NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-.

Cover of StatPearls

StatPearls [Internet].

Show details

Autonomic Dysreflexia

; .

Author Information

Last Update: August 19, 2021.

Continuing Education Activity

Autonomic dysreflexia is a condition that emerges after a spinal cord injury, usually when the injury has occurred above the T6 level. The higher the level of the spinal cord injury, the greater the risk with up to 90% of patients with cervical spinal or high-thoracic spinal cord injury being susceptible. Dysregulation of the autonomic nervous system leads to an uncoordinated autonomic response that may result in a potentially life-threatening hypertensive episode when there is a noxious stimulus below the level of the spinal cord injury. In about 85% of cases, this stimulus is from a urological source such as a UTI, a distended bladder, or a clogged Foley catheter. There is a significantly increased risk of stroke by 300% to 400%. Autonomic dysreflexia can occur in susceptible individuals up to 40 times per day. This activity reviews the cause, pathophysiology and presentation of autonomic dysreflexia and highlights the role of the interprofessional team in its management.

Objectives:

  • Describe the pathophysiology of autonomic dysreflexia.
  • Review the manifestations of autonomic dysreflexia.
  • Summarize the treatment options for autonomic dysreflexia.
  • Outline the importance of improving care coordination among interprofessional team members to improve outcomes for patients affected by Autonomic dysreflexia.
Access free multiple choice questions on this topic.

Introduction

Autonomic dysreflexia is a condition that emerges after a spinal cord injury, usually when the injury has occurred above the T6 level. The higher the level of the spinal cord injury, the greater the risk with up to 90% of patients with cervical spinal or high-thoracic spinal cord injury being susceptible. Dysregulation of the autonomic nervous system leads to an uncoordinated autonomic response that may result in a potentially life-threatening hypertensive episode when there is a noxious stimulus below the level of the spinal cord injury.  In about 85% of cases, this stimulus is from a urological source such as a UTI, a distended bladder, or a clogged Foley catheter. There is a significantly increased risk of stroke by 300% to 400%. Autonomic dysreflexia can occur in susceptible individuals up to 40 times per day. The initial presenting complaint is usually a headache which can be severe.  Susceptible individuals with spinal cord lesions above T6 who complain of a headache should immediately have their blood pressure checked. If elevated, a presumptive diagnosis of autonomic dysreflexia can be made. Prompt recognition and correction of the disorder, usually just by irrigating or changing the Foley catheter, can be immediately life-saving. Patients with traumatic spinal injuries who have autonomic dysreflexia had a higher death rate than similarly injured individuals without the disorder.[1][2]

Etiology

The etiology is a spinal cord injury, usually above the T6 level. It is unlikely to occur if the level is below T10. The higher the injury level, the greater the severity of the cardiovascular dysfunction. The severity and frequency of autonomic dysreflexia episodes are also associated with the completeness of the spinal cord injury. Patients usually develop autonomic dysreflexia one month to one year after their injury. However, it has also been described in the first days or weeks after the original trauma. Objectively, an episode is defined as an increase in systolic blood pressure of 25 mm Hg.

Epidemiology

Autonomic dysreflexia develops in 20% to 70% of patients with spinal cord injury above the T6 level and is unlikely to develop if the injury is below T10.  Patients prone to this disorder will usually have a history of prior episodes, but health professionals need to be alert to an initial presentation without any prior history of autonomic dysreflexia.

Pathophysiology

Cutaneous or visceral stimulation below the level of the spinal cord injury, initiates afferent impulses that elicit reflex sympathetic nervous system activity. The sympathetic response leads to diffuse vasoconstriction, typically to the lower two-thirds of the body, and a rise in blood pressure. In an intact autonomic system, this increased blood pressure stimulates the carotid sinus leading to a parasympathetic outflow slowing the heart rate via vagal stimulation and causing diffuse vasodilation to balance the original increased sympathetic response. However, in the setting of a spinal cord injury, the normal compensatory parasympathetic response cannot travel below the level of the spinal cord injury, and generalized vasoconstriction continues below the level of injury leading to systemic hypertension. The compensatory parasympathetic response leads to bradycardia and vasodilation, but only above the level of the spinal cord injury.

