Obstructive Sleep Apnoea Syndrome

A Systematic Literature Review

June 2007

Sundhedsstyrelsen National Board of Health

Obstructive Sleep Apnoea Syndrome – Report of a Joint Nordic Project

DACEHTA, Denmark (www.dacehta.dk) FinOHTA, Finland (www.stakes.fi/finohta) NOKC, Norway (www.nokc.no) SBU, Sweden (www.sbu.se)

Production: Jerhammar & Co, Norrköping, Sweden Cover: Susanna Allgurin Neikter, SBU, Stockholm, Sweden Print: Elanders Infologistics Väst AB, Mölnlycke, 2007 ISBN: 978-91-85413-16-4 • ISSN: 1400-1403

Obstructive Sleep Apnoea Syndrome

A Systematic Literature Review

The project was led by a Steering Group composed of the heads of the various HTA agencies: Marjukka Mäkelä Finnish Office for Health Technology Assessment (FinOHTA)

Finn Børlum Kristensen Danish Centre for Evaluation and Health Technology Assessment (DACEHTA)

Berit Mørland Norwegian Knowledge Centre for the Health Services (Kunnskapssenteret)

Nina Rehnqvist Swedish Council on Technology Assessment in Health Care (SBU)

The report was written by:

Karl Franklin, Chair Nina Rehnqvist, Project Leader Susanna Axelsson, Assistant Project Leader

The Nordic survey was written by: Heidi Anttila and Paula Maasilta

Support and project administration was the responsibility of Christina Engström

The Nordic reference group consisted of: Heidi Anttila, Finland Paula Maasilta, Finland Poul Jennum, Denmark Niels Würgler Hansen, Denmark Ralf-Peter Michler, Norway Kurt I. Myhre, Norway Thorarinn Gislason, Iceland Sigurdur Thorlacius, Iceland

Content

Su	Summary and Conclusions Preface	
Pr		
1.	The Obstructive Sleep Apnoea Syndrome	31
	Definitions according to the American Academy of Sleep Medicine	31
	Diagnostic criteria	31
	Obstructive apnoea/hypopnoea event	32
	Severity criteria	32
	A. Sleepiness	32
	B. Sleep related obstructive breathing events	33
	Risk factors	35
	Symptoms	36
	Prevalence of obstructive sleep apnoea	37
	AHI and daytime sleepiness in population studies	39
	OSAS in epidemiological studies	39
	References	42
2.	Cardiovascular Disease, Diabetes	45
	Mellitus and Death	
	Conclusions	45
	Background	45
	Objectives	45
	Inclusion criteria	45
	Search strategies	45
	Quality assessment	46
	Grading of evidence	46
	Description of included studies	46

	Results	47
	Patients admitted for sleep apnoea investigation (OSAS)	47
	General population studies (OSA)	47
	Sleep apnoea in patients with coronary	48
	artery disease (OSA)	
	References	57
3.	Traffic Accidents	61
	Conclusion	61
	Background	61
	Objectives	61
	Inclusion criteria	61
	Exclusion criteria	61
	Quality assessment	62
	Description of included studies	62
	Results	62
	References	71
4.	Diagnostic Procedures	73
	Conclusions	73
	Background	73
	Polysomnography	73
	Portable simplified sleep apnoea recordings	75
	Nocturnal pulse oximetry	75
	Measurements of excessive daytime sleepiness	75
	Epworth sleepiness scale (ESS)	76
	Multiple Sleep Latency Test (MSLT)	76
	Maintenance of Wakefulness Test (MWT)	76
	Reliability of ESS, MSLT, and MWT	76
	Associations between AHI, MSLT, MWT and ESS	77
	Functional outcomes of sleep questionnaire (FOSQ)	77
	Objectives	77
	Methods	77
	Inclusion criteria	77
	Exclusion criteria	78
	Search strategies	78

	Data collection	78
	Quality assessment	79
	Grading of evidence	80
	Statistical analysis	80
	Description of included studies	80
	Night-to-night variability	80
	Portable devices vs polysomnography	81
	Pulse oximetry vs polysomnography	81
	Global impression, from case history and physical	82
	examination	
	Results	82
	Night-to-night variability (Table 4.1)	82
	Diagnostic measurements vs polysomnography for	84
	diagnosing OSAS	
	Portable devices vs polysomnography	85
	Pulse oximetry vs polysomnography	87
	Global impression, from case history and physical	88
	examination	
	References	113
5.	Treatment	123
5.	Treatment Background	123 123
5.	Treatment Background Treatment options	123 123 123
5.	Treatment Background Treatment options Objectives	123 123 123 127
5.	Treatment Background Treatment options Objectives Methods	123 123 123 127 127
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria	123 123 123 127 127 127
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria	123 123 123 127 127 127 128
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects	123 123 123 127 127 127 127 128 129
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies	123 123 123 127 127 127 128 129 129
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment	123 123 123 127 127 127 128 129 129 130
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence	123 123 127 127 127 127 128 129 129 130 131
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis	123 123 127 127 127 127 128 129 129 130 131 132
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis Baseline data, study design, outcome measures and	123 123 127 127 127 128 129 129 130 131 132 132
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis Baseline data, study design, outcome measures and quality ratings of included RCT studies	123 123 127 127 127 128 129 129 130 131 132 132
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis Baseline data, study design, outcome measures and quality ratings of included RCT studies Treatment effect on excessive daytime sleepiness	123 123 127 127 127 128 129 129 130 131 132 132 140
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis Baseline data, study design, outcome measures and quality ratings of included RCT studies Treatment effect on excessive daytime sleepiness Conclusions	123 123 127 127 127 128 129 129 130 131 132 132 140 140
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis Baseline data, study design, outcome measures and quality ratings of included RCT studies Treatment effect on excessive daytime sleepiness Conclusions Results	123 123 127 127 127 128 129 129 130 131 132 132 140 140 140
5.	Treatment Background Treatment options Objectives Methods Inclusion criteria Exclusion criteria End-points for beneficial effects Search strategies Quality assessment Grading of evidence Statistical analysis Baseline data, study design, outcome measures and quality ratings of included RCT studies Treatment effect on excessive daytime sleepiness Conclusions Results Treatment effect on sleep apnoeas and hypopnoeas (AHI)	123 123 127 127 127 128 129 129 130 131 132 132 140 140 140 143

Results	143
Treatment effect on quality of life measured as	145
functional outcomes and vitality	
Conclusions	145
Results	146
Treatment effect on 24-hour blood pressure	148
Conclusions	148
Results	148
Compliance with CPAP	176
Conclusion	176
Baseline data	176
Results	176
Adverse effects of CPAP	178
Conclusion	178
Baseline data	179
Results	179
Systematic reviews of auto-CPAP compared to fixed CPAP	180
Conclusion	180
Baseline data	181
Results	181
Compliance with mandibular repositioning appliances	182
Conclusion	182
Background	183
Results	183
Adverse effects of mandibular repositioning appliances	184
Conclusions	184
Background	184
Results	184
Adverse effects of surgery	187
Conclusions	187
Background	187
Results	188
References	254

6.	Ethical Aspects	273
	Conclusions	273
	Diagnostic issues	273
	Treatment issues	274
	Research	275
	References	277
7.	Future Research	279
Appendix Nordic Survey		283

Summary and Conclusions

Summary and Conclusions

Conclusions

Cardiovascular complications, diabetes mellitus and death

Obstructive sleep apnoea syndrome covaries with cardiovascular disease, including stroke and early death in men (Evidence Grade 2). There is insufficient evidence for women. There is insufficient scientific evidence of a relationship between obstructive sleep apnoea syndrome and arterial hypertension or diabetes mellitus.

Traffic accidents

Obstructive sleep apnoea covaries with traffic accidents independent of daytime sleepiness and driving exposure among men (Evidence Grade 3).

Diagnostic procedures

- □ The apnoea-hypopnoea index (AHI) shows good agreement between two nights of polysomnographic recordings (Evidence Grade 2).
- Manually scored portable devices including airflow, respiratory movements and pulse oximetry during one night of sleep have high sensitivity and specificity to identify a pathologic apnoea-hypopnoea index compared with polysomnography (Evidence Grade 1). Automatic scoring of the results of portable devices has high sensitivity and identifies most patients with a pathologic apnoea-hypopnoea index, but specificity is low (Evidence Grade 1). Automatic scoring programs cannot score sleep time and it is unclear whether these programs can differentiate obstructive from central apnoeas.

- Pulse oximetry with results from the oxygen desaturation index is insufficient to identify a pathologic apnoea-hypopnoea index and there is a high risk that patients with sleep apnoea syndrome will be incorrectly classified as normal (Evidence Grade 1).
- □ A global impression from a case history and a physical examination alone are insufficient to identify or to rule out obstructive sleep apnoea syndrome (Evidence Grade 1).

Treatments

Continuous positive airway pressure therapy (CPAP)

- □ There is strong evidence that CPAP reduces daytime sleepiness regardless of the severity of the sleep apnoea syndrome (Evidence Grade 1). CPAP is highly effective in reducing obstructive sleep apnoeas (Evidence Grade 1). There is contradictory scientific evidence concerning the effect of CPAP on quality of life (measured as functional outcomes and vitality) or arterial blood pressure.
- □ Tolerance and compliance with CPAP is good, and about 70% of patients still use it after 1-4 years for a mean of 5.3 (range 4.4-6.2) hours per night (Evidence Grade 2) provided that patients and their CPAP equipment are seen by physicians shortly after treatment starts and subsequently at individual intervals, but always at least once a year.
- Mild to moderate discomfort from the CPAP mask pain at the bridge of the nose, skin problems, air leaks and disturbing noise from the CPAP machine are common adverse effects of CPAP (Evidence Grade 2). Mild nasal adverse effects, such as rhinitis, are common (Evidence Grade 3). Auto-CPAP utilises a lower mean pressure than fixed CPAP, but the effects on daytime sleepiness, apnoea reduction and compliance are the same (Evidence Grade 1).

Mandibular repositioning appliances (MRAs)

- Custom-made mandibular repositioning appliances reduce daytime sleepiness in patients with mild to moderate sleep apnoea syndrome (Evidence Grade 3). They reduce apnoea frequency but to a lesser extent than CPAP (Evidence Grade 3). There is insufficient evidence concerning the effect of MRAs on quality of life (measured as functional outcomes and vitality) or arterial blood pressure.
- MRAs are still used by 76% of patients after one year and 56% after five years (Evidence Grade 3). A majority of patients experience mild adverse effects – including discomfort in the teeth, hypersalivation and minor reductions in overjet and overbite – during the first few months (Evidence Grade 3).

Surgery

- There is insufficient scientific evidence for the effect of any surgical modality on daytime sleepiness or quality of life. There is contradictory scientific evidence for the effect of laser-assisted uvulopalatoplasty (LAUP) in reducing apnoea frequency. There is insufficient scientific evidence for other surgical interventions in reducing apnoea frequency.
- □ The adverse effects of uvulopalatopharyngoplasty (UPPP) due to snoring or obstructive sleep apnoea include serious perioperative and postoperative complications, including death, bleeding and respiratory compromise (Evidence Grade 2). Persistent adverse effects are frequent, and difficulty in swallowing occurs in about 28% of patients (Evidence Grade 2). Voice changes are also common (Evidence Grade 3).
- □ The adverse effects of uvulopalatoplasty (UPP) and laser-assisted uvulopalatoplasty (LAUP) due to snoring or obstructive sleep apnoea include serious postoperative complications (Evidence Grade 3). Persistent adverse effects occur in 50–60% of patients and difficulty swallowing in about 26% (Evidence Grade 2). Globus sensation in the throat and voice changes are common (Evidence Grade 3).

Other treatments and lifestyle modifications

No studies that meet the present inclusion criteria show that weight reduction programmes, bariatric surgery, drugs, pacemakers, devices for sleep in lateral position, didgeridoo-playing or any other suggested treatment or lifestyle modification for obstructive sleep apnoea syndrome have any effect.

Fact Box 1 Study Quality and Relevance, Evidence Grade.

Study quality and relevance refers to the scientific quality of a particular study and its ability to reliably address a specific question.

Evidence Grade refers to the total scientific evidence for a conclusion, ie, how many high-quality studies support the conclusion.

Evidence Grade 1 – Strong Scientific Evidence

A conclusion assigned Evidence Grade 1 is supported by at least two studies with high study quality and relevance among the total scientific evidence. If some studies are at variance with the conclusion, the evidence grade may be lower.

Evidence Grade 2 – Moderately Strong Scientific Evidence

A conclusion assigned Evidence Grade 2 is supported by at least one study with high study quality and relevance as well as two studies with medium study quality and relevance among the total scientific evidence. If some studies are at variance with the conclusion, the Evidence Grade may be lower.

Evidence Grade 3 – Limited Scientific Evidence

A conclusion assigned Evidence Grade 3 is supported by at least two studies with medium study quality and relevance among the total scientific evidence. If some studies are at variance with the conclusion, the Evidence Grade may be lower.

Insufficient Scientific Evidence

If no studies meet the study quality and relevance criteria, the scientific evidence is rated as insufficient to draw any conclusions.

Contradictory Scientific Evidence

If different studies are characterized by equal study quality and relevance but generate conflicting results, the scientific evidence is rated as contradictory and no conclusions can be drawn.

Summary

Background

An estimated 4% of men and 2% of women have obstructive sleep apnoea syndrome (OSAS), ie, daytime sleepiness and obstructive apnoeas during sleep. The apnoea-hypopnoea index (AHI) is the mean number of apnoeas and hypopnoeas per hour of sleep, and an AHI greater than 5 is considered pathological. Overnight polysomnography – including respiratory monitoring, pulse oximetry, electrocardiogram (ECG) and sleep staging with electroencephalogram (EEG) – is the reference diagnostic procedure.

Daytime sleepiness and snoring are the most common symptoms. OSAS is considered a risk for traffic accidents due to sleepiness. It has also been suggested that sleep apnoea is a risk factor for cardiovascular disease, diabetes mellitus and early death. The most common treatments are continuous positive airway pressure (CPAP), mandibular repositioning appliances and various surgical modalities. A number of other treatments and lifestyle modifications have been suggested. A diversity of portable simplified diagnostic equipment has been introduced due to the high cost of overnight polysomnograms.

This report contains the results of a systematic review regarding diagnosis and treatment of OSAS in adults. The aim of the review was to investigate:

- Consequences of OSAS on cardiovascular morbidity, diabetes mellitus, death and traffic accidents.
- How to diagnose OSAS.
- The effects of various treatment modalities, including compliance and adverse effects.

