NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
National Research Council (US) Committee on Scientific Milestones for the Development of a Gene Sequence-Based Classification System for the Oversight of Select Agents. Sequence-Based Classification of Select Agents: A Brighter Line. Washington (DC): National Academies Press (US); 2010.

Sequence-Based Classification of Select Agents: A Brighter Line.
Show detailsCHAIR
Dr. James W. LeDuc directs the Program on Global Health in the Institute for Human Infections and Immunity at the University of Texas Medical Branch. He also serves as deputy director of the Galveston National Laboratory. Previously, he served as the coordinator for influenza for the Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, and was the director of the Division of Viral and Rickettsial Diseases in the CDC National Center for Infectious Diseases (NCID). He began his professional career as a field biologist with the Smithsonian Institution’s African Mammal Project in West Africa. He then served for 23 years as an officer in the U.S. Army Medical Research and Development Command. He joined CDC in 1992, was assigned to the World Health Organization as a Medical Officer, and later became the associate director for global health at NCID. His research interests include the epidemiology of arboviruses and viral hemorrhagic fevers and global health. He has participated in a number of National Research Council studies.
MEMBERS
Dr. Ralph Baric received his BS from North Carolina State University in 1977. He obtained his PhD from the Department of Microbiology of North Carolina State University in 1982, studying alpha-virus–host interaction and pathogenesis under the direction of Robert E. Johnston. He continued his postdoctoral training on coronavirus replication and pathogenesis under the direction of Michael M. C. Lai at the University of Southern California. In 1986, Dr. Baric was hired as an assistant professor in the Department of Parasitology and Laboratory Practice, and he is currently a professor in the Department of Epidemiology and the Department of Microbiology and Immunology of the University of North Carolina at Chapel Hill. During his early training, Dr. Baric was a Harvey Weaver Scholar for the National Multiple Sclerosis Society and an established investigator for the American Heart Association in association with his studies of coronavirus replication, cross-species transmission, persistence, evolution, and pathogenesis. He is a member of the Editorial Board of the Journal of Virology and a senior editor for PLoS Pathogens. Dr. Baric is a permanent member of a National Institutes of health (NIH) study section (VirB); has been a consultant for the World Health Organization, the Centers for Disease Control and Prevention, and NIH; and has served on various institutional recombinant-DNA review committees. He has published over 130 peer-reviewed manuscripts, including several in Science, the Proceedings of the National Academy of Sciences of the United States of America, and Nature Medicine, and his research efforts are supported by several NIH research grants. Dr. Baric’s expertise is primarily in norovirus molecular evolution and susceptibility and in coronavirus reverse genetics, synthetic genome reconstruction, pathogenesis, vaccine design, and cross-species transmission of viruses, often using the SARS coronavirus or noroviruses as models.
Dr. Roger G. Breeze received his veterinary degree in 1968 and his PhD in veterinary pathology in 1973, both from the University of Glasgow, Scotland. He was engaged in teaching, diagnostic pathology, and research on respiratory and cardiovascular diseases at the University of Glasgow Veterinary School from 1968 to 1977 and at Washington State University College of Veterinary Medicine from 1977 to 1987, where he was professor and chair of the Department of Microbiology and Pathology. From 1984 to 1987, he was deputy director of the Washington Technology Center, the state’s high-technology sciences initiative, based in the College of Engineering of the University of Washington. In 1987, he was appointed director of the U.S. Department of Agriculture (USDA) Plum Island Animal Disease Center, a Biosafety Level 3 facility for research and diagnosis related to the world’s most dangerous livestock diseases. In that role, he initiated research on the genomic and functional genomic basis of disease pathogenesis, diagnosis, and control of livestock RNA and DNA virus infections. That work became the basis of U.S. defense against natural and deliberate infection with those and led to his involvement in the early 1990s in biologic-weapons defense and proliferation prevention. From 1995 to 1998, Dr. Breeze directed research programs in 20 laboratories in the Southeast for the USDA Agricultural Research Service before going to Washington, D.C., to establish biologic-weapons defense research programs for USDA. He received the Distinguished Executive Award from President Clinton in 1998 for his work at Plum Island and in biodefense. Since 2004, he has been chief executive officer of Centaur Science Group, which provides consulting services in biodefense. His main commitment is to the Defense Threat Reduction Agency’s Biological Weapons Proliferation Prevention Program in Europe, the Caucasus, and Central Asia.