The most common stimuli are distention of a hollow viscus, such as the bladder or rectum. Pressure ulcers or other injuries such as fractures and urinary tract infections are also common causes. Sexual intercourse can also be a stimulus. Medical procedures, surgeries, and labor and delivery are usually complicated in patients with a history of autonomic dysreflexia as well. Spinal cord injuries below T10 rarely result in autonomic dysreflexia because the splanchnic innervation remains intact and allows for compensatory parasympathetic dilation of the splanchnic vascular bed.

Pharmacological causes of autonomic dysreflexia are rare, but recently a case was reported in a patient receiving combination therapy with duloxetine and amitriptyline.[3]

History and Physical

The manifestations are variable and include:

  • A severe headache
  • Profuse diaphoresis above the level of injury
  • Flushing above the level of injury
  • Piloerection above the level of injury
  • Dry and pale skin because of vasoconstriction below the level of injury
  • Visual disturbances
  • Nasal stuffiness
  • Anxiety or feelings of doom
  • Nausea and vomiting

Hypertension may be asymptomatic or be severe enough to lead to a hypertensive crisis complicated by pulmonary edema, left ventricular dysfunction, retinal detachment, intracranial hemorrhage, seizures or even death. Bradycardia may also range from minor to resulting in cardiac arrest. Tachycardia is less common than bradycardia but may also occur along with cardiac arrhythmias and atrial fibrillation or flutter. If the patient has coronary artery disease, an episode may cause a myocardial infarction.

The combination of dangerously high blood pressure together with cerebral vasodilation puts the patient at high risk for a hemorrhagic stroke which can be life-threatening.

Evaluation

The evaluation includes obtaining a history of previous episodes, monitoring vital signs and watching for any developing signs and symptoms especially if there is a known trigger.

Start by identifying patients at risk (spinal cord injury above T6 level) and recognize the key initial symptom which is usually a severe headache from cerebral vasodilation. Should this be encountered, the next step should be to check blood pressure. If elevated, then the patient is at high risk for an episode of autonomic dysreflexia.

The likelihood of autonomic dysreflexia is independently predicted by the level of the spinal cord lesion and the presence of neurogenic detrusor overactivity.

Patients at high risk who are getting urodynamic testing should have continuous cardiovascular monitoring.

Treatment / Management

In the event of an episode, vital signs should be closely monitored, and recognition of the trigger should be immediately sought. Blood pressure should be checked at least every 5 minutes, and an arterial line should be considered. The noxious stimuli should be corrected as soon as possible. Bladder and bowel distension are the most common causes. Therefore, restoring bladder drainage is immediately recommended. If the patient has an indwelling catheter, it should be evaluated for malfunction or malpositioning, and a workup for a urinary tract infection should also be performed. A rectal exam should be performed to evaluate for impaction; however, this should be done with care as it can precipitate a worsening crisis due to the stimulation of the procedure.  Sitting the patient upright and removing any tight clothing or constrictive devices will orthostatically help lower blood pressure by inducing pooling of blood in the abdominal and lower extremity vessels as well as removing any possible stimuli. If the trigger cannot be identified and initial maneuvers do not improve the systolic blood pressure below 150 mm Hg pharmacologic management should be initiated. Hypertension should be promptly corrected with agents that have a rapid onset but short duration of action. Examples are nitrates (either nitropaste or sublingual), nifedipine (oral or sublingual), sublingual captopril, intravenous hydralazine, intravenous labetalol (if the heart rate is not too slow), among others. Intravenous infusions such as nitroglycerine or clevidipine are also options; however, placement of an arterial line is recommended for close titration of the infusion.

Women with spinal cord injury who become pregnant are at risk for developing a dysreflexia episode during labor and delivery. In women with spinal cord injury, the symptoms of labor may only be some abdominal discomfort, increased spasticity, and autonomic dysreflexia.  Epidural anesthesia has been reported to be the superior choice for control of autonomic dysreflexia during labor. For cesarean delivery or instrumentally assisted delivery, a spinal or epidural may be used. The American College of Obstetrics and Gynecology states that it is vital that any obstetrician caring for a patient with spinal cord injury be familiar with the complications related to such injuries.