Methodology

The inclusion criteria and quality assessments were predefined. Systematic literature searches were performed in Medline, Embase and Cochrane Library. Randomised controlled trials, including a minimum of 20 subjects with a follow-up of at least 4 weeks, were included with daytime sleepiness as the primary outcome. Any trial design was considered for adverse effects, and a minimum of 100 patients and follow-up of at least one year were considered for compliance. Portable devices measuring airflow, oxygen saturation, respiratory movements, pulsoximetry alone and global impression were compared with polysomnography during the same night, with pooled sensitivity and specificity for the AHI or oxygen desaturation index as the outcome measure. The search also included night-to-night variability of polysomnography. Meta-analyses were performed for the effect of different treatment modalities and for different diagnostic methods compared to polysomnography. Prospective trials were considered when investigating the relationship of obstructive sleep apnoea to cardiovascular disease, death and diabetes mellitus.

Because the assessed surgical modalities are used for treating both snoring and OSAS, all adverse effects of these procedures were included in this report, regardless of diagnosis.

Titles and abstracts of all identified trials were screened by two independent investigators, and full reports were requested for all possible relevant articles. Data were independently extracted by two reviewers. The authors were contacted if any questions arose.

Cardiovascular diseases, diabetes mellitus and death

A covariation between OSAS and cardiovascular disease or early death in men was shown in 4 studies of medium or high quality comprising a total of 2 979 patients. Only 307 were women. Five prospective studies, 4 in the general population, investigated the association of obstructive sleep apnoea (ie an AHI over a critical level) with the above conditions. A dose-dependent association between apnoea-hypopnoea frequency and hypertension was found in one population study. Reduced survival was not found in a population study of seniors. The AHI was related to neither diabetes in a third population study nor stroke in a fourth. One prospective study on patients with coronary artery disease reported an independent covariation between an AHI greater than 10 and the incidence of stroke.

Traffic accidents

Four studies of medium quality investigated the effect of obstructive sleep apnoea on traffic accidents. All 4 reported an increased frequency of accidents in obstructive sleep apnoea subjects independent of driving exposure. One study reported an adjusted odds ratio of 2.6 (95% CI 1.1–64) for accidents when the AHI was above 20, regardless of whether they had daytime sleepiness. Another study reported an odds ratio of 11 (95% CI 4.0–30) at an AHI greater than 5 regardless of daytime sleepiness. A third study reported that patients with OSAS had more traffic accidents. Only the fourth study included a sufficient number of women. Obstructive sleep apnoea in men, but not in women, covaried with traffic accidents in this study.

Diagnostics

Night-to-night variability in polysomnographic recordings was investigated in 5 studies of medium quality that included patients seeking medical attention for sleep apnoea and 5 studies of medium quality in the general population. Between 81% and 90% of patients in 3 studies did not cross a certain AHI level when two recordings were compared. One study reported an interclass correlation of 0.92 (95% CI 0.90–0.95) during 4 nights. Between 64% and 87% in 4 studies of subjects in the general population did not cross a certain level of the AHI when two recordings were compared. One study reported an interclass correlation of 0.80 (95% CI 0.71–0.86) and another study of 0.80 (95% CI 0.69–0.87).

Manual scoring of portable simplified sleep apnoea investigations (n = 6) compared with in-lab polysomnography during the same night had a pooled LR+ of 9.95 (95% CI 4.01–24.6), LR– of 0.09 (95% CI 0.05–0.16), sensitivity of 0.93 (95% CI 0.89–0.97) and pooled specificity of 0.92 (95% CI 0.87–0.96), suggesting that about 7% will be false negative and 8% false positive. The scoring was performed by professionals trained in polysomnographic scoring. Automatic scoring of portable simplified devices (n = 3) compared with polysomnography had a pooled LR+ of 6.6 (95% CI 1.3–34.0) with heterogeneity, LR– of 0.11 (95% CI 0.05–0.16) with heterogeneity, sensitivity of 0.92 (95% CI 0.83–0.97) with

heterogeneity and pooled specificity of 0.85 (95% CI 0.73–0.93) with heterogeneity, suggesting that about 8% will be false negative and 15% false positive. Whether the automatic scoring systems can differentiate obstructive from central sleep apnoeas has not been tested.

Using pulse oximetry with ODI (oxygen desaturation index) 4% as a measure of sleep apnoea, the pooled LR+ was 10.4 (95% CI 5.0–21.4) with heterogeneity, LR– was 0.32 (95% CI 0.21–0.52), specificity was 0.93 (95% CI 0.91–0.95) and sensitivity was 0.69 (95% CI 0.66–0.72) with heterogeneity, suggesting that about 31% of patients with sleep apnoea will be classified as normal and 7% will obtain false positive results. Desaturations defined at 2% had better sensitivity of 0.87 (95% CI 0.83–0.90) with heterogeneity but lower specificity of 0.64 (95% CI 0.59–0.69) with heterogeneity.

A global impression from a case history and physical examination had a pooled LR+ of 1.7 (95% CI 1.5–2.0), LR– of 0.68 (95% CI 0.59–0.77), sensitivity of 0.54 (95% CI 0.49–0.58) with heterogeneity and specificity of 0.69 (95% CI 0.65–0.72) with heterogeneity, suggesting that about 46% will be false negative and 31% false positive.

Treatment

Continuous positive airway pressure (CPAP)

Continuous positive airway pressure treatment (CPAP) significantly reduced subjective sleepiness measured with the Epworth sleepiness scale by -2.7 (95% CI -3.2 to -2.2) and objective measurements of sleep latency as a proxy for daytime sleepiness according to the multiple sleep latency test and maintenance of wakefulness test. The frequency of apnoeas and hypopnoeas was significantly reduced by CPAP by -13.0(95% CI -17.7 to -8.25) to a mean apnoea-hypopnoea index of 5.4 ± 4.8 . There were conflicting results regarding quality of life measured as the short form-36 subscale vitality and functional outcome of sleep questionnaire. There were also conflicting results regarding the effect on blood pressure in patients with OSAS. About 70% of patients still used CPAP after 4 years for a mean of 5.3 (range 4.4–6.2) hours per night, provided that patients and their equipment were seen by physicians after about 1 month and subsequently every 6–12 months with additional phone support. Mild to moderate discomfort from the CPAP mask – pain at the bridge of the nose, skin problems, air leaks and disturbing noise from the CPAP machine – were common adverse effects of CPAP. Mild nasal adverse effects, such as rhinitis, were also common.

The utilised pressure was lower using auto-CPAP than fixed CPAP -2.2 (-1.9 to 2.5) cm – but the effect on daytime sleepiness, apnoea reduction and compliance was the same according to 4 systematic reviews of medium and high quality. Most participants preferred auto-CPAP to fixed CPAP when their preference was measured. Auto-CPAP has not been tested for subjects with central apnoea.

Mandibular repositioning appliances (MRAs)

A number of different oral appliances have been suggested for the treatment of snoring and OSAS. Custom-made oral appliances for mandibular advancement significantly reduce subjective sleepiness measured as the Epworth sleepiness scale and objective measurements according to the multiple sleep latency test and maintenance of wakefulness test. The AHI was significantly less when using MRAs than a placebo device, but the difference was smaller compared to CPAP. Only single studies measured the functional outcome of sleep questionnaire and short form 36 subscale vitality. Thus, no conclusions regarding these variables can be drawn. Pooled data from 2 studies did not demonstrate any effect on blood pressure.

Two studies of medium quality that assessed compliance reported that 76% of patients used the appliance after 1 year and 56% after 5 years. Patients using MRAs reported temporary discomfort in the jaw or teeth in the mornings more often than those who used placebo devices or CPAP. Excessive salivation or dry mouth, pain, soreness or other discomfort in the teeth were also common during the first few months of

treatment. Small reductions (less than one millimetre) in overjet and overbite were reported. No increase in symptoms in the masticatory system could be seen during an observation period of 4 years.

Surgery

Only three randomised controlled studies comparing surgical treatment with sham surgery or conservative treatment were identified. Two studies investigated the effect after laser-assisted uvulopalatoplasty (LAUP) and one after temperature-controlled radio frequency tissue volume ablation (TCRAFTA). We did not find any studies fulfilling the inclusion criteria that reported treatment effects from uvulopalatopharyngoplasty (UPPP) or any other surgical modality. Regarding adverse effects from surgery, all studies were included regardless of indication for surgery, ie, obstructive sleep apnoea or snoring.

Uvulopalatopharyngoplasty

No randomised controlled trial fulfilling inclusion criteria investigated the treatment effects of uvulopalatopharyngoplasty (UPPP) for OSAS. But severe complications – including death, bleeding and loss of airway in up to 16% of patients – in the perioperative and postoperative period have been reported for this surgical modality when it comes to obstructive sleep apnoea or snoring. A total of 30 cases of death were reported in 6 studies. Respiratory compromise, bleeding, intubation difficulties, infections and cardiac arrest were the main causes of death. A recent study of high quality comprising 3 130 operations reported perioperative and postoperative death in 7 patients (0.2%). Persistent adverse effects occurred in 14–62%. Adverse effects included difficulty in swallowing in 13–36% and voice changes in 7–14%.

Uvulopalatoplasty

Two randomised controlled trials compared laser-assisted uvulopalatoplasty (LAUP) with sham surgery or conservative treatment for OSAS. One LAUP study reported a slight reduction in the AHI. But the other study found no difference. There were no effects on subjective sleepiness measured with the Epworth sleepiness scale. No effects were reported on sleep latency, wakefulness, quality of life or blood pressure. Uvulopalatoplasty performed with a scalpel (UPP) or laser-assisted uvulopalatoplasty (LAUP) for obstructive sleep apnoea or snoring was followed by perioperative and postoperative complications – including postoperative bleeding and infections with one report of death from septicaemia – in up to 5%. Persistent adverse effects were reported in 52–62%. Adverse effects included difficulty in swallowing in 19–29%, globus sensation in 17–36% and voice changes in 6–10%.

Radio frequency tissue volume ablation

One randomised controlled study compared temperature-controlled radio frequency tissue volume ablation (TCRAFTA) with sham surgery for OSAS. There was no effect on either the functional outcome of the sleep questionnaire or subjective sleepiness measured with the Epworth sleepiness scale. TCRAFTA used for obstructive sleep apnoea or snoring reported adverse effects that included palatal mucosal breakdown, mucosal ulcers, palatal fistula, uvula loss, haemorrhage and infections. Treatment of the tongue was associated with case reports of tongue base abscess, tongue swelling and mouth floor oedema. Long-term follow-up studies on adverse effects are lacking.

Other treatments and lifestyle modifications

No trials that fulfilled the inclusion criteria were found regarding the effects of weight reduction programmes, bariatric surgery, different drugs, pacemakers, devices to avoid sleep supine position or any other treatment for OSAS, except for one small study on didgeridoo playing. But there was no effect of didgeridoo playing vs no treatment at follow-up.

Future research

If surgery for OSAS or snoring is to be considered in the future, controlled trials for efficacy and long-term follow-up for adverse effects are necessary. The covariation between cardiovascular disease and OSAS needs to be further elucidated. The effects of CPAP and/or MRAs on traffic accidents, morbidity and mortality are still unknown.

The effects of lifestyle changes are important issues, given that patients with OSAS often carry other risk factors for conditions such as obesity.

The Board of SBU is responsible for the conclusions of the report. The conclusions are not necessarily in accordance with the opinions of external experts.

SUMMARY AND CONCLUSIONS

Preface

In recent years, obstructive sleep apnoea syndrome (OSAS) has received increasing attention in most Western countries. Excessive daytime sleepiness is one of the major symptoms. People with the syndrome may be at risk for traffic accidents. There may also be an increased risk for other diseases, as well as higher mortality. Because about 4% of men and 2% of women have OSAS, questions about risks, diagnosis and treatment options are of importance to both the clinician and those who plan health care.

The Nordic health technology assessment (HTA) agencies decided jointly in 2004 to conduct a systematic literature review concerning diagnostic procedures and treatment effects on OSAS in adults. The significance of OSAS for traffic accidents, deaths and conditions such as cardiovascular disease and diabetes mellitus was also systematically assessed. The sections on prevalence and pathophysiology of OSAS (Chapter 1), as well as ethical considerations (Chapter 6), are general in character and not based on systematic literature searches. An assessment of economic evaluations of the diagnosis and treatment of OSAS is not included in this systematic literature review.

In order to investigate current practice in the Nordic countries, a postal questionnaire regarding 2003 was sent to primary and specialist care departments. Health economic aspects have not been dealt with in this report due to the difficulty of finding data and differences among the Nordic countries. Methodological aspects differ somewhat among the various chapters. Thus, they are specified in each chapter. The aim of the report was to assess the scientific evidence in order to address the following questions:

- Are people with OSAS at increased risk of contracting other conditions, such as cardiovascular disease and diabetes mellitus?
- Is mortality greater among OSAS patients than non-OSAS patients?
- Which is the most reliable and accurate procedure for diagnosing OSAS?
- What are the effects, compliance rates and adverse effects of different treatment modalities?

A number of databases were searched for relevant literature. In order to be accepted for inclusion, the studies had to investigate OSAS in adults. Diagnostic procedures were to be compared with polysomnography. The various elements of these procedures were not assessed separately. In order to assess increased risks for traffic accidents, mortality and co-morbidity, a comparison group should have been set up. The main outcomes for effect were to be symptoms of sleepiness as reported or measured in patients, as well as self-reported measures of functioning and well-being. Prospective studies of at least one year with a minimum of 100 patients were reviewed in order to address the issue of compliance. All types of studies, regardless of design, that reported adverse effects were included.

The titles and abstracts of all identified studies were screened by two independent investigators, and full reports were requested for all possible relevant articles. Based on assessment protocols, at least two independent reviewers assessed each article that met the inclusion criteria. The quality and clinical relevance of each study was assessed as high, medium or low. Detailed information on the inclusion criteria and assessment process is found in each chapter. Data were extracted and summarised in tables. The authors were contacted if there were any questions.

The scientific evidence for each conclusion was rated as strong, moderately strong, limited or insufficient, depending on the quality of the studies assessed.

1. The Obstructive Sleep Apnoea Syndrome

Definitions according to the American Academy of Sleep Medicine

Obstructive sleep apnoea syndrome (OSAS) is characterised by recurrent episodes of partial or complete upper airway obstructions during sleep [1]. This manifests as a reduction (hypopnoea) in or complete cessation (apnoea) of airflow despite ongoing inspiratory efforts resulting in oxygen desaturations and arousals. Daytime symptoms such as excessive sleepiness are thought to be related to sleep disruption (repetitive arousals) and possibly to recurrent hypoxemia.