Dr. R. Mark Buller is widely recognized as a leader in the field of viral pathogenesis. His current research focuses on the interplay between the genetic expression of orthopoxviruses—such as monkeypox virus, ectromelia virus, and vaccinia virus—and the hosts’ response to infection. Dr. Buller applies this work to the development of animal models for the evaluation of antivirals and vaccines for smallpox. He currently serves as a professor at Saint Louis University, Missouri, in the Department of Molecular Microbiology and Immunology. Dr. Buller is also director of the Aerosol Biology Core of the multi-institutional Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Diseases Research. Before joining Saint Louis University, he was head of the Poxvirus Pathogenesis Group at the National Institute of Allergy and Infectious Diseases of the National Institutes of Health. Dr. Buller holds a PhD in virology from the Institute of Virology in Glasgow. He has published over 130 peer-reviewed scientific articles, reviews, and book chapters, and is a member of the editorial review boards of major scientific publications. Dr. Buller has also served as an invited reviewer, committee member, or speaker on the topic of bioterrorism and biomedical research.
Dr. Sean R. Eddy is a group leader at the Howard Hughes Medical Institute’s Janelia Farm Research Campus outside Washington, D.C. His research interests are in the development of computational algorithms for genome-sequence analysis. He is the author of several widely used software tools for biologic sequence analysis, including a software package called HMMER; a coauthor of the Pfam database of protein domains; and a coauthor of the book Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge University Press, 1998). He received a bachelor’s degree from the California Institute of Technology and a PhD from the University of Colorado at Boulder, and he was a postdoctoral fellow at NeXagen Pharmaceuticals and at the MRC Laboratory of Molecular Biology. He was on the faculty of the Department of Genetics of the Washington University School of Medicine for 11 years before moving to Janelia Farm.
Dr. Stanley Falkow is the Robert W. and Vivian K. Cahill Professor of Microbiology and Immunology at Stanford University School of Medicine. He formulated molecular Koch’s postulates, which have guided the study of the microbial determinants of infectious diseases since the late 1980s. Dr. Falkow received his BS from the University of Maine and went on to earn his PhD from Brown University. He discovered that infectious microorganisms use genes that are activated only inside host cells. Dr. Falkow has published numerous articles and has served on the editorial boards of several professional publications. In addition, he has received numerous awards for his achievements in science, including the Bristol-Myers Squibb Award for Distinguished Achievement in Infectious Disease Research, the Altemeier Medal from the Surgical Infectious Diseases Society of America, the Howard Taylor Ricketts Award Lecture at the University of Chicago, and the Paul Ehrlich–Ludwig Darmstaedter Prize. In 2003, he received the Abbott Lifetime Achievement Award from the American Society for Microbiology and the Selman A. Waksman Award in Microbiology from the National Academy of Sciences (NAS). He received the Robert Koch Award in 2000. Dr. Falkow was president of the American Society for Microbiology in 1997–1998. He was elected to the Institute of Medicine in 1997 and received the Maxwell-Finland Award from the National Foundation for Infectious Diseases in 1999. Also in 1999, he was named an honorary doctor of science by the University of Guelph, Canada, and received the University of Maine Alumni Career Award. He has received honorary doctorates in Europe and the United States. Dr. Falkow is a member of NAS and the National Academy of Arts and Sciences. He is also an elected fellow of the American Association for the Advancement of Science and a foreign member of the UK Royal Society. Dr. Falkow was nominated twice for a Nobel Prize in physiology or medicine. In 2008, Dr. Falkow received the Lasker Award for medical research.