Leakage of urine around catheters that are not obstructed is often due to bladder spasms that may be associated with dysreflexia episodes. For these cases, overactive bladder medications such as oxybutynin and mirabegron can be used.  In severe cases, bladder wall injections of Botox can be used.[4]  Urinary infections may also cause bladder spasms without catheter blockage, but such spasms are usually transient and disappear when the UTI is successfully treated. Constipation may also be a contributing factor. 

Patients with spinal cord injury and autonomic dysreflexia often undergo medical procedures and surgeries, such as urologic instrumentations, that can trigger dysreflexia episodes. General or regional anesthesia may be used for these procedures. Regional anesthesia in the form of a spinal anesthetic has the advantage of blocking both limbs of the reflex arc and thereby avoids autonomic dysreflexia. However, determining the level of anesthesia may be difficult, and placement of the spinal may be challenging in patients with spinal cord injuries. An epidural catheter may also be considered for longer cases as it has the advantage of being able to be “topped off.”  Epidurals are subject to incomplete blocks and may be even more difficult to place. If general anesthesia is used and hypertension or other evidence of a dysreflexia episode develops, deepening the level of anesthesia by increasing the anesthetic agent often alleviates the episode. If however, the hypertension is not resolved by deepening the anesthetic, then antihypertensive medications should be used until the stimulus is withdrawn.

The use of 10 ml of 2% lidocaine administered intravesically 4-6 minutes prior to routine Foley catheter changes has been shown to significantly reduce episodes of autonomic dysreflexia in patients at high risk.[5]

Use of botox for chemodenervation of the bladder has also been shown to reduce autonomic dysreflexia in susceptible individuals.[4][6][7][7]

Minocycline has been shown to have a neuroprotective effect in animal testing models, but has not yet been shown to have a similar clinical effect in humans.[8][9][10][11]

Rarely, pyocystis can cause autonomic dysreflexia in susceptible spinal cord injured patients. (Pyocystis is a lower urinary tract infection in anuric patients where the bladder interior contains purulent material.)  In pyocystis, oral and intravenous antibiotics do not adequately reach the bladder interior. In such situations, an aminoglycoside instillation into the bladder of amikacin (25 mg/100 ml) or gentamicin (80 mg/50-60 ml) have been used successfully to treat the pyocystis, based on culture and sensitivity testing, after initial bladder drainage and irrigation.[12][13]

Differential Diagnosis

  • Acute glomerulonephritis
  • Anxiety
  • Cushing's syndrome
  • Drug use or overdose (e.g. stimulants, especially alcohol, cocaine or Synthroid)
  • Hyperaldosteronism
  • Hyperthyroidism
  • Intracranial haemorrhage
  • Ischemic stroke
  • Nephritic and nephrotic syndrome
  • Polycystic kidney disease

Pearls and Other Issues

Autonomic dysreflexia should be strongly suspected in any spinal cord injured patient with a lesion above T6 who complains of a headache.  A blood pressure reading should be taken immediately, and corrective treatment started if the patient's blood pressure is significantly elevated as most spinal cord injured patients have low blood pressure. Bladder distension from urinary retention or a blocked Foley is the single most common cause of this disorder and irrigating or changing the catheter is often immediately curative. Quick recognition and rapid alleviation of the underlying stimulus may be life-saving.

Enhancing Healthcare Team Outcomes

Patients with spinal cord injury are usually managed by an interprofessional team that includes the trauma surgeon, internist, neurologist, urologist and emergency department physician. Autonomic dysreflexia should be strongly suspected in any spinal cord injured patient with a lesion above T6 who complains of a headache.  A blood pressure reading should be taken immediately, and corrective treatment started if the patient's blood pressure is significantly elevated as most spinal cord injured patients have low blood pressure. Bladder distension from urinary retention or a blocked Foley is the single most common cause of this disorder and irrigating or changing the catheter is often immediately curative. Quick recognition and rapid alleviation of the underlying stimulus may be life-saving.

