NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders. From Molecules to Minds: Challenges for the 21st Century: Workshop Summary. Washington (DC): National Academies Press (US); 2008.

Cover of From Molecules to Minds

From Molecules to Minds: Challenges for the 21st Century: Workshop Summary.

Show details

Challenges and Technical Limitations

Many barriers that have impeded researchers from addressing the questions highlighted in the Grand Challenges workshop have disappeared over recent years, remarked Leshner. Advances in imaging technology, new techniques such as those similar to the Brainbow, and neuronal “light switches” have laid the groundwork for researchers to explore the brain as never before. However, many of the advances that have been made over the last decade have also been a direct result of basic unrestricted discovery research. For example, the increased use and power of the internet and computer programming, sequencing the human genome, and the discovery of small non-coding RNA, are all examples of the value of basic discovery research that have had major impact on how we view and understand our brains and nervous systems. It is very likely that future unexpected discoveries and advances in other areas of physics, biochemistry, computer science, and molecular biology will continue to have a significant impact on the future progress that will be made in the neurosciences.

But the path from where we are today to where we want to go is not easy. Both conceptual and technical impediments must be solved. This document does not intend to capture each and every one of those challenges—the science is too intricate and involved—but rather to highlight a few high-level topics raised by multiple workshop participants.

Integrating Neuroscience and Working Toward a Common Goal

“Grand Challenges” are designed to unite a scientific field around a few common problems. This is not easy. The nature of science is that researchers are often focused on micro-fine topics and must promote the importance of their particular corner of expertise to secure funding and attention for their fields. The result can be scientific fiefdoms and intellectual turf wars, emboldened by the need for financial support.

The problem is more acute in neuroscience than in other fields. As mentioned earlier, one of neuroscience’s great strengths is also its greatest weakness: It is not a single “science” at all, but an interdisciplinary field drawing on biology, chemistry, computer science, genetics, and others.

“It is a very large continuum . . . from molecular to behavioral neuroscience, with extraordinary opportunities,” said Story Landis, director of the National Institute of Neurological Disorders and Stroke at the National Institutes of Health (NIH). “We need to figure out how to portray the excitement across that continuum in a way that not only the public and our funders, but, most important, the neuroscience community as a whole, can embrace.”

Working with Psychological Concepts and Defining Behavior

A further challenge highlighted by some at the workshop was to free neuroscience from its roots in psychology and psychiatry. “We have either enjoyed or suffered under the concepts that psychology has brought to us for the last, let’s say, 100 years,” said Montague.

A further challenge highlighted by some at the workshop was the need to reconcile understanding of psychological phenomenon at the behavioral and cognitive levels with understanding at the molecular and cellular levels. Montague decried the disconnection between much of cognitive neuroscience and molecular neuroscience. Terms like perception, awareness, consciousness and disease states like depression, anxiety, mood, do not easily translate into their underlying molecular mechanism. Therefore, we need to find a common language that allows both ends of the neuroscience spectrum to communicate. This likely will require an agreement on a common unit of analysis, which is the most reduced unit for the cognitive and most complex for the molecular neuroscience approaches.

Montague, Hyman, and others argued for the need for more concrete and quantitative definitions of behavior-understanding behavior derived from an agnostic approach to the problem, rather than one driven by our preconceived ideas about how the brain functions.”

New Technological Requirements

Despite tremendous advances in the past few years, many workshop participants highlighted the need for additional technical advances to drive the field forward. Although the workshop did not focus too closely on specific technological needs, one technology stood out: an imaging device or series of devices that can offer both ultra-fine spatial imaging resolution and ultra-fine time resolution.

Techniques are needed that can produce both high resolution in space and high resolution in time, said Blakemore. Magnetic resonance imaging (MRI) and positron emission tomography (PET) provide fairly good resolution in space, but they are slow techniques. Electrical recording from the brain with an EEG or MEG can give us high temporal resolution, but poor spatial resolution. Finding ways of combining these characteristics of different techniques, or new kinds of methodology, which can provide improved spatial and temporal resolution in both is going to be very important for the future.

Professor He agreed, emphasizing that the tool must be noninvasive to study the human brain. He added that the field needed a new way to image connectivity in the brain and that such a tool would have major clinical appeal as well. “[Y]ou can help with the surgical planning on epilepsy patients,” said He. “You can help treat a lot of neurological disease by rationally designing a neuromodulation or neurostimulation paradigm if you know the pattern. You just block that pattern and you can treat the patient even without surgery.”

Copyright © 2008, National Academy of Sciences.
Bookshelf ID: NBK50998


  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (527K)

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...