Ms. Rachel E. Levinson, a 25-year veteran of science policy at the national level, is the director of the Arizona State University (ASU) Washington office and is responsible for special projects and research initiatives in the Office of the Vice President for Research and Economic Affairs. She joined ASU in 2005 as the director of the Government and Industry Liaison Office, Biodesign Institute at Arizona State University. Ms. Levinson heads an office responsible for facilitating mutually beneficial relationships between university researchers, federal funding agencies, and private-sector entities. Most recently, she was with the Office of Science and Technology Policy in the Executive Office of the President, where she was assistant director of life sciences. She began her career as a biologist at the National Cancer Institute of the National Institutes of Health (NIH). She advanced to become deputy director of the NIH Office of Recombinant DNA and senior policy adviser in the Office of Technology Transfer. Ms. Levinson earned her BS in zoology from the University of Maryland at College Park and her MA in science, technology, and public policy from the George Washington University School of Public and International Affairs.
Dr. John Mulligan founded Blue Heron Biotechnology in 1999 after a decade of genomics research, including establishment and management of one of the two Human Genome Centers at Stanford University and direction of genomics research at Darwin Molecular. Blue Heron Biotechnology is a pioneer in and leader of the gene-synthesis market.
Dr. Alison D. O’Brien is a professor in and chair of the Department of Microbiology and Immunology at the Uniformed Services University of the Health Sciences. She is a past president of the American Society for Microbiology. She received her PhD from Ohio State University in 1976. Research in Dr. O’Brien’s laboratory focuses on the molecular mechanisms by which the Shiga toxins from enterohemorrhagic Escherichia coli (EHEC) contribute to hemorrhagic colitis and the hemolytic uremic syndrome, the involvement of toxins from uropathogenic E. coli (UPEC) in the host response to urinary tract infections, and development of therapeutics against infections caused by Bacillus anthracis and B. cereus.
Dr. Francisco Ochoa-Corona, a forensic plant pathologist, specializes in delivering and developing reference diagnostics for exotic, naturalized, and indigenous plant viruses and other phytopathogens of relevance to agricultural biosecurity. His work is applicable to plant pathogens that can be intercepted at the border or detected through general surveillance in field settings or in transitional facilities. Dr. Ochoa-Corona’s research in plant pathology contributes scientific input to regulatory officials regarding plant health emergencies. He joined Oklahoma State University in 2008 from the Investigation and Diagnostic Centre of Biosecurity New Zealand, in the Ministry of Agriculture and Forestry, where he was principal adviser in virology.
Prof. Jane S. Richardson earned a bachelor’s degree from Swarthmore College and a master’s degree from Harvard University in 1966. Since 1970, she has been at Duke University Medical Center, where she and her husband, David, work together in investigating the three-dimensional structure of proteins and RNA. They were early pioneers in protein crystallography, in molecular computer graphics, and in the field of de novo protein design, proposing and then making novel amino-acid sequences designed to fold into specific 3D structures. Prof. Richardson was the developer of ribbon drawings of protein structures, originally done by hand but since universally adopted in molecular graphics. She identified many well-known structural motifs, such as the helix N-cap, and has recently concentrated on new methods for the validation and improvement of protein and RNA crystal structures. She became a MacArthur Fellow in 1985, a member of the National Academy of Sciences in 1991, and a member of the Institute of Medicine in 2006, and she was an assessor for last year’s CASP8 structure predictions.
Dr. Margaret Riley is a professor of biology at the University of Massachusetts Amherst (Umass Amherst). She received her PhD in population genetics from Harvard University and performed postdoctoral research in microbial population genetics with a Sloan Postdoctoral Fellowship in Molecular Evolution. She joined the faculty of Yale in 1991 and recently moved to UMass Amherst. She has a broad set of research interests that range from studies of experimental evolution of microorganisms to development of novel antimicrobials and re-definition of the microbial species concept. Dr. Riley studies the evolution of microbial diversity with an emphasis on the ecology and evolution of microbial toxins. Her recent work has revealed that the production of toxins is a primary force in the generation and maintenance of microbial diversity. Those studies led to an interest in applying ecologic and evolutionary theory to the design of novel antimicrobials for use in animal and human health. She is cofounder of Origin Antimicrobials, Inc., whose mission is to discover and refine novel antimicrobials to address the challenge of antibiotic resistance. Dr. Riley is the director of the Organismic and Evolutionary Biology Program and the director of the Museum of Natural History at UMass Amherst. From 1999 to 2002, she chaired the Gordon conference on molecular evolution; from 2003 to 2005, she chaired the Gordon conference on microbial population biology and evolution. She is a fellow of the American Academy of Microbiology.
