NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-.

Cover of StatPearls

StatPearls [Internet].

Show details

Biochemistry, Endorphin

; .

Author Information

Last Update: October 27, 2018.

Introduction

Endogenous morphine, coined by the morphing of the two descriptive terms into endorphins, are opioid neuropeptides which are naturally produced in the body that serve a primary function as an agent blocking the perception of pain and, additionally, present in cases of pleasure. Historically, morphine receptors were discovered in the nervous system before the discovery and understanding of endorphins. This natural receptor spoke to the possibility of the existence and effect of endorphins that was later confirmed.

Endorphins were discovered to not only display functions as neurotransmitters in the central nervous system but additionally as peptide hormones released into the circulatory system by the pituitary gland. Endorphins have been linked clinically to cases of mental issues including autism, depression, and depersonalization disorder as well as to activities such as laughter and vigorous aerobic exercise.

Molecular

The origins of endorphins have been traced to the precursor pro-opiomelanocortin (POMC) polypeptide which is synthesized in the pituitary gland. Recent studies have produced evidence suggesting that POMC may also be produced by the immune system and, consequently, also provide a base source for endorphin production. POMC consists of a 241 amino acid chain which is cleaved by enzyme (prohormone convertases) action into the 93 amino acid single chain polypeptide beta-lipoprotein (beta-LPH). Beta-LPH is cleaved via enzymes into beta-melanocyte-stimulating hormone and endorphins, amongst other molecule types. Endorphins are identified as three distinct peptides termed alpha-endorphins, beta-endorphins, and gamma-endorphins. The beta-endorphins are the longest chain, containing 31 amino acids in the following sequence: Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu. This sequence corresponds to amino acids 104 to 134 in the sequence of beta-LPH. The second longest chain is the gamma-endorphins, consisting of a 17 amino acid chain the same as the first 17 amino acid chain sequence of the beta-endorphins. Finally, the third and shortest type of endorphins about the amino acid chain sequence are the alpha-endorphins. The alpha-endorphins are amino acid chains comprised of the same first 16 amino acid sequence as the beta-endorphins (and consequently has the same sequence of the first 16 amino acids comprising the gamma-endorphins). Thus, the sequences of beta-endorphins and gamma-endorphins essentially have the sequence of alpha-endorphins nested within them. This molecular configuration thereby allows these endorphins to be the agonist of opioid receptors, the same receptors to which chemicals derived from opium, such as morphine, bind to for triggering physiological responses.

Function

The function of endorphins can be stated in general terms as well as broken down specifically and observed per each endorphin type. In general, the release of endorphins is understood to be associated with the body’s response to pain and also exercise as associated with “runner’s high.” The pain relief experienced as a result of the release of endorphins has been determined to be greater than that of morphine. Additionally, endorphins have been found to be associated with states of pleasure including such emotions brought upon by laughter, love, sex, and even appetizing food. Of the three endorphin types, beta-endorphins have been the most studied and prevalent, accounting for the majority of the functional properties of endorphins as generalized and understood as a whole. Research is ongoing on each type to further understand the full functional potential of each along with how they can be used in a medically beneficial manner. Endorphins express functional duality as they fall into the category of either neurotransmitters or neuromodulators in the central nervous system (CNS) and hormones in the pituitary gland.

Mechanism

The mechanism of endorphins can be viewed through two different lenses through activity in the peripheral nervous system (PNS) and the CNS. In the PNS, the perception of pain relief is produced beta-endorphins bind to opioid receptors. Opioid receptors are broken down into four primary classes of G protein-coupled receptors: mu-receptors, delta-receptors, kappa-receptors, and nociceptin receptors. The greatest binding potential exists between the beta-endorphins and the mu-receptors. Mu-receptors can be found throughout nerves of the PNS. When this beta-endorphin to mu-receptor binding occurs on nerve terminals (happening pre-synaptically or post-synaptically), analgesic effects are realized. The effects are realized as the aforementioned binding results in a triggering of chemical events preventing the release of substance P, amongst other tachykinins, which is an instrumental undecapeptide in the conveyance of pain. Just as beta-endorphin to mu-opioid binding occurs in the peripheral nervous system, it also occurs in the central nervous system. There is a difference though, as the mechanism triggered by the binding opposes the release of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) as opposed to substance P. With this suppression of GABA, the result is an increase in production and action of dopamine, the pleasure, and reward-associated neurotransmitter.