Diagnostic criteria

A person must fulfil criterion A or B, as well as criterion C.

- A. Excessive daytime sleepiness that is not better explained by other factors.
- B. Two or more of the following that are not better explained by other factors:
 - choking or gasping during sleep
 - recurrent awakenings from sleep
 - unrefreshing sleep
 - daytime fatigue
 - impaired concentration.
- C. Overnight monitoring demonstrating five or more obstructive breathing events per hour during sleep. These events may include any combination of obstructive apnoeas/hypopnoeas or respiratory effortrelated arousals.

Obstructive apnoea/hypopnoea event

A transient reduction or complete cessation of breathing. In routine clinical practice it is not considered necessary to distinguish obstructive hypopnoeas from apnoeas. The events must fulfil criterion 1 or 2, plus criterion 3, of the following:

- 1. A clear decrease (greater than 50%) from baseline in the amplitude of a valid measure of breathing during sleep. Baseline is defined as the mean amplitude of stable breathing and oxygenation in the two minutes preceding onset of the event, or the mean amplitude of the three largest breaths in the two minutes preceding onset of the event (in individuals without a stable breathing pattern).
- 2. A clear amplitude reduction of a validated measure of breathing during sleep that does not meet the above criterion but is associated with either oxygen desaturation of >3% or an arousal.
- 3. The event lasts 10 seconds or longer.

Severity criteria

Severity of the obstructive sleep apnoea-hypopnoea syndrome has two components: severity of daytime sleepiness and overnight monitoring. A severity level should be specified for both components. The rating of severity for the syndrome should be based on the most severe component.

A. Sleepiness

- 1. Mild: Unwanted sleepiness or involuntary sleep episodes occur during activities that require little attention. Examples include sleepiness that is likely to occur while watching television, reading, or travelling as a passenger. Symptoms produce only minor impairment of social or occupational function.
- 2. Moderate: Unwanted sleepiness or involuntary sleep episodes during activities that require some attention. Examples include uncontrol-

lable sleepiness that is likely to occur while attending activities such as concerts, meetings, or presentations. Symptoms produce moderate impairment or social or occupational function.

3. Severe: Unwanted sleepiness or involuntary sleep episodes during activities that require more active attention. Examples include uncontrollable sleepiness while eating, during conversation, walking, or driving. Symptoms produce marked impairment in social or occupational function.

B. Sleep related obstructive breathing events

Mild: 5 to 15 events per hour Moderate: 15 to 30 events Severe: more than 30 events per hour.

Overnight polysomnography – including respiratory monitoring, pulse oximetry, ECG and sleep staging with EEG – is the reference diagnostic procedure. A diversity of portable simplified diagnostic equipment has been introduced in order to reduce the costs for investigating the huge number of people seeking medical attention for sleep apnoea recordings.

Obstructive apnoeas are due to an obstruction, usually by the tongue, of the upper airways during sleep. The person is aroused at the end of apnoea with a short awakening of 5–15 seconds due to a struggle for air. Snoring starts at sleep onset and is followed by repetitive apnoeas, arousals, snoring, etc. Sleep quality is disturbed by frequent arousals, as well as reduced REM and slow wave sleep, causing daytime sleepiness. There is a continuum from simple snoring to snoring with a struggle for air and increased upper airway resistance to obstructive sleep apnoea with repetitive apnoeas and periodic snoring [2]. Apnoeas are followed by oxygen desaturations. Intrathoracic pressure decreases as the person struggles for air with persisting respiratory movements during apnoea, causing elevated venous pressure and intracranial pressure [3,4]. Sympathetic activity and blood pressure increase during the end of apnoea [5,6]. Cerebral blood flow increases concomitant with arterial pressure during

apnoea and rapidly decreases after apnoea termination to below resting values when hypoxemia occurs [7,8].

Central apnoeas differ from obstructive apnoeas in that there is no effort to breathe. Central apnoeas are most common in patients with heart failure and Cheyne-Stokes respiration. There is a regular waxing and waning breathing pattern, ie, increases and decreases in tidal volume followed by a central apnoea [9]. Some people exhibit both central and obstructive apnoeas.

Figure 1.1 Respiration and sleep during obstructive and central apnoeas (Illustration K Franklin).

Figure 1.2 Repetitive obstructive apnoeas with a three-minute long obstructive apnoea followed by a desaturation to 68%.

Risk factors

Apnoeas and snoring are signs of increased upper airway resistance. They are usually due to anatomical factors that narrow the upper airway. Such factors are overweight with increased fat surrounding the pharynx, a large tongue or a retro positioned tongue from mandibular retrognathia or large tonsils. Sleep apnoea is also more prevalent among men and during sleep in the supine position as well as during alcohol intoxication.

Obesity is believed to predispose to OSAS because of mass loading of the upper airway [10]. Recent volumetric magnetic resonance suggests that patients with OSAS have smaller calibre upper-airway lumen than healthy controls, mainly due to lateral narrowing of the pharyngeal walls [11]. Despite the relationship between OSAS and obesity, it is important to remember that many slender people have sleep apnoea [12].

Smoking is related to sleep apnoea in a dose-response relationship [13]. Several surveys have reported a higher prevalence of snoring among smokers and passive smokers than non-smokers [14–16].

Heredity has been suggested as a risk for sleep apnoea, given that a number of studies have reported a significantly higher prevalence of sleep-disordered breathing in relatives of OSAS patients than controls, a difference that can not be explained by obesity alone [17–19]. Among 2 350 OSAS patients diagnosed in Iceland, the risk ratio for a first-degree relative of a patient with OSAS was 2.0 (95% CI 1.7–2.8), while the risk ratio of the more severely affected patients with OSAS was slightly higher [20]. Differences in facial structure have been suggested as a plausible cause of the familial aggregation [17]. Significantly lower hypoxic responses among the first-degree relatives of sleep apnoea families than among controls was reported by Redline et al [19], indicating that the familial aggregation of OSAS may be based partly on a familial abnormality in ventilatory control.

Other risk factors are endocrinological disorders, such as hypothyroidism [21] and acromegalia [22]. OSAS is also over-represented in rheumatoid arthritis, probably because of temporomandibular joint destruction with retrognathia or subluxation of the cervical spine as a result, leading to narrowing of the upper airways [23,24].

Symptoms

The most common symptom of obstructive sleep apnoea is excessive daytime sleepiness. Headache, concentration difficulties, depression, fatigue, nocturnal diuresis and gastroesophageal reflux are other prevalent symptoms. Typically, patients are drowsy in the morning, tired during the day and prone to fall asleep when sitting down. They have short sleep latency but they are often awakened 1–4 times during sleep. Other common symptoms are morning headache, fatigue and nycturia. Most patients with obstructive sleep apnoea snore. Snoring and daytime sleepiness are a common reason that people seek medical attention for sleep apnoea recordings.

Prevalence of obstructive sleep apnoea¹

Sleep apnoea recordings in the general population identify subjects with not only OSAS, but asymptomatic subjects apnoea-hypopnoea index >5 who do not meet the criteria for OSAS. These subjects are sometimes classified in epidemiological studies as having obstructive sleep apnoea (OSA).

Studies of the prevalence of OSA (percentage of people with AHI \geq 5) in a general population are usually carried out through a two-phase strategy [25–28]. The first phase, which is based on a random sample from the study population, aims at a rough discrimination between a group in which OSA is expected and one in which it is expected to be rare.

The first phase may include questions on daytime sleepiness and/or snoring and/or the number of transient desaturations and/or the number of apnoeas found in simplified sleep apnoea recordings. The second phase includes more resource-demanding methods, often polysomnography. The results of polysomnography are used to compute AHI scores, which are the accepted measure of OSA. To estimate OSAS, the AHI scores are combined with estimates of objective and/or subjective daytime sleepiness [25–30].

Figure 1.3 illustrates how snoring, sleep apnoea and (excessive) daytime sleepiness may be related in a theoretical middle-aged population at a given time. The circles represent those reporting habitual snoring and/or daytime sleepiness and/or having an AHI \geq 5 events per hour based on polysomnography. The percentage meeting the traditional definition of OSAS [1] is shaded.

¹ This part has not been systematically reviewed.

Figure 1.3 A schematic illustration of the relationships between snoring, excessive daytime sleepiness, obstructive sleep apnoea (OSA = AHI >5) and OSAS (OSAS = AHI >5 and daytime sleepiness) in a theoretical population.

Four population studies that reported the prevalence of obstructive sleep apnoea by age and gender were identified [25–27,31]. Studies carried out in Wisconsin (subjects aged 30–60), Pennsylvania (subjects aged 20–100) and Spain (subjects aged 30–70) used 2-stage stratified probability sampling with appropriate weighting techniques, similar measurement methods and definitions of AHI cut points [25–27,31] (Tables 1.1 and 1.2).

Source Population	Gender	AHI ≥5	AHI ≥10	AHI ≥15
Young et al 1993 [25], USA Ages 30–60 Number = 602	Female Male	9% (6–12%) 24% (19–28%)	5% (2–8%) 15% (12–19%)	4% (2–7%) 9% (6–11%)
Bixler et al 1998, 2001 [27,31], USA Ages 20–100 Number = 1 741	Female Male All	17% (15–20%)	11% (8–13%)	2.2% 7.2% 6% (4–7%)
Durán et al 2001 [26], Spain Ages 30–70 Number = 555	Female Male	28% (20–35%) 26% (20–32%)	15% (9–20%) 19% (12–24%)	7% (3–11%) 14% (10–18%)

Table 1.1 Population frequencies of obstructive sleep apnoea (OSA) with regard to apnoea-hypopnoea.

AHI = Apnoea-hypopnoea index
AHI and daytime sleepiness in population studies

The relationship between AHI level and excessive daytime sleepiness can be illustrated by the results of a cross-sectional cohort study of communitydwelling adults participating in the Sleep Heart Health Study [32]. The study sample consisted of 886 men and 938 women, with mean age of 65 (±11). Sleepiness was quantified using the Epworth Sleepiness Scale (ESS, see Appendix). Sleep-disordered breathing was quantified by AHI measured during in-home polysomnography. When AHI was categorised into 4 groups (<5, 5–14, 15–29, ≥30 events per hour), values on the Epworth Sleepiness Scale were found to be above normal (≥11) for 21%, 28%, 28% and 35%, respectively, in the four categories of AHI severity. Thus, even in individuals categorised as having severe OSA (≥30 events per hour), excessive daytime sleepiness may be present in only one third of the population.

OSAS in epidemiological studies

OSAS defined as AHI \geq 5 and excessive daytime sleepiness are more common in men than women [25–27,31]. The most oft-cited figures come from the Young et al study, which reported that 4% of men and 2% of women have OSAS [25].

Author Year Reference Country	Study group 1. Type of population 2. Number in phase 1 3. Number in phase 2 4. Age range	Outcomes reported 1. For EDS 2. For AHI categories 3. For OSAS categories	
Young et al 1993 [25] USA	1. State employees 2. n=3 513 3. n=602 4. 30–60 years	 BNSQ. Sleepiness >3 days/week 3 (AHI ≥5; ≥10; ≥15) Only summary 	
Durán et al 2001 [26] Spain (Basque)	1. Random population sample 2. n=2 148 3. n=555 4. 30–70 years	 4 subjective questions 5 (AHI ≥5; ≥10; ≥15; ≥20; ≥30) Only summary 	
Bixler et al 1998, 2001 [27,31] USA	1. Random population sample 2. n=16 583 3. n=1 741 4. 20–100 years	1. Not specified 2. 3 (AHI ≥5; ≥10; ≥20) 3. Not reported	

Table 1.2 Prevalence of obstructive sleep apnoea.

AHI = Apnoea-hypopnoea index BNSQ = Basic nordic sleep questionnaire EDS = Excessive daytime sleepiness

OSAH = Obstructive sleep apnoea-hypopnoea

SDC = Smallest detectable change

- Results
- 1. EDS by gender
- 2. EDS by age
- 3. AHI by gender
- 4. AHI by age
- 5. OSAS by gender
- 6. OSAS by age
- 1. "Higher among females" (p<0.01) when AHI \geq 5, 23% of \bigcirc and 16% of \urcorner
- 2. Did not vary by age (p>0.10)
- 3. ♀ 9% and ♂ 24% When AHI ≥5: ♀ 6–16%; ♂ 17–31% When AHI ≥15: ♀ 3.7–4.0%; ♂ 6.2–11%
- 4. AHI increases with age
- 5. ♀ 2%; ♂ 4% at AHI ≥5
- 6. Not reported
- 1. ♀ 22%; ♂ 14%
- 2. Not associated with age
- 3. When AHI <8, no gender difference
- When AHI ≥ 8 , σ had higher prevalence than \Im
- 4. Not reported
- 5 and 6. "The prevalence of OSAH increased with age in both sexes", "Daytime hypersomnolence was not associated with OSAH". At an AHI ≥10 plus EDS, the prevalence of OSAH syndrome was 3.4% in ♂ and 3% in ♀ at AHI ≥10
- 1. Not reported
- 2. Not reported
- 3. At AHI ≥15: ♀ 2.2%, ♂ 7.2%
- 4. At AHI ≥15: 0.6% in age group 20–44, 2.0% in age group 45–64 and 7.0% in age group 65–100 year
- 5. ♀ 1.2% and ♂ 3.9% at AHI ≥10
- 6. 0.7% in age group 20–44, 1.1% in age group 45–64 and 3.1% in age group 65–100 (based on SDC definition (sleep laboratory plus clinical findings))

References

1. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999;22:667-89.

2. Guilleminault C, Stoohs R, Duncan S. Snoring (I). Daytime sleepiness in regular heavy snorers. Chest 1991;99:40-8.

3. Shiomi T, Guilleminault C, Stoohs R, Schnittger I. Leftward shift of the interventricular septum and pulsus paradoxus in obstructive sleep apnea syndrome. Chest 1991;100:894-902.

4. Jennum P, Borgesen SE. Intracranial pressure and obstructive sleep apnea. Chest 1989;95:279-83.

5. Hedner J, Ejnell H, Sellgren J, Hedner T, Wallin G. Is high and fluctuating muscle nerve sympathetic activity in the sleep apnoea syndrome of pathogenetic importance for the development of hypertension? J Hypertens Suppl 1988; 6:S529-31.

6. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 1993;103:1763-8.