Mr. Tom Slezak has been involved with bioinformatics at Lawrence Livermore National Laboratory (LLNL) for 30 years after receiving a BS and an MS in computer science from the University of California, Davis. He is currently the associate program leader for informatics for the Global Security Program efforts at LLNL. He was involved in the Human Genome Program from 1987 to 2000, leading the informatics efforts at LLNL and then the Department of Energy Joint Genome Institute from 1997 to 2000. In 2000, he began to build a pathogen bioinformatics team at LLNL, pioneering a novel whole-genome analysis approach to DNA signature design. His team developed signature targets for multiple human pathogens that were used at the 2002 Winter Olympic Games under the BASIS program and later adapted for use nationwide in the Department of Homeland Security (DHS) BioWatch program. Under a close collaboration with the Centers for Disease Control and Prevention, the LLNL team has been called on for computational help on smallpox, SARS, monkey-pox, avian influenza, and numerous other diseases. In addition to continuing work on human and agricultural pathogens, Mr. Slezak team is focusing on signatures of mechanisms of virulence, antibiotic resistance, and evidence of genetic engineering. They have been working on detecting novel, engineered, and advanced biothreats for several years, leveraging high-risk Information Technology Industry Council and DHS funding. Mr. Slezak has chaired or served on multiple advisory boards, including those of the rice genome project, mouse and maize genetics databases, the spruce tree genome project (Canada), plant pathogens, and a National Institute of Allergy and Infectious Diseases sequencing center contract renewal.
NATIONAL RESEARCH COUNCIL STAFF
Dr. India Hook-Barnard is a program officer with the Board on Life Sciences of the National Research Council. She came to the National Academies from the National Institutes of Health where she was a Postdoctoral Research Fellow from 2003 to 2008. Her research investigating the molecular mechanism of gene expression focused on the interactions between RNA polymerase and promoter DNA. Dr. Hook-Barnard earned her PhD from the Dept. of Molecular Microbiology and Immunology at the University of Missouri. Her graduate research examined translational regulation and ribosome binding in Escherichia coli. At the National Academies, she contributes to projects in a variety of exciting topic areas. Much of her current work is related to issues of biosecurity, microbiology, and genomics. She is the study director or staff officer for several ongoing projects including the U.S. Canada Regional Committee for the International Brain Research Organization, Animal Models for Assessing Countermeasures to Bioterrorism Agents, and Framework for Developing a New Taxonomy of Disease.
Mr. Carl-Gustav Anderson is a senior program assistant with the Board on Life Sciences of the National Research Council. He received a BA in philosophy from American University in 2009, completing significant research projects exploring on the philosophy of the Kyoto School. He has worked closely with the All Women’s Action Society (Malaysia), helping to engage young men in feminist dialogue and to present a feminist response to the unique identity politics of contemporary Malaysia. He has focused his research interests on Buddhist encounters with the West, with particular emphasis on Buddhist responses to Western feminism, communism, transcendental philosophy, and existentialism.
Since joining the Board on Life Sciences in 2009, he has served as senior program assistant for Responsible Research with Biological Select Agents and Toxins (2009) and Challenges and Opportunities for Education about Dual Use Issues in Life Sciences Research (2010). In addition to several consensus committees, he also serves as senior program assistant for the United States-Canada Regional Committee to the International Brain Research Organization.
- Committee Member and Staff Biographies - Sequence-Based Classification of Select...Committee Member and Staff Biographies - Sequence-Based Classification of Select Agents
Your browsing activity is empty.
Activity recording is turned off.
See more...