Nurses play a key role in the monitoring of patients with autonomic dysreflexia. These patients are best managed in the ICU with 24/7 monitoring. These patients are also prone to DVT and pressure sores, hence prophylaxis should be undertaken.[11][14]

Review Questions

References

1.
Ghajarzadeh M, Rahimi Foroushani A, Nedjat S, Sheikhrezaei A, Saberi H. Survival Analysis in Patients with Chronic Traumatic Spinal Cord Injury. Iran J Public Health. 2019 Dec;48(12):2260-2269. [PMC free article: PMC6974852] [PubMed: 31993395]
2.
Morgan S. Recognition and management of autonomic dysreflexia in patients with a spinal cord injury. Emerg Nurse. 2020 Jan 03;28(1):22-27. [PubMed: 31820597]
3.
Parke SC, Reyes MR. Autonomic Dysreflexia as a Potential Adverse Effect of Duloxetine and Amitriptyline Combination Therapy: A Case Report. PM R. 2019 Feb;11(2):214-218. [PubMed: 30036681]
4.
Haynes BM, Osbun NC, Yang CC. Ancillary benefits of bladder chemodenervation for SCI neurogenic bladder. Spinal Cord Ser Cases. 2018;4:83. [PMC free article: PMC6134122] [PubMed: 30245851]
5.
Solinsky R, Linsenmeyer TA. Intravesical lidocaine decreases autonomic dysreflexia when administered prior to catheter change. J Spinal Cord Med. 2018 Sep 10;:1-5. [PMC free article: PMC6758603] [PubMed: 30199342]
6.
Fougere RJ, Currie KD, Nigro MK, Stothers L, Rapoport D, Krassioukov AV. Reduction in Bladder-Related Autonomic Dysreflexia after OnabotulinumtoxinA Treatment in Spinal Cord Injury. J Neurotrauma. 2016 Sep 15;33(18):1651-7. [PMC free article: PMC5035837] [PubMed: 26980078]
7.
Jung IY, Mo KI, Leigh JH. Effect of intravesical botulinum toxin injection on symptoms of autonomic dysreflexia in a patient with chronic spinal cord injury: a case report. J Spinal Cord Med. 2019 Nov;42(6):806-809. [PMC free article: PMC6830299] [PubMed: 28486884]
8.
Squair JW, Ruiz I, Phillips AA, Zheng MMZ, Sarafis ZK, Sachdeva R, Gopaul R, Liu J, Tetzlaff W, West CR, Krassioukov AV. Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. J Neurotrauma. 2018 Dec 15;35(24):2861-2871. [PubMed: 30113266]
9.
Novak P. Autonomic Disorders. Am J Med. 2019 Apr;132(4):420-436. [PubMed: 30308186]
10.
Kupfer M, Kucer BT, Kupfer H, Formal CS. Persons With Chronic Spinal Cord Injuries in the Emergency Department: a Review of a Unique Population. J Emerg Med. 2018 Aug;55(2):206-212. [PubMed: 29807681]
11.
Lofters A, Chaudhry M, Slater M, Schuler A, Milligan J, Lee J, Guilcher SJT. Preventive care among primary care patients living with spinal cord injury. J Spinal Cord Med. 2019 Nov;42(6):702-708. [PMC free article: PMC6830240] [PubMed: 29424661]
12.
Sherwin E, King C, Hasen H, May S. Single-dose intravesical amikacin instillation for pyocystis in a patient with autonomic dysreflexia: A case report. J Spinal Cord Med. 2021 May 13;:1-4. [PubMed: 33983103]
13.
Kamel MH, Gardner R, Tourchi A, Tart K, Raheem O, Houston B, Bissada N, Davis R. Pyocystis: a systematic review. Int Urol Nephrol. 2017 Jun;49(6):917-926. [PubMed: 28265966]
14.
Davidson R, Phillips A. Cardiovascular Physiology and Responses to Sexual Activity in Individuals Living with Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2017 Winter;23(1):11-19. [PMC free article: PMC5340505] [PubMed: 29339873]
Copyright © 2021, StatPearls Publishing LLC.

This book is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license, and any changes made are indicated.

Bookshelf ID: NBK482434PMID: 29494041

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...