel, K.(2007). Wnt6 controls amniote neural crest induction through the non-canonical signaling pathway. Dev Dyn 236, pp. 2502–11.10.1002/dvdy.21260. [PubMed: 17685490] [Cross Ref]
  191. Schmidt, C. and Patel, K.(2005). Wnts and the neural crest. Anat Embryol (Berl) 209, pp. 349–55. [PubMed: 15891909]
  192. Schohl, A. and Fagotto, F.(2002). Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129, pp. 37–52. [PubMed: 11782399]
  193. Selleck, M. A. and Bronner-Fraser, M.(1995). Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 121, pp. 525–38. [PubMed: 7768190]
  194. Semenov, M. V., Tamai, K., Brott, B. K., Kuhl, M., Sokol, S. and He, X.(2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11, pp. 951–61.10.1016/S0960-9822(01)00290-1. [PubMed: 11448771] [Cross Ref]
  195. Serbedzija, G. N., Dickinson, M. and McMahon, A. P.(1996). Cell death in the CNS of the Wnt-1 mutant mouse. J Neurobiol 31, pp. 275–82.10.1002/(SICI)1097-4695(199611)31:3<275::AID-NEU1>3.0.CO;2-7. [PubMed: 8910786] [Cross Ref]
  196. Shamim, H., Mahmood, R., Logan, C., Doherty, P., Lumsden, A. and Mason, I.(1999). Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, pp. 945–59. [PubMed: 9927596]
  197. Shamim, H. and Mason, I.(1998). Expression of Gbx-2 during early development of the chick embryo. Mech Dev 76, pp. 157–59.10.1016/S0925-4773(98)00102-6. [PubMed: 9767156] [Cross Ref]
  198. Sharpe, C. R.(1991). Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system. Neuron 7, pp. 239–47.10.1016/0896-6273(91)90262-X. [PubMed: 1678613] [Cross Ref]
  199. Shi, D. L., Goisset, C. and Boucaut, J. C.(1998). Expression of Xfz3, a Xenopus frizzled family member, is restricted to the early nervous system. Mech Dev 70, pp. 35–47.10.1016/S0925-4773(97)00166-4. [PubMed: 9510023] [Cross Ref]
  200. Shimizu, T., Bae, Y. K. and Hibi, M.(2006). Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue. Development 133, pp. 4709–19.10.1242/dev.02660. [PubMed: 17079270] [Cross Ref]
  201. Shimizu, T., Bae, Y. K., Muraoka, O. and Hibi, M.(2005). Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 279, pp. 125–41.10.1016/j.ydbio.2004.12.007. [PubMed: 15708563] [Cross Ref]
  202. Sive, H. L., Draper, B. W., Harland, R. M. and Weintraub, H.(1990). Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4, pp. 932–42.10.1101/gad.4.6.932. [PubMed: 2384214] [Cross Ref]
  203. Skromne, I., Thorsen, D., Hale, M., Prince, V. E. and Ho, R. K.(2007). Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 134, pp. 2147–58.10.1242/dev.002980. [PMC free article: PMC2804982] [PubMed: 17507415] [Cross Ref]
  204. Smith, W. C. and Harland, R. M.(1991). Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, pp. 753–65.10.1016/0092-8674(91)90070-F. [PubMed: 1657405] [Cross Ref]
  205. Sommer, L.(2004). Multiple roles of canonical Wnt signaling in cell cycle progression and cell lineage specification in neural development. Cell Cycle 3, pp. 701–03. [PubMed: 15118414]
  206. Spemann, H. and Mangold, H.(1924). Uber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch mikr Anat Entw mech 100, pp. 599–638.