7. Balfors EM, Franklin KA. Impairment of cerebral perfusion during obstructive sleep apneas. Am J Respir Crit Care Med 1994;150:1587-91.

8. Franklin KA. Cerebral haemodynamics in obstructive sleep apnoea and Cheyne-Stokes respiration. Sleep Med Rev 2002; 6:429-41. 9. Cheyne J. A case of apoplexy, in which the fleshy part of the heart was converted into fat. Dublin hospital reports and communications in medicine and surgery 1818;2:216-23.

10. Shelton KE, Woodson H, Gay S, Suratt PM. Pharyngeal fat in obstructive sleep apnea. Am Rev Respir Dis 1993;148:462-6.

11. Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R, et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 2003;168:522-30.

12. Rajala R, Partinen M, Sane T, Pelkonen R, Huikuri K, Seppalainen AM. Obstructive sleep apnoea syndrome in morbidly obese patients. J Intern Med 1991;230:125-9.

13. Wetter DW, Young TB, Bidwell TR, Badr MS, Palta M. Smoking as a risk factor for sleep-disordered breathing. Arch Intern Med 1994;154:2219-24.

14. Lindberg E, Janson C, Gislason T, Bjornsson E, Hetta J, Boman G. Sleep disturbances in a young adult population: can gender differences be explained by differences in psychological status? Sleep 1997;20:381-7.

15. Bloom JW, Kaltenborn WT, Quan SF. Risk factors in a general population for snoring. Importance of cigarette smoking and obesity. Chest 1988;93:678-83.

16. Franklin KA, Gislason T, Omenaas E, Jogi R, Jensen EJ, Lindberg E, et al. The influence of active and passive smoking on habitual snoring. Am J Respir Crit Care Med 2004;170:799-803. 17. Douglas NJ, Luke M, Mathur R. Is the sleep apnoea/hypopnoea syndrome inherited? Thorax 1993;48:719-21.

18. Mathur R, Douglas NJ. Family studies in patients with the sleep apneahypopnea syndrome. Ann Intern Med 1995;122:174-8.

19. Redline S, Tishler PV, Tosteson TD, Williamson J, Kump K, Browner I, et al. The familial aggregation of obstructive sleep apnea. Am J Respir Crit Care Med 1995;151:682-7.

20. Gislason T, Johannsson JH, Haraldsson A, Olafsdottir BR, Jonsdottir H, Kong A, et al. Familial predisposition and cosegregation analysis of adult obstructive sleep apnea and the sudden infant death syndrome. Am J Respir Crit Care Med 2002;166:833-8.

21. Skinner MA, Kingshott RN, Jones DR, Homan SD, Taylor DR. Elevated posture for the management of obstructive sleep apnea. Sleep Breath 2004; 8:193-200.

22. Buyse B, Michiels E, Bouillon R, Bobbaers H, Demedts M. Relief of sleep apnoea after treatment of acromegaly: report of three cases and review of the literature. Eur Respir J 1997;10:1401-4.

23. Pepin JL, Della Negra E, Grosclaude S, Billon C, Levy P. Sleep apnoea syndrome secondary to rheumatoid arthritis. Thorax 1995;50:692-4; discussion 696-7.

24. Drossaers-Bakker KW, Hamburger HL, Bongartz EB, Dijkmans BA, Van Soesbergen RM. Sleep apnoea caused by rheumatoid arthritis. Br J Rheumatol 1998;37:889-94. 25. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleepdisordered breathing among middle-aged adults. N Engl J Med 1993;328:1230-5.

26. Durán J, Esnaola S, Rubio R, Iztueta A. Obstructive sleep apnea-hypopnea and related clinical features in a populationbased sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med 2001;163:685-9.

27. Bixler EO, Vgontzas AN, Ten Have T, Tyson K, Kales A. Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med 1998;157:144-8.

28. Gislason T, Almqvist M, Eriksson G, Taube A, Boman G. Prevalence of sleep apnea syndrome among Swedish men – an epidemiological study. J Clin Epidemiol 1988;41:571-6.

29. Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ 2000;320:479-82.

30. Young T, Finn L, Austin D, Peterson A. Menopausal status and sleep-disordered breathing in the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med 2003; 167:1181-5.

31. Bixler EO, Vgontzas AN, Lin HM, Ten Have T, Rein J, Vela-Bueno A, et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med 2001;163:608-13.

32. Gottlieb DJ, Whitney CW, Bonekat WH, Iber C, James GD, Lebowitz M, et al. Relation of sleepiness to respiratory disturbance index: the Sleep Heart Health Study. Am J Respir Crit Care Med 1999;159:502-7.

2. Cardiovascular Disease, Diabetes Mellitus and Death

Conclusions

• Obstructive sleep apnoea syndrome covaries with cardiovascular disease, including stroke and early death in men (Evidence Grade 2). There is insufficient evidence for women. There is insufficient scientific evidence of a relationship between obstructive sleep apnoea syndrome and arterial hypertension or diabetes mellitus.

Background

Several authors have suggested that sleep apnoea is a risk factor for cardiovascular disease, including arterial hypertension, diabetes mellitus and early death.

Objectives

To address the question of whether OSAS is related to cardiovascular disease, diabetes mellitus or early death.

Inclusion criteria

- Prospective design
- A control group should be present
- Objective outcomes
- A diagnosis of sleep apnoea from polysomnography or the equivalent.

Search strategies

PubMed was searched on 1 March 2006 for "Sleep Apnoea Syndromes/ complications" [MeSH] AND "Cardiovascular diseases/aetiology" [MeSH] OR "Sleep Apnoea Syndromes" [MeSH] AND "Risk Factors" [MeSH] OR "Diabetes Mellitus" [MeSH] OR "Mortality/mortality" [MeSH] NOT Case Reports; Comment; Editorial; Letter, News. Limits: 19+ years, Danish, English, Finnish, French, German, Norwegian, Spanish, Swedish. Titles and abstracts were screened for relevance.

Titles and abstracts of all identified trials were screened by two independent investigators, and full reports were requested for all possible relevant articles. Data were extracted by two independent reviewers. The authors ware contacted if questions arose. Fourtyeight articles were read, 9 of which were included in the final analysis. Data extractions of included studies are shown in Table 2.1 and excluded articles in Tables 2.2 and 2.3.

Quality assessment

- 1. Prospective design
- 2. Control group
- 3. Objective outcome
- 4. Adjustments for confounders
- 5. Power
- 6. Distinguishing between obstructive and central apnoeas
- 7. Defined population
- 8. <30% loss to follow-up

High quality: Requires an affirmative answer to all questions. Medium quality: Requires an affirmative answer to questions 1–4. Low quality: A negative answer to any of questions 1–4.

Grading of evidence

See summary of the report.

Description of included studies

Seven prospective studies of medium quality and two of high quality were included. The studies comprised 163–1 387 subjects, the majority of whom were men. Four studies investigated patients who had been referred for sleep apnoea recordings. Four studies were made in the general population, while one investigated patients with coronary artery disease.

Results

Patients admitted for sleep apnoea investigation (OSAS)

He et al 1988, followed 385 male patients and reported an increased risk of death when the apnoea index exceeded 20 [1]. Medium quality.

Peker et al 2002, followed 185 male patients who were free of cardiovascular disease for 7 years and reported an increased risk of developing cardiovascular disease – defined as hypertension, angina pectoris, myocardial infarction, stroke, cardiovascular death, cardiac arrhythmia's or congestive heart failure – among subjects with sleep apnoea, independent of body mass index, blood pressure and age at baseline with adjusted odds ratio: 4.9 (1.8–13.6) [2]. Medium quality.

Yaggi et al 2005, followed 1 022 patients (71% men) for a median of 3.4 years and reported a doubled risk for stroke or death at AHI >5, regardless of confounders and treatment for sleep apnoea at baseline [3]. Adjusted hazard ratio 1.97 (1.12–3.48). High quality.

Marin et al 2005, followed 1 387 male patients for 10 (1.6) years and reported that untreated patients with severe sleep apnoea syndrome and AHI >30 had a greater risk than controls of fatal and non-fatal cardiovascular events [4]. Adjusted odds ratio for fatal events: 2.87 (1.17–7.51), non-fatal events 3.17 (1.12–7.51). Medium quality.

General population studies (OSA)

Mant et al 1995, followed 163 seniors, 79% of whom were women, for 4 years. AHI >15 was not associated with reduced survival [5]. However, only 15 subjects had AHI >15. This study did not discriminate between obstructive and central apnoeas. Medium quality.

Peppard et al 2000, followed 709 subjects (55% men) in Wisconsin for 4 years [6]. Sleep apnoea was independent of confounders related to hypertension in a dose-dependent relationship. High quality.

Reichmuth et al 2005, followed 978 men and women (56% men) in Wisconsin for 4 years [7]. They reported an increased risk of developing diabetes mellitus in the prospective analysis among subjects with an AHI >15 vs AHI <5 in the univariate analysis, but not when adjusting for sex, age and waist girth adjusted odds ratio 1.62 (95% CI 0.67–3.65). Medium quality.

Arzt et al 2005, followed 1 189 subjects (55% men) in Wisconsin for 4 years [8]. AHI >20 was related to a risk of stroke in the univariate analysis, odds ratio 4.31 (1.31–14.2), but not after adjustments for confounders, adjusted odds ratio 3.08 (0.74–12.8). But the power was low, given that only 14 subjects developed a stroke. Medium quality.

Sleep apnoea in patients with coronary artery disease (OSA)

Mooe et al 2001, followed 407 patients with coronary artery disease for 5 years after a sleep apnoea investigation [9]. They reported an increased risk of the combined endpoint of death, stroke and myocardial infarction among patients with sleep apnoea, defined as ODI4 >5 (at least five desaturations per hour sleep) with a hazard risk of 1.59 (1.00-2.51). There was a tripled risk of stroke in the subanalysis for AHI >10 – adjusted hazard risk: 2.98 (1.43-6.20) – but no increased risk of death or myocardial infarction. Medium quality.

CHAPTER 2 • CARDIOVASCULAR DISEASE, DIABETES MELLITUS AND DEATH

49

Table 2.1 Data	extraction.	Sleep of	apnoea,	cardiovascu	lar c	lisease,	death	
and diabetes mel	litus.							

Author	1. Study design	1. Outcomes	
Year, reference	2. Type of population	2. Risk factor	
Country	3. Time of follow-up	3. Covariates =	
•	4. Number	adjustments	
	5. Age	·	
	6. % women		

General population			
Mant et al 1995 [5] Australia	 Prospective cohort Two groups of retirement village residents 4 years 163 ≥70 years 79 	1. Death 2. RDI ≥15 vs RDI <15 3. Age, sex	
Peppard et al 2000 [6] USA	 Prospective General population (Wisconsin) 4 years 709 (of 957 invited) 46±7 years (30-60) 45 	 Hypertension (140/90 or medication) AHI Age, sex, BMI, neck circumference, waist/ hip, skin-fold, smoking status, alcohol, exercise, menopausal status 	
Reichmuth et al 2005 [7] USA	 Prospective General population (Wisconsin cohort) 4 years 978 49±8.3 years 44 	 Diabetes mellitus type 2 AHI >15 vs AHI <5 Age, sex, waist girth 	

Results (odds ratio/hazard ratio = 95% CI)	Comments	Quality 1. Prospective 2. Controls 3. Objective outcome 4. Adjust for confounders 5. Power 6. Obstructive/central in separate 7. Defined population 8. <30% loss to follow-up
Adjusted OR for AHI >15 and death: 0.95 (0.27–3.38) 4/15 subjects with RDI >15 had died. 33/148 subjects with RDI <15 had died	Only 7/34 men and 8/129 women had AHI >15. AHI did not relate to EDS, snoring or obesity. Simplified scoring could not differentiate between OSA and CSA Most senior women and very few with sleep apnoea	Medium 1. 1 2. 1 3. 1 4. 1 5. 0 6. 0 7. 0 8. 0
Adjusted OR AHI 0: 1.0 AHI 0.1–4.9: 1.42 (1.13–1.78) AHI 5–14.9: 2.03 (1.29–3.17) AHI ≥15: 2.89 (1.46–5.64) p-trend: 0.002	PSG	High 1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1
Adjusted OR: 1.62 (0.67–3.65)		Medium 1. 1 2. 1 3. 1 4. 1 5. 1 6. 0 7. 1 8. 1

The table continues on the next page

Author Year, reference Country	 Study design Type of population Time of follow-up Number Age % women 	1. Outcomes 2. Risk factor 3. Covariates = adjustments
Arzt et al 2005 [8] USA	 Prospective and cross- sectional General population (Wisconsin) 4 years 1 189 47±8 years 45 	 Stroke AHI >20 vs AHI <5 Age, sex, BMI, smoking, hypertension
Patient cohorts		
He et al 1988 [1] USA	 Cohort Patients from sleep apnoea evaluation 5 years and 8 years survival 385 of 709 men with Al >5 investigated 1978–1986 51±12 years 0 	 Death Al ≤20, Al >20, treated, untreated Age
Peker et al 2002 [2] Sweden	 Prospective patient series Men investigated for sleep apnoea in 1991 free from cardiovascular disease and diabetes age 30–69 years 7 years 182 46.8±9.3 0 	 Cardiovascular disease with combined endpoint of either: Hypertension, angina pectoris, myocardial in- farction, stroke, cardio- vascular death, cardiac arrhythmias and congestive heart failure OSA = 30 oxygen desa- turation/night BMI, blood pressure, age

Table 2.1 continued

Results (odds ratio/hazard ratio = 95% CI)	Comments	Quality 1. Prospective 2. Controls 3. Objective outcome 4. Adjust for confounders 5. Power 6. Obstructive/central in separate 7. Defined population 8. <30% loss to follow-up
AHI >20 compared with AHI <5 <u>Cross-sectional analysis</u> Adjusted OR: 3.83 (1.17–12.6) <u>Prospective</u> Unadjusted OR: 4.31 (1.31–14.2) Adjusted OR: 3.08 (0.74–12.8)	During the 4 years follow- up, only 14 persons suffered a first ever stroke Large confidence interval. Power problem	Medium 1. 1 2. 1 3. 1 4. 1 5. 0 6. 1 7. 1 8. 1
Al >20 increased mortality vs subjects with Al <20 Only 22 had died		Medium 1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 1 8. 0
22/60 patients with OSA developed cardiovascular disease (CVD) vs 8/122 non-OSA subjects Adjusted OR for CVD among OSA patients: 4.9 (1.8–13.6)		Medium 1. 1 2. 1 3. 1 4. 1 5. 1 6. 0 7. 1 8. 1