Clinical Significance

From a clinical standpoint, endorphins and their effects and interactions are still being understood and studied. One basic yet noteworthy interaction of endorphins is with naloxone. Naloxone is administered as a drug, typically in the case of opioid overdose to mitigate bodily response to the opioid. This is achieved by binding to the opioid receptors, making it not only difficult for opioid binding but also endorphin binding, and thereby reducing the effect of available endorphins. Studies have been conducted in relation to naloxone usage in the presence of depersonalization disorder, and it was found that patient conditions improved. Based on this, endorphins are suspected of being linked with contributing to this disorder. Another interaction of clinical significance includes cases where the patient has a physical dependence to an opiate. Links have been made to opiate dependence and hypothalamo-hypophyseal-gonadal dysfunction. Studies have supported beta-endorphins as affecting the pituitary gland’s release of luteinizing hormone through gonadotropin-releasing hormone influence and thereby as being involved with gonadal homeostasis. Thus, the association is made between the effects of opiate dependency on gonadal homeostasis via the interruption of effective beta-endorphin action. An interesting correlation also has been made about the administration of opioid medications versus non-opioid pain medication prescribed for patients following surgery. Levels of beta-endorphins were found to be high in patients using the opioid medications, correlating to a physiological response to pain. However, it was interesting to note that in the presence of rofecoxib (a COX-2 inhibitor), beta-endorphin levels remain unaffected as opposed to in the presence of acetaminophen, where beta-endorphin levels declined with its use. The rofecoxib resulted in a less perceived feeling of pain, potentially attributed to the maintenance of the beta-endorphin levels, but exactly in what way this interaction allowed for this is still being understood. The result of such deeper understanding would be to exploit that knowledge to use more effective non-opioid pain reducers that lack the negative properties of opioids such as addiction and tolerance over prolonged usage.

Questions

To access free multiple choice questions on this topic, click here.

References

1.
Gu ZH, Wang B, Kou ZZ, Bai Y, Chen T, Dong YL, Li H, Li YQ. Endomorphins: Promising Endogenous Opioid Peptides for the Development of Novel Analgesics. Neurosignals. 2017;25(1):98-116. [PubMed: 29132133]
2.
Manninen S, Tuominen L, Dunbar RI, Karjalainen T, Hirvonen J, Arponen E, Hari R, Jääskeläinen IP, Sams M, Nummenmaa L. Social Laughter Triggers Endogenous Opioid Release in Humans. J. Neurosci. 2017 Jun 21;37(25):6125-6131. [PubMed: 28536272]
3.
Pearce E, Wlodarski R, Machin A, Dunbar RIM. Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proc. Natl. Acad. Sci. U.S.A. 2017 May 16;114(20):5300-5305. [PMC free article: PMC5441808] [PubMed: 28461468]
4.
Olorunmoteni OE, Adeodu OO, Oseni SBA, Obuotor EM. Cerebrospinal fluid and plasma β-endorphin levels in children with cerebral malaria. Brain Behav. 2017 Apr;7(4):e00673. [PMC free article: PMC5390846] [PubMed: 28413714]
5.
Luan YH, Wang D, Yu Q, Chai XQ. Action of β-endorphin and nonsteroidal anti-inflammatory drugs, and the possible effects of nonsteroidal anti-inflammatory drugs on β-endorphin. J Clin Anesth. 2017 Feb;37:123-128. [PubMed: 28235500]
6.
Stefanucci A, Novellino E, Mirzaie S, Macedonio G, Pieretti S, Minosi P, Szűcs E, Erdei AI, Zádor F, Benyhe S, Mollica A. Opioid Receptor Activity and Analgesic Potency of DPDPE Peptide Analogues Containing a Xylene Bridge. ACS Med Chem Lett. 2017 Apr 13;8(4):449-454. [PMC free article: PMC5392763] [PubMed: 28435535]
7.
Wang Y, Zhou J, Liu X, Zhao L, Wang Z, Zhang X, Wang K, Wang L, Wang R. Structure-constrained endomorphin analogs display differential antinociceptive mechanisms in mice after spinal administration. Peptides. 2017 May;91:40-48. [PubMed: 28363796]
8.
Rosa M, Gonzalez-Nunez V, Barreto-Valer K, Marcelo F, Sánchez-Sánchez J, Calle LP, Arévalo JC, Rodríguez RE, Jiménez-Barbero J, Arsequell G, Valencia G. Role of the sugar moiety on the opioid receptor binding and conformation of a series of enkephalin neoglycopeptides. Bioorg. Med. Chem. 2017 Apr 01;25(7):2260-2265. [PubMed: 28284867]
9.
Lagard C, Chevillard L, Guillemyn K, Risède P, Laplanche JL, Spetea M, Ballet S, Mégarbane B. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain. Pain. 2017 Mar;158(3):505-515. [PMC free article: PMC5302413] [PubMed: 28135212]
10.
Palus K, Chrobok L, Kepczynski M, Lewandowski MH. Enkephalin and neuropeptide-Y interaction in the intergeniculate leaflet network, a part of the mammalian biological clock. Neuroscience. 2017 Feb 20;343:10-20. [PubMed: 27916729]
11.
Lee YS, Remesic M, Ramos-Colon C, Hall SM, Kuzmin A, Rankin D, Porreca F, Lai J, Hruby VJ. Cyclic non-opioid dynorphin A analogues for the bradykinin receptors. Bioorg. Med. Chem. Lett. 2016 Nov 15;26(22):5513-5516. [PMC free article: PMC5159310] [PubMed: 27756562]
12.
Lima LB, Metzger M, Furigo IC, Donato J. Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures. Brain Res. 2016 Sep 01;1646:366-376. [PubMed: 27321158]
Copyright © 2018, StatPearls Publishing LLC.

This book is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license, and any changes made are indicated.

Bookshelf ID: NBK470306PMID: 29262177

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...