  207. Spieler, D., Baumer, N., Stebler, J., Koprunner, M., Reichman-Fried, M., Teichmann, U., Raz, E., Kessel, M. and Wittler, L.(2004). Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesx1. Dev Biol 269, pp. 567–79.10.1016/j.ydbio.2004.01.044. [PubMed: 15110720] [Cross Ref]
  208. Stern, C. D.(2006). Neural induction: 10 years on since the ’default model.’ Curr Opin Cell Biol 18, pp. 692–97.10.1016/j.ceb.2006.09.002. [PubMed: 17045790] [Cross Ref]
  209. Steventon, B., Araya, C., Linker, C., Kuriyama, S. and Mayor, R.(2009). Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction. Development 136, pp. 771–79.10.1242/dev.029017. [PMC free article: PMC2685944] [PubMed: 19176585] [Cross Ref]
  210. Subramanian, V., Meyer, B. I. and Gruss, P.(1995). Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83, pp. 641–53.10.1016/0092-8674(95)90104-3. [PubMed: 7585967] [Cross Ref]
  211. Sundin, O. H., Busse, H. G., Rogers, M. B., Gudas, L. J. and Eichele, G.(1990). Region-specific expression in early chick and mouse embryos of Ghox-lab and Hox 1.6, vertebrate homeobox-containing genes related to Drosophila labial. Development 108, pp. 47–58. [PubMed: 1693558]
  212. Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J. P. and He, X.(2000). LDL-receptor-related proteins in Wnt signal transduction. Nature 407, pp. 530–35. [PubMed: 11029007]
  213. Taylor, J. K., Levy, T., Suh, E. R. and Traber, P. G.(1997). Activation of enhancer elements by the homeobox gene Cdx2 is cell line specific. Nucleic Acids Res 25, pp. 2293–300.10.1093/nar/25.12.2293. [PMC free article: PMC146749] [PubMed: 9171078] [Cross Ref]
  214. Tendeng, C. and Houart, C.(2006). Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio. Gene Expr Patterns 6, pp. 761–71.10.1016/j.modgep.2006.01.006. [PubMed: 16504595] [Cross Ref]
  215. Thomas, P. Q., Johnson, B. V., Rathjen, J. and Rathjen, P. D.(1995). Sequence, genomic organization, and expression of the novel homeobox gene Hesx1. J Biol Chem 270, pp. 3869–75. [PubMed: 7876132]
  216. Toivonen, S. and Saxen, L.(1955). The simultaneous inducing action of liver and bone marrow of the guinea pig in implantation and explantation experiments with Trituris embryos. Exp. Cell Res. Suppl. 3, pp. 346–57. [PubMed: 13344491]
  217. Tour, E., Pillemer, G., Gruenbaum, Y. and Fainsod, A. (2002a). Gbx2 interacts with Otx2 and patterns the anterior–posterior axis during gastrulation in Xenopus. Mech Dev 112, pp. 141–51.10.1016/S0925-4773(01)00653-0. [PubMed: 11850185] [Cross Ref]
  218. Tour, E., Pillemer, G., Gruenbaum, Y. and Fainsod, A. (2002b). Otx2 can activate the isthmic organizer genetic network in the Xenopus embryo. Mech Dev 110, pp. 3–13.10.1016/S0925-4773(01)00591-3. [PubMed: 11744364] [Cross Ref]
  219. Vallin, J., Thuret, R., Giacomello, E., Faraldo, M. M., Thiery, J. P. and Broders, F.(2001). Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta-catenin signaling. J Biol Chem 276, pp. 30350–58. [PubMed: 11402039]
  220. Vlachakis, N., Choe, S. K. and Sagerstrom, C. G.(2001). Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. Development 128, pp. 1299–312. [PubMed: 11262231]
  221. von Bubnoff, A., Schmidt, J. E. and Kimelman, D. (1996). The Xenopus laevis homeobox gene Xgbx-2 is an early marker of anteroposterior patterning in the ectoderm. Mech Dev 54, pp. 149–60. [PubMed: 8652408]
  222. Waddington, C. H.(1933). Induction by the primitive streak and its derivatives in the chick. J. Exp. Biol. 10, pp. 38–46.
  223. Waddington, C. H.(1934). Experiments on embryonic induction. III. A note on incuctions of chick primitice streak transplanted to the rabbit embryo. J. Exp. Biol. 11, pp. 224–26.