The table continues on the next page

53

Author Year, reference Country	 Study design Type of population Time of follow-up Number Age % women 	1. Outcomes 2. Risk factor 3. Covariates = adjustments
Yaggi et al 2005 [3] USA	 Prospective patient cohort Patients referred for sleep apnoea recordings >50 years old Median 3.4 years 1 022 60.2 years 29 	 Stroke and death AHI ≥5 vs AHI <5 Sex, age, atrial fibrillation, hypertension, BMI, diabetes mellitus, race, smoking, alcohol and hyperlipidemia
Marin et al 2005 [4] Spain	 Prospective 10 years Patients referred for sleep apnoea recordings and age and BMI matched controls 10.1±1.6 years 1 387 patients investigated 1992–1994 and 264 heal- thy controls 50±8 years 0 	 Fatal cardiovascular events (death of stroke or AMI) and non fatal cardiovascular events (stroke, AMI, CABG, PTCA) Untreated AHI >30, untrea- ted AHI 5–30, untreated snorer AHI <5, AHI >5 + CPAP BMI, sex, diabetes, smoking, alcohol, cholesterol, trigly- cerides, hypertension, cardio- vascular disease, lipid lowe- ring drugs and antihypertensive
CAD or stroke patients		
Mooe et al 2001 [9] Sweden	 Prospective Patients with coronary artery disease Median 5.1 years 407 <70 years 32 	 Stroke, death and myocardial infarction AHI >10 or ODI >5 Diabetes, LVEF, Coronary intervention, age, sex, BMI and hypertension

Table 2.1 continued

AHI = Apnoea-hypopnoea index; AI = Apnoea index; AMI = Acute myocardial infarction; BMI = Body mass index; CABG = Coronary artery bypass graft (surgery); CI = Confidence interval; CPAP = Continuous positive airway pressure; CSA = Central sleep apnoea; CVD = Cardiovascular disease;

Results (odds ratio/hazard ratio = 95% CI)	Comments	Quality 1. Prospective 2. Controls 3. Objective outcome 4. Adjust for confounders 5. Power 6. Obstructive/central in separate 7. Defined population 8. <30% loss to follow-up
 Adjusted hazard ratio at	68% had AHI >5	High
AHI \geq 5 for stroke and death		1 1
was 1.97 (CI 1.12–3.48)		1. I 2 1
		2.1
Increased risk with increased		J. 1
levels of AHI		T. I 5 1
		J. 1 4 1
		5. I 7 1
		8.1
 Untreated severe OSA		Medium
AHI >30 compared with age and BMI matched controls had adjusted OR for fatal cardiovascular events = 2.87 (1.17–7.51) and non-fatal events = 3.17 (1.12–7.51)		1. 1 2. 1 3. 1 4. 1 5. 1 6. 1 7. 0

Adjusted hazard ratio at AHI ≥10 vs AHI <10 for stroke was 2.98 (1.43–6.20)	Adjusted hazard ratio at	Simplified recording,	Medium
	AHI ≥10 vs AHI <10 for stroke was 2.98 (1.43–6.20)	not PSG	1. 1
	50000 was 2.70 (1.45 - 0.20)		2.1
			3. 1
			4. 1
			5. 1
			6. 0
			7. 1
			8.1

EDS = Excessive daytime sleepiness; LVEF = Left ventricular ejection fractions; ODI = Oxygen desideration index; OR = Odds ratio; OSA = Obstructive sleep apnoea; PSG = Polysomnography; PTCA = Percutaneous coronary angiography; RDI = Respiratory disturbance index **Table 2.2** Excluded studies. Obstructive sleep apnoea, cardiovascular disease and death.

Reason for exclusion	References
Snoring and not sleep apnoea	[10,11]
No data on OSA vs controls	[12]
Non RCT treatment study	[13–15]
No outcome such as death or cardiovascular disease	[16,17]
Mostly CSA and Cheyne-Stokes respiration	[18]
Low power	[19]
Low quality	[15,20–30]

CSA = Central sleep apnoea; RCT = Randomised controlled trial

Table 2.3 Excluded studies. Obstructive sleep apnoea and diabetes mellitus.

Reason for exclusion	References
No sleep apnoea investigation	[31–36]
Only a very small fraction of patients investigated	[37]
Small study <10 subjects	[38]
Treatment study, not RCT	[39,40]
A study of daytime sleepiness and not OSA and diabetes	[41]
Metabolic syndrome as the outcome and not diabetes, insulin resistance or glucose intolerance	[42]
Cross-sectional study	[43-47]
Low quality	[48,49]

RCT = Randomised controlled trial

References

1. He J, Kryger MH, Zorick FJ, Conway W, Roth T. Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients. Chest 1988;94:9-14.

2. Peker Y, Hedner J, Norum J, Kraiczi H, Carlson J. Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med 2002;166:159-65.

3. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 2005;353:2034-41.

4. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005;365:1046-53.

5. Mant A, King M, Saunders NA, Pond CD, Goode E, Hewitt H. Four-year follow-up of mortality and sleep-related respiratory disturbance in non-demented seniors. Sleep 1995;18:433-8.

6. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000;342:1378-84.

7. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a populationbased study. Am J Respir Crit Care Med 2005;172:1590-5. 8. Arzt M, Young T, Finn L, Skatrud JB, Bradley TD. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med 2005;172:1447-51.

9. Mooe T, Franklin KA, Holmstrom K, Rabben T, Wiklund U. Sleep-disordered breathing and coronary artery disease: long-term prognosis. Am J Respir Crit Care Med 2001;164:1910-3.

10. Lindberg E, Janson C, Svardsudd K, Gislason T, Hetta J, Boman G. Increased mortality among sleepy snorers: a prospective population based study. Thorax 1998;53:631-7.

11. Jennum P, Hein HO, Suadicani P, Gyntelberg F. Risk of ischemic heart disease in self-reported snorers. A prospective study of 2,937 men aged 54 to 74 years: the Copenhagen Male Study. Chest 1995;108:138-42.

12. Ancoli-Israel S, DuHamel ER, Stepnowsky C, Engler R, Cohen-Zion M, Marler M. The relationship between congestive heart failure, sleep apnea, and mortality in older men. Chest 2003;124:1400-5.

13. Milleron O, Pilliere R, Foucher A, de Roquefeuil F, Aegerter P, Jondeau G, et al. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study. Eur Heart J 2004;25:728-34.

14. Campos-Rodriguez F, Pena-Grinan N, Reyes-Nunez N, De la Cruz-Moron I, Perez-Ronchel J, De la Vega-Gallardo F, et al. Mortality in obstructive sleep apneahypopnea patients treated with positive airway pressure. Chest 2005;128:624-33.

15. Partinen M, Jamieson A, Guilleminault C. Long-term outcome for obstructive sleep apnea syndrome patients. Mortality. Chest 1988;94:1200-4.

16. Iranzo A, Santamaria J, Berenguer J, Sanchez M, Chamorro A. Prevalence and clinical importance of sleep apnea in the first night after cerebral infarction. Neurology 2002;58:911-6.

17. Phillips BA, Berry DT, Schmitt FA, Harbison L, Lipke-Molby T. Sleep-disordered breathing in healthy aged persons: two- and three-year follow-up. Sleep 1994;17:411-5.

18. Roebuck T, Solin P, Kaye DM, Bergin P, Bailey M, Naughton MT. Increased long-term mortality in heart failure due to sleep apnoea is not yet proven. Eur Respir J 2004;23:735-40.

19. Bliwise DL, Bliwise NG, Partinen M, Pursley AM, Dement WC. Sleep apnea and mortality in an aged cohort. Am J Public Health 1988;78:544-7.

20. Gonzalez-Rothi RJ, Foresman GE, Block AJ. Do patients with sleep apnea die in their sleep? Chest 1988;94:531-8.

21. Ancoli-Israel S, Kripke DF, Klauber MR, Fell R, Stepnowsky C, Estline E, et al. Morbidity, mortality and sleep-disordered breathing in community dwelling elderly. Sleep 1996;19:277-82.

22. Poceta JS, Loube DI, Kellgren EL, Bizik K, Mitler MM. Mortality in Obstructive Sleep Apnea: Association with Impaired Wakefulness. Sleep Breath 1999;3:3-8. 23. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001;163:19-25.

24. Lavie P, Herer P, Peled R, Berger I, Yoffe N, Zomer J, et al. Mortality in sleep apnea patients: a multivariate analysis of risk factors. Sleep 1995;18:149-57.

25. Marti S, Sampol G, Munoz X, Torres F, Roca A, Lloberes P, et al. Mortality in severe sleep apnoea/hypopnoea syndrome patients: impact of treatment. Eur Respir J 2002;20:1511-8.

26. Lavie P, Lavie L, Herer P. All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age. Eur Respir J 2005;25:514-20.

27. Peker Y, Hedner J, Kraiczi H, Loth S. Respiratory disturbance index: an independent predictor of mortality in coronary artery disease. Am J Respir Crit Care Med 2000;162:81-6.

28. Turkington PM, Sircar M, Saralaya D, Elliott MW. Time course of changes in driving simulator performance with and without treatment in patients with sleep apnoea hypopnoea syndrome. Thorax 2004;59:56-9.

29. Parra O, Arboix A, Montserrat JM, Quinto L, Bechich S, Garcia-Eroles L. Sleep-related breathing disorders: impact on mortality of cerebrovascular disease. Eur Respir J 2004;24:267-72.

30. Hagenah GC, Gueven E, Andreas S. Influence of obstructive sleep apnoea in coronary artery disease: A 10-year followup. Respir Med 2006;100:180-2. 31. Enright PL, Newman AB, Wahl PW, Manolio TA, Haponik EF, Boyle PJ. Prevalence and correlates of snoring and observed apneas in 5,201 older adults. Sleep 1996;19:531-8.

32. Elmasry A, Janson C, Lindberg E, Gislason T, Tageldin MA, Boman G. The role of habitual snoring and obesity in the development of diabetes: a 10-year followup study in a male population. J Intern Med 2000;248:13-20.

33. Al-Delaimy WK, Manson JE, Willett WC, Stampfer MJ, Hu FB. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am J Epidemiol 2002;155:387-93.

34. Renko AK, Hiltunen L, Laakso M, Rajala U, Keinanen-Kiukaanniemi S. The relationship of glucose tolerance to sleep disorders and daytime sleepiness. Diabetes Res Clin Pract 2005;67:84-91.

35. Shin C, Kim J, Lee S, Shim J, In K, Kang K, et al. Association of habitual snoring with glucose and insulin metabolism in nonobese Korean adult men. Am J Respir Crit Care Med 2005;171:287-91.

36. Chasens ER, Umlauf MG, Pillion DJ, Singh KP. Sleep apnea symptoms, nocturia, and diabetes in African-American community dwelling older adults. J Natl Black Nurses Assoc 2000;11:25-33.

37. Katsumata K, Okada T, Miyao M, Katsumata Y. High incidence of sleep apnea syndrome in a male diabetic population. Diabetes Res Clin Pract 1991;13:45-51.

38. Smurra M, Philip P, Taillard J, Guilleminault C, Bioulac B, Gin H. CPAP treatment does not affect glucoseinsulin metabolism in sleep apneic patients. Sleep Med 2001;2:207-213.

39. Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 2004;169:156-62.

40. Babu AR, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch Intern Med 2005;165:447-52.

41. Bixler EO, Vgontzas AN, Lin HM, Calhoun SL, Vela-Bueno A, Kales A. Excessive daytime sleepiness in a general population sample: the role of sleep apnea, age, obesity, diabetes, and depression. J Clin Endocrinol Metab 2005;90:4510-5.

42. Leineweber C, Kecklund G, Akerstedt T, Janszky I, Orth-Gomer K. Snoring and the metabolic syndrome in women. Sleep Med 2003;4:531-6.

43. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med 2002;165:677-82.

44. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 2002;165:670-6.

45. Resnick HE, Redline S, Shahar E, Gilpin A, Newman A, Walter R, et al. Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. Diabetes Care 2003;26:702-9.

46. Meslier N, Gagnadoux F, Giraud P, Person C, Ouksel H, Urban T, et al. Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome. Eur Respir J 2003;22:156-60.

47. Punjabi NM. Improvement of metabolic function in sleep apnea: the power of positive pressure. Am J Respir Crit Care Med 2004;169:139-40. 48. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 2000;85:1151-8.

49. Coughlin SR, Mawdsley L, Mugarza JA, Calverley PM, Wilding JP. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J 2004;25: 735-41.

3. Traffic Accidents

Conclusion

• Obstructive sleep apnoea covaries with traffic accidents independent of daytime sleepiness and driving exposure among men (Evidence Grade 3).

Background

Daytime sleepiness is the most common symptom of obstructive sleep apnoea syndrome (OSAS). Sleepiness is also regarded as a risk for traffic accidents. It is against the law in many countries to drive when experiencing daytime sleepiness and snoring or obstructive sleep apnoea unless successfully treated.

Objectives

To address the question of whether OSAS is related to an increased frequency of traffic accidents.

Inclusion criteria

- A sleep apnoea diagnosis with polysomnography or the equivalent.
- A control group should be present.
- Measures of outcome should represent the number of actual traffic accidents, not events on simulated driving performance tests.

Exclusion criteria

Results that did not adjust for driving exposure. Titles and abstracts of all identified trials were screened by two independent investigators, and full reports were requested for all possible relevant articles. Data were extracted by two independent reviewers. Sixteen articles were read, 4 of which were included in the final analysis. Data extractions of included studies are shown in Table 3.2 and excluded articles in Table 3.3.

Quality assessment

- 1. Objective accidents records
- 2. Adjusted for driving exposure
- 3. Prospective design.

High quality: Required an affirmative answer to all questions Medium quality: Required an affirmative answer to question 2.

Description of included studies

Four studies of medium quality were included (Table 3.1). One was a population-based study with retrospective data on objective accidents [1]. Three were case-control studies; 1 investigated the frequency of sleep apnoea in patients with a recent traffic accident [2] and 2 investigated accidents of patients with and without sleep apnoea [3,4]. The response rate was more than 70% in all studies.

Results

Young et al reported that men, but not women, with snoring or OSA and AHI >5 had experienced more traffic accidents during the past five years after adjustments for age and annual miles driven [1]. There was no relationship between sleepiness and accident risk.