  224. Wang, S., Krinks, M., Lin, K., Luyten, F. P. and Moos, M., Jr. (1997a). Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, pp. 757–66.10.1016/S0092-8674(00)81922-4. [PubMed: 9118219] [Cross Ref]
  225. Wang, S., Krinks, M. and Moos, M., Jr. (1997b). Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -11. Biochem Biophys Res Commun 236, pp. 502–04.10.1006/bbrc.1997.6995. [PubMed: 9240469] [Cross Ref]
  226. Wang, W. C. and Shashikant, C. S.(2007). Evidence for positive and negative regulation of the mouse Cdx2 gene. J Exp Zool B Mol Dev Evol 308, pp. 308–21. [PubMed: 17358012]
  227. Waskiewicz, A. J., Rikhof, H. A., Hernandez, R. E. and Moens, C. B.(2001). Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 128, pp. 4139–51. [PubMed: 11684652]
  228. Waskiewicz, A. J., Rikhof, H. A. and Moens, C. B.(2002). Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 3, pp. 723–33.10.1016/S1534-5807(02)00319-2. [PubMed: 12431378] [Cross Ref]
  229. Wassarman, K. M., Lewandoski, M., Campbell, K., Joyner, A. L., Rubenstein, J. L., Martinez, S. and Martin, G. R.(1997). Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, pp. 2923–34. [PubMed: 9247335]
  230. Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E. and Krumlauf, R.(1989). Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, pp. 405–09.10.1038/341405a0. [PubMed: 2571936] [Cross Ref]
  231. Wills, A. E., Choi, V. M., Bennett, M. J., Khokha, M. K. and Harland, R. M.(2010). BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Dev Biol 337, pp. 335–50.10.1016/j.ydbio.2009.11.008. [PMC free article: PMC2812634] [PubMed: 19913009] [Cross Ref]
  232. Wilson, P. A. and Hemmati-Brivanlou, A.(1995). Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, pp. 331–33.10.1038/376331a0. [PubMed: 7630398] [Cross Ref]
  233. Wilson, S. I., Rydstrom, A., Trimborn, T., Willert, K., Nusse, R., Jessell, T. M. and Edlund, T.(2001). The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411, pp. 325–30. [PubMed: 11357137]
  234. Wolda, S. L., Moody, C. J. and Moon, R. T.(1993). Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev Biol 155, pp. 46–57.10.1006/dbio.1993.1005. [PubMed: 8416844] [Cross Ref]
  235. Woo, K. and Fraser, S. E.(1997). Specification of the zebrafish nervous system by nonaxial signals. Science 277, pp. 254–57.10.1126/science.277.5323.254. [PubMed: 9211857] [Cross Ref]
  236. Wu, J., Yang, J. and Klein, P. S.(2005). Neural crest induction by the canonical Wnt pathway can be dissociated from anterior–posterior neural patterning in Xenopus. Dev Biol 279, pp. 220–32.10.1016/j.ydbio.2004.12.016. [PubMed: 15708570] [Cross Ref]
  237. Zaraisky, A. G., Lukyanov, S. A., Vasiliev, O. L., Smirnov, Y. V., Belyavsky, A. V. and Kazanskaya, O. V.(1992). A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo. Dev Biol 152, pp. 373–82.10.1016/0012-1606(92)90144-6. [PubMed: 1353734] [Cross Ref]
  238. Zhou, X., Hollemann, T., Pieler, T. and Gruss, P.(2000). Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech Dev 91, pp. 327–30.10.1016/S0925-4773(99)00270-1. [PubMed: 10704858] [Cross Ref]
  239. Zimmerman, L. B., De Jesus-Escobar, J. M. and Harland, R. M.(1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, pp. 599–606.10.1016/S0092-8674(00)80133-6. [PubMed: 8752214] [Cross Ref]
Copyright © 2010 by Morgan & Claypool Life Sciences.
Bookshelf ID: NBK53466

Views

  • PubReader
  • Print View
  • Cite this Page

Other titles in this collection

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...