Terán-Santos et al investigated the frequency of AHI among 102 subjects who required emergency care after highway crashes and 152 age-matched and sex-matched controls without traffic accidents during the past two months [2]. AHI \geq 5 was related to traffic accidents with an adjusted OR of 11 (95% CI 4.0–30) independent of alcohol, visual refraction disorders, body mass index, years of driving, kilometres of driving a year and work schedules. ESS was 5.9 for cases and 5.7 for controls.

Barbé et al investigated the frequency of traffic accidents resulting in personal injury or property damage of 500 US dollars or more in patients with AHI >20 in a sleep clinic population with healthy controls [3].

They reported an adjusted odds ratio of 2.6 (95% CI 1.1–6.4) for traffic accidents among subjects with sleep apnoea, after controlling for annual kilometres driven and alcohol consumption.

Horstmann et al investigated the frequency of traffic accidents associated with sleepiness during the past three years in 156 patients with AHI >10 from a sleep clinic and compared them with 160 controls [4]. They reported a much higher frequency of traffic accidents per kilometre driven in patients with obstructive sleep apnoea.

Author Year, reference	Study design	% men	Outcomes	Results OSA (OR (95% Cl) or fre- quency)/Controls	p- value	Quality
Young et al 1997 [1]	Retro- spect- ive. Popu- lation	59%	OR for accident past 5 years. Con- trols: AHI <5 non snore	<u>Men</u> Snorers: 3.4 (1.8–6.9)/1 AHI 5–15: 4.2 (1.6–11.3)/1 AHI ≥15: 3.4 (1.4–8.0)/1		Medium
	based			OR for women, no significant results		
Barbé et al 1998 [3]	Case- control	98%	OR for acci- dent ≥1 accident/ 3 years Accidents/ driver/year	AHI ≥20: 2.6 (1.1–6.4)/1 AHI ≥20: 33%/18% AHI ≥20: 0.17/0.07	0.06 <0.05	Medium
Terán-Santos et al 1999 [2]	Case- control	77%	OR for motor vehicle accidents	AHI ≥5: 11.1 (4.0– 30.5)/1 AHI ≥10: 7.2 (2.4– 21.8)/1 AHI ≥15: 8.1 (2.4– 26.5)/1		Medium
Horstmann et al 2000 [4]	Case- control	91%	≥1 accident/ 3 years Accidents/ driver/ 1 million km during 3 years	AHI ≥10: 12.4%/2.9% AHI ≥10: 6.8/0.78	0.005 0.005	Medium

Table 3.1 Obstructive sleep apnoea and traffic accidents.

AHI = Apnoea-hypopnoea index; CI = Confidence interval; OR = Odds ratio;

OSA = Obstructive sleep apnoea

Author Year Reference Country	Study design	 Subject characteristics 1. Number 1b. Participation rate of eligible 2. Mean age (SD) 3. Women (%) 4. Mean AHI (SD) 5. Type of population 	Methods 1. AHI level for OSA diagnosis 2. Retrospective reference period for accidents 3. Subgroups 4. Method specific of the individual study
Young et al 1997 [1] USA	Cross-sectional, retrospective Population- based sample aged 30–60 years	1. 913 1b. 95% 2. 45.1 (7.8) 3. 371 (41%) 4 5. AHI >5: 221 AHI <5, non snorer: 318 AHI <5 snorer: 374	 ≥5 5 years AHI 5-15 AHI >15 Accident risk was analysed for men and women separately. Accidents defined as those resulting in personal injury and/or property damage \$500
Barbé et al 1998 [3] Spain	Case-control study, retrospective	$\begin{array}{r} \underline{OSA}\\ 1. & 60\\ 1b. & 87\%\\ 2. & 47 (1)\\ 3. & 1 (2\%)\\ 4. & 58 (3)\\ 5. & Sleep clinic population with AHI \geq 20\\ \hline \\ \underline{Control}\\ 1. & 60\\ 2. & 47 (1)\\ 3. & 1 (2\%)\\ 4. & Not reported\\ 5. & Healthy volunteers, non-medical workers or visitors to the hospital\\ \hline \end{array}$	 1. ≥20 2. 3 years 3 4. Accidents defined as those resulting in personal injury and/or property damage >\$500

 Table 3.2 Data extraction. Obstructive sleep apnoea and traffic accidents.

Accident risk	Comments	Quality 1. Objective accident records? 2. Adjusted for driving exposure? 3. Prospective design? 4. Sum of 1–3
OR (95% CI) for having at least 1 accident during the reference period <u>Men</u> AHI <5, snore: 3.4 (1.8–6.9) AHI 5–15: 4.2 (1.6–11.3) AHI ≥15: 3.4 (1.4–8.0) <u>Women</u> AHI <5, snore: 0.9 (0.5–1.6) AHI 5–15: 0.8 (0.3–2.0) AHI ≥15: 0.6 (0.2–2.5)	OR adjusted for age, miles driven/year Risk increased for men with an AHI ≥5 but not for women No relationship between sleepiness and accident risk	Medium 1. 1 2. 1 3. 0 4. 2
% of drivers with at least 1 accident during the reference period. OSA: 33% Control: 18% p=0.06 OR (95% Cl) for having at least 1 accident during the reference period, adjusted for km driven/year and alcohol consumption. OSA: 2.6 (1.1–6.4) Accidents/driver/year. OSA: 0.17 Control: 0.07 p<0.05	Accident risk was not related to the severity, as measured by different markers (ie AHI, ESS)	Medium 1. 1 2. 1 3. 0 4. 2

The table continues on the next page

Author Year Reference Country	Study design	 Subject characteristics 1. Number 1b. Participation rate of eligible 2. Mean age (SD) 3. Women (%) 4. Mean AHI (SD) 5. Type of population 	Methods 1. AHI level for OSA diagnosis 2. Retrospective reference period for accidents 3. Subgroups 4. Method specific of the individual study	
Terán-Santos et al 1999 [2] Spain	Case- control	Cases1.1021b.71%2.44 (9)3.Not reported4.Not reported5.Drivers aged 30–70receiving emergencycare after highwayaccidentsControls1.1521b.89%2.43 (9)3.Not reported4.Not reported5.Randomly selectedfrom 3 primary carecentres matched forage and sex23% of participants werewomen	 1. ≥5 2. Not available (case- control design) 3. AHI ≥5 AHI ≥10 AHI ≥15 4. All subjects were investigated at home with PSG. Suspected OSA was confirmed with PSG 	

Table 3.2 continued

Accident risk	Comments	Quality 1. Objective accident records?
		2. Adjusted for driving exposure?
		3. Prospective design? 4. Sum of 1–3
 Adjusted OR (95% CI) for having at least 1 accident	Adjusted for alcohol, visual-refraction	Medium
during the reference period.	disorder, BMI, years of	1. 1
AHI ⊇ั5 11.1 (4.0–30.5́)	driving, km of driving/	2. 1
AHI ≥10 7.2 (2.4–21.8)́	year, sedative medica-	3.0
AHI ≥15 8.1 (2.4–26.5)	tions, work schedule	4. 2
	ESS was 5.9 for cases	
	and 5.7 for controls	

The table continues on the next page

Author Year Reference Country	Study design	 Subject characteristics 1. Number 1b. Participation rate of eligible 2. Mean age (SD) 3. Women (%) 4. Mean AHI (SD) 5. Type of population 	Methods 1. AHI level for OSA diagnosis 2. Retrospective reference period for accidents 3. Subgroups 4. Method specific of the individual study
Horstmann et al 2000 [4] Switzerland	Case- control, retro- spective	<u>OSA</u> 1. 156 1b. 72% 2. 56.5 (10.4) 3. 10% 4. 35 5. Sleep clinic popula- tion with AHI >10 from 1993–1996 <u>Controls</u> 1. 160 1b. 70% 2. 56.2 (12.5) 3. 8% 4. Not reported 5. Subjects examined for lower back pain or carpal tunnel syndrome	 ≥10 3 years AHI <35 AHI ≥35 Only accidents due to sleepiness. Ana- lysed both all types of traffic accidents, and traffic accidents causing personal injury and/or pro- perty damage >\$500

Table 3.2 continued

AHI = Apnoea-hypopnoea index; BMI = Body mass index; CI = Confidence interval; ESS = Epworth sleepiness scale; OR = Odds ratio; OSA = Obstructive sleep apnoea; PSG = Polysomnography; SD = Standard deviation

Accident risk	Comments	Quality 1. Objective accident records? 2. Adjusted for driving exposure? 3. Prospective design? 4. Sum of 1–3
% of drivers with at least 1 accident during the reference period. <u>AHI ≥10</u> OSA: 12.4% Control: 2.9% p<0.005 <u>AHI 10–35</u> OSA: 6% <u>AHI ≥35</u> OSA: 19% Accidents/driver/1 million km OSA: 6.8 Controls: 0.78 p<0.005	OSA patients had significant increased risk of motor vehicle accidents/km driving p<0.005 No relationship be- tween ESS score and accident risk	Medium 1. 0 2. 1 3. 0 4. 1

Table 3.3 Excluded studies. OSA and traffic accidents.

Data not adjusted for driving exposure	[5–11]
Low response rate	[12]
No data presented regarding accident risk in OSA patients	[13,14]
OSA not diagnosed with PSG or equivalent	[15,16]

OSA = Obstructive sleep apnoea; PSG = Polysomnography

References

1. Young T, Blustein J, Finn L, Palta M. Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep 1997;20:608-13.

2. Terán-Santos J, Jimenez-Gomez A, Cordero-Guevara J. The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med 1999;340:847-51.

3. Barbé F, Pericás J, Muñoz A, Findley L, Antó JM, Agustí AG. Automobile accidents in patients with sleep apnea syndrome. An epidemiological and mechanistic study. Am J Respir Crit Care Med 1998;158:18-22.

4. Horstmann S, Hess CW, Bassetti C, Gugger M, Mathis J. Sleepiness-related accidents in sleep apnea patients. Sleep 2000;23:383-9.

5. Findley LJ, Unverzagt ME, Suratt PM. Automobile accidents involving patients with obstructive sleep apnea. Am Rev Respir Dis 1988;138:337-40.

6. Findley L, Smith C, Hooper J, Dineen M, Suratt PM. Treatment with nasal CPAP decreases automobile accidents in patients with sleep apnea. Am J Respir Crit Care Med 2000;161:857-9.

7. Shiomi T, Arita AT, Sasanabe R, Banno K, Yamakawa H, Hasegawa R, et al. Falling asleep while driving and automobile accidents among patients with obstructive sleep apnea-hypopnea syndrome. Psychiatry Clin Neurosci 2002;56:333-4.

8. Aldrich MS. Automobile accidents in patients with sleep disorders. Sleep 1989;12:487-94. 9. Wu H, Yan-Go F. Self-reported automobile accidents involving patients with obstructive sleep apnea. Neurology 1996;46:1254-7.

10. George CF, Smiley A. Sleep apnea & automobile crashes. Sleep 1999;22:790-5.

11. Lloberes P, Levy G, Descals C, Sampol G, Roca A, Sagales T, et al. Self-reported sleepiness while driving as a risk factor for traffic accidents in patients with obstructive sleep apnoea syndrome and in non-apnoeic snorers. Respir Med 2000;94:971-6.

12. Kingshott RN, Cowan JO, Jones DR, Flannery EM, Smith AD, Herbison GP, et al. The role of sleep-disordered breathing, daytime sleepiness, and impaired performance in motor vehicle crashes-a case control study. Sleep Breath 2004;8:61-72.

13. Howard ME, Desai AV, Grunstein RR, Hukins C, Armstrong JG, Joffe D, et al. Sleepiness, sleep-disordered breathing, and accident risk factors in commercial vehicle drivers. Am J Respir Crit Care Med 2004;170:1014-21.

14. Masa JF, Rubio M, Findley LJ. Habitually sleepy drivers have a high frequency of automobile crashes associated with respiratory disorders during sleep. Am J Respir Crit Care Med 2000;162:1407-12.

15. Haraldsson PO, Carenfelt C, Diderichsen F, Nygren A, Tingvall C. Clinical symptoms of sleep apnea syndrome and automobile accidents. ORL J Otorhinolaryngol Relat Spec 1990;52:57-62.

16. Haraldsson PO, Carenfelt C, Lysdahl M, Tingvall C. Does uvulopalatopharyngoplasty inhibit automobile accidents? Laryngoscope 1995;105:657-61.

4. Diagnostic Procedures

Conclusions

- The apnoea-hypopnoea index (AHI) shows good agreement between two nights of polysomnographic recordings (Evidence Grade 2).
- Manually scored portable devices including airflow, respiratory movements and pulse oximetry during one night of sleep have high sensitivity and specificity to identify a pathologic apnoea-hypopnoea index compared with polysomnography (Evidence Grade 1). Automatic scoring of the results of portable devices has high sensitivity and identifies most patients with a pathologic apnoea-hypopnoea index, but specificity is low (Evidence Grade 1). Automatic scoring programs cannot score sleep time and it is unclear whether these programs can differentiate obstructive from central apnoeas.
- Pulse oximetry with results from the oxygen desaturation index is insufficient to identify a pathologic apnoea-hypopnoea index and there is a high risk that patients with sleep apnoea syndrome will be incorrectly classified as normal (Evidence Grade 1).
- A global impression from a case history and a physical examination alone are insufficient to identify or to rule out obstructive sleep apnoea syndrome (Evidence Grade 1).

Background

Polysomnography

The reference standard for diagnostic sleep apnoea recording is overnight polysomnography (Figure 4.1). The method includes measurements of airflow with oronasal thermistors or pressure transducers for apnoea and hypopnoea detection. Respiratory effort is measured with chest and abdominal piezo sensors, strain gauges or oesophageal pressures to differentiate between obstructive and central apnoeas. Electroencephalograms (EEG), electro-oculograms (EOG) and chin-electromyograms (EMG) measure sleep time, sleep stages, arousals and awakenings. Oxygen saturation is measured with finger or ear oximetry, ECG (V5), and often with a body position sensor. Manual scoring of apnoeas and sleep staging according to Rechtschaffen and Kales is the standard procedure [1].

The apnoea-hypopnoea index (AHI), which measures the mean number of apnoeas and hypopnoeas per hour of sleep, is the major outcome of polysomnography. Other outcomes include total sleep time, sleep efficiency, sleep latency, arousal index, sleep staging, mean and lowest oxygen saturation during the night, and apnoea frequency in different body positions and sleep stages.

Figure 4.1 Overnight polysomnography.

Apnoeas are more prevalent in the supine position and after alcohol ingestion, while they are less frequent in slow wave sleep. The amount of sleep in different positions and sleep stages, and alcohol consumption can explain some of the night-to-night variability of the AHI.
Portable simplified sleep apnoea recordings

Simplified sleep apnoea recordings without EEG recordings of sleep time are commonly used in home settings. In such cases, sleep time is often approximated as recording time or time-in-bed. Because time-in-bed is almost always longer than sleep time, this approach introduces a risk of underestimating the average number of obstructive events per hour of sleep. Other approaches are based on the patient's subjective experience of sleep, ie, sleep diaries, actigraphy or estimating sleep from respiratory signals. Airflow, respiratory effort and oxygen saturation are mandatory for defining apnoeas and hypopnoeas, as well as for differentiating obstructive from central apnoeas.

Nocturnal pulse oximetry

Pulse oximetry, which is the simplest screening tool, measures oxygen saturation non-invasively from a probe on a finger or ear. Oxygen saturation is normally 96–98%, but transient desaturations occur after apnoeas. Oxygen desaturation is often defined as an absolute reduction of the oxygen saturation by 4% or more from baseline. But other definitions, such as 2% or 3%, have also been used. The oxygen desaturation index (ODI) measures the mean number of episodes of oxygen desaturation per estimated sleep hour and is sometimes used as a surrogate for the AHI. Oxygen desaturations defined as decreases by 2%, 3%, 4%, etc, are designated as ODI2, ODI3, and ODI4, etc. The degree of desaturation may differ according to brand, signal averaging time, type of probe and whether the probe is placed on a finger or ear [2]. Pulse oximetry alone cannot differentiate central from obstructive apnoeas.

Measurements of excessive daytime sleepiness

Excessive daytime sleepiness is measured either subjectively with different questionnaires or objectively with sleep latency as a proxy.

Epworth sleepiness scale (ESS)

The ESS is a self-administered questionnaire and the most frequently used outcome of daytime sleepiness in treatment studies of sleep apnoea [3]. Respondents are asked to rate their likelihood of dozing in eight different situations on a 4-point scale -0: would never doze; 1: slight chance of dozing; 2: moderate chance of dozing; 3: high chance of dozing. The summary score varies from 0 to 24. A score of above 10 indicates daytime sleepiness [4,5]. The questionnaire appears in Figure 4.6.

Multiple Sleep Latency Test (MSLT)

The MSLT measures the time required to fall asleep under conditions that favour sleep. The subject is instructed to try to fall asleep on a comfortable bed in a dark, quiet room while standard EEG is being recorded. The time interval from start of the test to the onset of sleep is defined as sleep latency. The test is repeated 4–5 times for one day [6]. Severe sleepiness is defined as an MSLT score of 5 minutes or less, moderate sleepiness as 5–10 minutes and normal as 10–20 minutes [7].

Maintenance of Wakefulness Test (MWT)

The MWT resembles the MSLT, but the patient is asked to try to stay awake and resist sleep for 20 (or sometimes 40) minutes [8]. The test consists of 4 trials [8]. A mean MWT latency of less than 11 minutes identifies abnormally low sleep resistance.

Reliability of ESS, MSLT, and MWT

There were 2 studies of test-retest reliability on the ESS and 1 on the MSLT. The reliability of the MSLT has been reported from 1 small study of healthy men (n = 14) [9]. The second test was administered 4–14 months after the first. The Pearson correlation was found to be r = 0.97. The MWT has not undergone any reliability testing. A test-retest trial of the ESS in 104 healthy medical students was reported [10]. The test was repeated after a five-month interval. A high Pearson correlation of r = 0.822 between the results was found. The second test-retest trial of the ESS (n = 56 healthy subjects) found that the paired scores did

not differ, or differed by 1 point, for 54% of the sample, by 2 points in 20%, by 3 or 4 points in 23% and by 5 points in 4% [11]. No study was identified that tested the variability of ESS in patients with OSAS.

Associations between AHI, MSLT, MWT and ESS

A number of studies present statistical relationships between the AHI, MSLT, MWT and ESS [3,11–31]. Common to all the studies is that these measures of daytime sleepiness are only weakly correlated with the AHI (0 < r <0.55).

Functional outcomes of sleep questionnaire (FOSQ)

The FOSQ is a self-administered, 35-item questionnaire designed to assess the impact of disorders of excessive sleepiness on multiple activities of everyday living, ie, activity level, vigilance, intimacy, general productivity and social outcome [32]. Subjects are asked whether they have difficulty performing specific activities due to sleepiness or tiredness on a 4-point scale ranging from "no difficulty" to "extreme difficulty", or if they do not engage in the activity for reasons other than their sleep disorder.

Objectives

To examine night-to-night variability in diagnosing obstructive sleep apnoea from overnight polysomnography. To evaluate portable simplified sleep apnoea recordings, pulse oximetry and global impressions from case histories and physical examinations to diagnose obstructive sleep apnoea with polysomnography as the reference standard.

Methods

Inclusion criteria

Studies using overnight polysomnography in at least 10 subjects on two separate occasions to detect night-to-night variability of the AHI.

Studies comparing portable devices (including airflow measurements, respiratory movements and pulse oximetry) or pulse oximetry or global impression (from a case history and physical examination) with overnight polysomnography during the same night in at least 10 subjects who had been referred for sleep apnoea recordings with the AHI or ODI as outcomes.

Exclusion criteria

- Selected patients or subjects not representative of patients who will be given the test in practice
- Portable devices that include EEG recordings
- An index test not independent of polysomnography.

Search strategies

PubMed was searched on 7 February 2006 for "Sleep apnoea syndromes/diagnosis" [MeSH Major Topic] NOT ("case reports" [Publication Type] OR "comment" [Publication Type] OR "editorial" [Publication Type] OR "letter" [Publication Type]) AND Polysomnography, Field: All Fields, Limits: All Adult: 19+ years.

Articles were also searched in "related articles" of PubMed, in earlier systematic reviews [33–35] and through reference lists of identified articles.

Two independent readers went through 117 articles, 29 of which were included in the final analysis. Data extractions of included studies appear in Tables 4.7–4.10 and excluded articles in Tables 4.11–4.14.

Data collection

For each included study, the following data were abstracted:

- Referral process and selection criteria
- Number of patients eligible and examined
- Percentage of women, mean age, mean BMI, mean ESS and mean AHI
- Equipment used

- Scoring technique
- Definition of hypopnoea
- Cut-off levels for diagnosis of OSA
- Number of patients above the cut-off levels
- True positive, false positive, true negative, false negative.

Quality assessment

The following criteria modified from QUADAS were used for quality assessment [36]:

- 1. Was the spectrum of patients representative of those who will be given the test in practice?
- 2. Is the reference standard likely to classify the target condition correctly?
- 3. Is the period between reference standard and index test short enough to provide reasonable assurance that the target condition did not change between the two tests?
- 4. Was the whole sample or a random selection verified using a reference standard of diagnosis?
- 5. Did the patients receive the same reference standard regardless of index test result?
- 6. Was the reference standard independent of the index test (ie, the index test was not part of the reference standard)?
- 7. Was the performance of the index test described in sufficient detail to permit replication?
- 8. Was the execution of the reference standard described in sufficient detail to permit replication of the test?
- 9. Were the index test results interpreted without knowing the results of the reference standard?
- 10. Were the reference standard results interpreted without knowing the results of the index test?

Each question could be answered with "Yes", "No" or "Unclear".

High quality

An affirmative answer on all 10 questions.

Medium quality

An affirmative answer on questions 2–5.

Low quality

A negative answer on any of questions 1, 6, 9 or 10.

Grading of evidence

See summary of the report.

Statistical analysis

Sensitivity, specificity and likelihood ratios from studies of medium and high quality were pooled using Meta-analysis of Diagnostic and Screening Tests, Meta-DiSc Version Beta 1.1.0, Universidad Complutense, Madrid, Spain. Cut-off levels closest to AHI >15 were used in the metaanalysis. Variables and values are otherwise given as percentages in the individual studies.

Description of included studies

Night-to-night variability

Ten studies of medium quality and 1 of high quality comparing polysomnography during two or more nights were included (Table 4.7). They comprised 662 subjects. Two studies compared home polysomnography with in-lab polysomnography. Five studies included a total of 339 patients, of whom 16–30% were women, investigated for suspicion of obstructive sleep apnoea. Five studies included a total of 286 subjects from the general population with 0–68% women, and one investigated 37 men due to erectile dysfunction.

Six studies were excluded, the reasons for which are given in Table 4.11.

Portable devices vs polysomnography

Eight studies were included in the final analysis (Table 4.8) [37–44]. Five studies were of high quality and 3 of medium quality. Analysis was done manually by experienced polysomnographic scorers in 6 studies and automatically in 3 studies. One study reported the results of both automatic and manual analysis. A total of 435 patients, of whom 8–26% were women, were investigated. Manual analysis was reported on 349 patients and automatic analysis on 125 patients. All included patients were referred for an investigation based on suspicion of obstructive sleep apnoea. Five studies reported results from more than one cut-off level to defined sleep apnoea. AHI >5 was reported in 3 studies, AHI >10 in 4 studies, AHI >15 in 6 studies and AHI >20 in 3 studies. All of the studies used different brands of portable devices.

Fifty-one studies were excluded, the reasons for which are given in Table 4.12.

Pulse oximetry vs polysomnography

Seven studies were included in the final analysis (Table 4.9) [45–51]. Three studies were of high quality and 4 of medium quality. A total of 1 735 patients, 11–30% of whom were women, were investigated for suspicion of sleep apnoea. Automatic analysis was performed in 5 studies and manual analysis in 2 studies. Patients were consecutive in 4 studies and randomly selected in two. All studies used different brands of pulse oximeters. Finger probe was used in 4 studies and ear probe in 2. One study did not specify the probe used. Two studies reported more than one cut-off for diagnosis. AHI >5 was used in 2 studies, AHI >10 in 2 studies, AHI >15 in 5 studies and AHI >20 in 1 study. Six studies defined desaturations as a decline of 4% or more. Four studies presented results from desaturations of 3%, and 3 studies presented results from desaturations of 2%.

Thirty-five studies were excluded, the reasons for which are given in Table 4.13.

Global impression, from case history and physical examination

Three studies were included (Table 4.10) [52–54]. Two studies were of high quality and one was of medium quality. A total of 1 102 patients, 18–21% of whom were women, were investigated, all for suspicion of sleep apnoea. Two studies used a cut-off level of AHI >10, and 1 study used a cut-off level of AHI >15. Global impression was rated by a physician based on a case history and physical examination of patients in all studies. The possibility that some patients were included in 2 studies cannot be ruled out [52].

Eight studies were excluded, the reasons for which are given in Table 4.14.

Results

Night-to-night variability (Table 4.1)

Patients seeking medical attention for sleep apnoea

The AHI correlated significantly between 2 nights (r = 0.86 and r = 0.77) in 2 studies [55,56]. The interclass correlation was 0.92 (0.90–0.95) during 4 nights in another study of 20 patients with AHI >10 at baseline [57]. Eighty-one to ninty percent of patients in 3 studies did not cross a certain cut-off level between the two recordings [55,56,58].

Studies in the general population

Two studies reported an interclass correlation of 0.80 [59,60]. Three other studies reported a correlation of 0.66–0.79 and a small difference in the mean AHI between the nights [61–63]. Sixty-four to eighty-seven percent of subjects in 4 studies did not cross a certain cut-off level between the two recordings [60–62,64].

Author Year, reference	n	Correlation	Cut-off	Unchan- ged, %	Increa- sed, %	Decrea- sed, %	Quality
Patients seekir	ng me	dical attention	for sleep	o apnoea (C	DSAS)		
Wittig et al 1984 [65]	22	r=0.91, p<0.01 fre- quent apnoea group r=-0.19 infre- quent apnoea group					Medium
Mendelson 1994 [55]	50	r=0.86, p<0.001	AHI 10	88	10	2	Medium
Portier et al 2000 [58]	78		AHI 15	90	9	1	Medium
Le Bon et al 2000 [56]	169	r=0.77, p=0.0001 Mean AHI: 12±15 and 16±17	AHI 20	81	15	4	Medium
Bittencourt et al 2001 [57]	20	Interclass correlation 4 nights: 0.92 (0.90–0.95)					Medium
General popul	ation	studies (OSA)					
Mosko et al 1988 [63]	46	r=0.70					Medium
Aber et al 1989 [61]	14	r=0.66, p<0.01 Mean AHI: 6.6±6.6 and 7.7±9.4	AHI 5 AHI 10	64 86	21 0	14 14	Medium
Chediak et al 1996 [62]	37	r=0.79, p<0.05 Mean AHI: 15±19 and 12±12	AHI 5	68	22	11	Medium

Table 4.1 Night-to-night variability.

The table continues on the next page

Author Year, reference	n	Correlation	Cut-off	Unchan- ged, %	Increa- sed, %	Decrea- sed, %	Quality
Bliwise et al 1991 [64]	71		AHI 5 AHI 10	86 83			Medium
Quan et al 2002 [60]	91	Interclass correlation: 0.80 (0.71– 0.86)	AHI 5 AHI 10 AHI 15	80 84 87	7 8 10	13 9 2	High
lber et al 2004 [59]	64	Interclass correlation: 0.80 (0.69– 0.87)					Medium

Table 4.1 continued

AHI = Apnoea-hypopnoea index; OSA = Obstructive sleep apnoea; OSAS = Obstructive sleep apnoea syndrome

Diagnostic measurements vs polysomnography for diagnosing OSAS

Table 4.2 Pooled sensitivity, specificity and likelihood ratio at a cut-off closest to AHI 15 for the different diagnostic measurements vs polysomnography.

	Portable,	Portable, Auto-	Global
	Manual scoring	matic scoring	impression
Number of studies	6	3	3
Pooled sensitivity (95% CI)	0.93 (0.89–0.97)	0.92 (0.83–0.97)	0.54 (0.49–0.58)
Heterogeneity (p-value)	0.206	0.429	0.001
Pooled specificity (95% CI)	0.92 (0.87–0.96)	0.85 (0.73–0.93)	0.69 (0.65–0.72)
Heterogeneity (p-value)	0.076	0.010	0.017
Pooled LR+ (95% CI)	9.95 (4.01–24.6)	6.6 (1.3–34.0)	1.7 (1.5–2.0)
Heterogeneity (p-value)	0.007	0.005	0.917
Pooled LR– (95% CI)	0.09 (0.05–0.16)	0.11 (0.05–0.25)	0.68 (0.59–0.77)
Heterogeneity (p-value)	0.515	0.576	0.278

CI = Confidence interval; LR = Likelihood ratio

	Pulse oximetry	Pulse oximetry	Pulse oximetry
	ODI 4%	ODI 3%	ODI 2%
Number of studies	6	4	3
Pooled sensitivity (95% CI)	0.69 (0.66–0.72)	0.82 (0.79–0.85)	0.87 (0.83–0.90)
Heterogeneity (p-value)	0.000	0.000	0.000
Pooled specificity (95% CI)	0.93 (0.91–0.95)	0.83 (0.79–0.86)	0.64 (0.59–0.69)
Heterogeneity (p-value)	0.000	0.010	0.000
Pooled LR+ (95% CI)	10.4 (5.0–21.4)	4.83 (3.00–7.78)	2.2 (1.2–4.3)
Heterogeneity (p-value)	0.000	0.002	0.000
Pooled LR– (95% CI)	0.32 (0.21–0.52)	0.18 (0.07–0.47)	0.14 (0.03–0.71)
Heterogeneity (p-value)	0.000	0.000	0.000

Table 4.3 Pooled sensitivity, specificity and likelihood ratio at a cut-off closest to AHI 15 pulse oximetry vs polysomnography.

CI = Confidence interval; LR = Likelihood ratio; ODI = Oxygen desaturation index

Portable devices vs polysomnography

Manual scoring of portable devices (n = 6) compared with polysomnography during the same night in hospital had high pooled sensitivity of 0.93 (95% CI 0.89-0.97) and high specificity of 0.92 (95% CI 0.87-0.96). There was no heterogeneity, even though 6 different portable equipment brands were used (Table 4.2, 4.4 and Figure 4.2).

Author Year, reference	Brand	n	Cut-off	Sensiti- vity	Specifi- city	Quality
Emsellem et al 1990 [38]	Eden- Trace	63	AHI 5	0.95	0.96	Medium
White et al 1995 [39]	Night- Watch	30	AHI 10	1.00	0.64	Medium
Man et al 1995 [41]	PolyG	104	AHI 15	0.86	0.95	High
Verse et al 2000 [40]	Poly- mesam	53	AHI 10 AHI 15	0.92 0.87	0.96 0.97	High
Dingli et al 2003 [42]	Embletta	39	AHI 10 AHI 15	0.88 0.96	1.00 0.87	High
Núñez et al 2003 [37]	Breas SC20	60	AHI 10 AHI 15	0.97 0.97	0.76 0.92	Medium

Table 4.4 Manual scoring of portable devices vs polysomnography.

AHI = Apnoea-hypopnoea index

Automatic scoring of portable devices (n = 3) compared with polysomnography had a pooled sensitivity of 0.92 (95% CI 0.83–0.97) without heterogeneity and a pooled specificity of 0.85 (95% CI 0.73–0.93) with heterogeneity (p = 0.010). The automatic systems investigated identified most patients with obstructive sleep apnoea, but specificity was low due to a high number of false positive results in the study by Dingli et al using the Embletta automatic scoring system [42]. Three different automatic systems were used. The results of one system are not applicable to another (Table 4.2, 4.5 and Figure 4.3). No study included a sufficient number of patients with central sleep apnoea. It is not clear whether the automatic scoring systems can differentiate obstructive from central sleep apnoeas.

Author Year, reference	Brand	n	Cut-off	Sensitivity	Specificity	Quality
Claman et al 2001 [44]	Bedbugg	42	AHI 15	0.86	0.95	High
Dingli et al 2003 [42]	Embletta	39	AHI 10 AHI 15	0.87 0.95	0.33 0.57	High
Reichert et al 2003 [43]	Novasom	60	AHI 15	0.95	0.91	High

Table 4.5 Automatic scoring of portable devices vs polysomnography.

AHI = Apnoea-hypopnoea index

Pulse oximetry vs polysomnography

Using pulse oximetry with ODI 4% as a measure of sleep apnoea compared with polysomnography during the same night in hospital, the pooled sensitivity was 0.69 (0.66–0.72) with heterogeneity (p < 0.0001). The pooled specificity was 0.93 (0.91–0.95), also with heterogeneity (p < 0.0001). Pulse oximetry using ODI 4% as a cut-off for sleep apnoea is not a good screening tool, given that as many as 31% of patients with sleep apnoea will be classified as normal and heterogeneity among different studies is large (Table 4.3, 4.5 and Figure 4.4).

A definition of 2% desaturation instead of 4% increases pooled sensitivity from 0.69 to 0.87 with high heterogeneity and reduces specificity from 0.93 to 0.64 with high heterogeneity. These data indicate that a lower desaturation level of 2% is better when pulse oximetry is used as an opportunistic screening tool to exclude patients without sleep apnoea (Table 4.3). But the pooled values of sensitivity and specificity are doubtful because of high heterogeneity among studies.

Author Year, reference	Brand	n	Cut-off	ODI thres- hold	Sensi- tivity	Speci- ficity	Quality
Douglas et al 1992 [47]	Ohmeda 3700	200	AHI 15	4%	0.41	0.97	High
Yamashiro et al 1995 [48]	Ohmeda 3740	269	AHI 5	3%	0.94	0.76	Medium
Chiner et al 1999 [49]	Nellcor	275	AHI 15	4%	0.62	0.93	Medium
Zamarrón et al 1999 [50]	Criticare 504	233	AHI 10	2%, 3%, 4%	0.57	0.84	High
Vázquez et al 2000 [51]	Health- dyne	241	AHI 10 AHI 15	4%	0.97 0.98	0.80 0.88	High
Oeverland et al 2002 [46]	Nonin 8500	93	AHI 15	2%,3%, 4%	0.64	1.00	Medium
Nakano et al 2004 [45]	3i, Minolta	424	AHI 15	2%, 3%, 4%	0.86	0.89	Medium

Table 4.6 Pulse oximetry vs polysomnography.

AHI = Apnoea-hypopnoea index

Global impression, from case history and physical examination

Pooled sensitivity was low, 0.54 (95% CI 0.49–0.58), with heterogeneity p = 0.0014. Pooled specificity was also low, 0.69 (95% CI 0.65–0.72), with heterogeneity p = 0.0167. (Table 4.2, Figure 4.5).

Sensitivity

Figure 4.2 Portable simplified devices vs polysomnography, manual scoring.

Sensitivity

Figure 4.3 Portable simplified devices vs polysomnography, automatic scoring.

Figure 4.4 Pulse oximetry vs polysomnography.

Figure 4.5 Global impression vs polysomnography.

CHAPTER 4 • DIAGNOSTIC PROCEDURES

93

Author Year, reference	n Eligible	% women Age BMI ESS	Hypopnoea definition Scoring subject Inter/intra rater cor- relation Time between recordings	AHI tres- hold for diagnosis	n > treshold night 1 n > treshold night 2
Studies on pa	itients refei	red for sleep a	ipnoea recordii	ngs (OSAS)	
Wittig et al 1984 [65]	22 50	Missing data 49.7±9.8 Missing data Missing data	Only apnoeas Missing data Missing data <90 days	100 apnoeas	
Mendelson 1994 [55]	50	16% 50.2±16.2 Missing data Missing data	-/4%/10 s* Missing data Missing data 2 consecutive nights	AHI >10	42 46
Portier et al 2000 [58]	78 103	18% 52±10 31±6 Missing data	25–50%/–/ 10 s* Trained spe- cialist Missing data 14±18 days	AHI >15	Lab: 37 Home: 31
Le Bon et al 2000 [56]	169 243	Missing data 48.4±11.9 28.7±5.8 Missing data	50–80%/ 3%/–* Trained tech- nologist Yes Consecutive nights	AHI >5	
Bittencourt et al 2001 [57]	20	30% 50±14 30±6 16±6	50%/3% or arousals/—* Trained physician Missing data 4 consecutive nights		

Table 4.7 Data extraction. Night-to-night variability polysomnography.

Mean AHI night 1	Correla- tion night	Unchanged	Increase above	Decrease below	Quality
Mean AHI night 2	1 and 2		threshold	threshold	Comments

 Group >100 apnoeas	r=0.91 p<0.01				Medium
Group <100 apnoeas	r=0,35 p>0.10 -0.19				Good cor- relation when frequent apnoeas night 1
Missing data Missing data	r=0.86 p<0.001	44 (88%)	5 (10%)	1 (2%)	Medium
 Lab: 26±31 Home: 23±32	Missing data	70 (90%)	7 (9%)	1 (1%)	Medium Home vs in lab PSG random order. Home = "reference night"
 12.3±14.7 15.5±17.4	r=0.77 p=0.0001	137 (81%)	25 (15%)	7 (4%)	Medium Only 1/3 of patients with AHI >20 during night 1 (n=27) was included in a second night
	Interclass correlation =0.92 95% CI: 0.90-0.95				Medium Patients with AHI >10 were included during 4 consecutive nights

The table continues on the next page

Author Year, reference	n Eligible	% women Age BMI ESS	Hypopnoea definition Scoring subject Inter/intra rater cor- relation Time between recordings	AHI tres- hold for diagnosis	n > treshold night 1 n > treshold night 2
Epidemiologi	cal studies	(OSA)			
Mosko et al 1988 [63]	46	68% 68.7±6.7 Missing data Missing data	Decrease+ arousal Manually Missing data 3 consecutive nights	AHI >5	
Aber et al 1989 [61]	14 19	0 66±6 Missing data Missing data	50%/7%/-* Missing data Missing data 2 consecutive nights	AHI >5	5 6

Table 4.7 continued

Bliwise et al 1991 [64]	71	32% 74.6±8.8 34.9±4.6 Missing data	Missing data Single tech- nologist Missing data Missing data	AHI >5	
Chediak et al 1996 [62]	37	0% 52±14 27±4 Missing data	Gould 1988 [66] Missing data Missing data 2 consecutive nights	AHI >5	21 26 18 (for AHI >10 night 1) 18 (for AHI >10 for

night 2)

Mean AHI night 1	Correla- tion night	Unchanged	Increase above	Decrease below	Quality
Mean AHI night 2	1 and 2		threshold	threshold	Comments

	r=0.70				Medium
					Healthy volunteers over 60 years old
 6.6±6.6 7.7±9.4	r=0.655 p<0.01	9 (64%)	3 (21%)	2 (14%)	Medium
	,	12 (86%) (for individu- als AHI >10)	0 (0%) (for individuals AHI >10)	2 (14%) (for individuals AHI >10)	Healthy elderly men recruited from news- papers advert- isements. Some were offered 2 nights but not everyone
13.2±17.6 11.5±5.1		10 (86%)			Medium
		12 (83%) (for individu- als AHI >10)			Elderly volunteers in a cohort study of sleep and breathing
 15±19 12±12	r=0.79 p<0.05	25 (68%)	8 (22%)	4 (11%)	Medium Retrospec- tive on consecutive patients with erectile dysfunction. Letter sent/ received

The table continues on the next page

Author Year, reference	n Eligible	% women Age BMI ESS	Hypopnoea definition Scoring subject Inter/intra rater cor- relation Time between recordings	AHI tres- hold for diagnosis	n > treshold night 1 n > treshold night 2	
Quan et al 2002 [60]	91 99	44% 40–87 28.3 Missing data	-/4%/-* Experienced scorers Missing data Within 4 months (77±18 days)	AHI >5 AHI >10 AHI >15		
lber et al 2004 [59]	64 76	47% Median 57 31.3±10.5 7.5±4.8	30%/3%/–* SHHS Yes 2 weeks			

Table 4.7 continued

* % decrease breathing/desaturation/time of event.

AHI = Apnoea-hypopnoea index; BMI = Body mass index; CI = Confidence interval; ESS = Epworth sleepiness scale; OSA = Obstructive sleep apnea; OSAS = Obstructive sleep apnoea syndrome; PSG = Polysomnography; r = Coefficient of correlation; SHHS = Sleep heart health study

Mean AHI night 1 Mean AHI night 2	Correla- tion night 1 and 2	Unchanged	Increase above threshold	Decrease below threshold	Quality Comments
	Interclass correlation 0.80, 95% CI 0.71–0.86	73 (80%) 76 (84%) 79 (87%)	6 (7%) 7 (8%) 9 (10%)	12 (13%) 8 (9%) 2 (2%)	High 2 home PSG within sleep heart health study. Repres- entative
 Home: 12.4 Lab: 9.5	Interclass correlation 0.80, 95% CI 0.69–0.87				patients Medium Healthy volunteers in SHHS, home vs in lab PSG in random orders

Author Year, reference	n Eligible	% women Age BMI ESS AHI	Portable brand and measures	Portable score (automatic/ manual) Hypopnoea definition Sleep time measures Scoring subjects Inter/intra rater correlation Portable AHI	AHI tres- hold for dia- gnosis
Emsellem et al 1990 [38]	63 67	Missing data 45 years Missing data Missing data Missing data	EdenTrace N/o ther- mistors, SaO ₂ , chest impedance, ECG	Manual 50%/–/10 s* From signals 2 independent No Missing data	AHI >5
White et al 1995 [39]	30	23% 51±3 33±2 Missing data 31±6	NightWatch Oronasal thermistors, SaO ₂ , leg movements, thorax/ abdominal belts, EOG, body move- ments, body position	Manual 50% + arousals or desaturations EOG+body move- ment Blinded PSG- technicians No 32±6	AHI >10 AHI >20
Man et al 1995 [41]	104	22% 47±12 30 Missing data 17±26	PolyG Oronasal thermistors, SaO_2 , tho- rax/abdom- inal belts, ECG, body position	Manual 50%/–/10 s* Recording time 2 blinded techni- cians No 15±22	AHI >15 AI >5
Verse et al 2000 [40]	53 53	8% 48±11 27±5 Missing data 18±18	POLYME- SAM Oronasal flow, SaO ₂ , thorax/ abdominal belts, ECG, body posi- tion, micro- phone	Manual correction of auto 50–80%/–/–* 22:30–05:30 Blinded, expe- rienced No 16±17 man, 16±17 auto	AHI >10 AHI >15 AHI >20

 Table 4.8 Data extraction. Portable recordings vs polysomnography.

n > Sensit		Speci- ficity	True positive	False positive	True negative	False negative	Quality	
tres- hold			•	•			Comments	
 39	0.95	0.96	37	1	23	2	Medium	
19 13	1.00 0.77	0.64 0.88	19 10	4 2	7 15	0 3	Medium	
 28	0.86	0.95	24	4	72	4	High	
23	0.83	0.91	19	7	74	4		
25 23	0.92 0.87	0.96 0.97	24 20	1 1	26 29	2 3	High	
21	0.71	0.97	15	1	31	6		

The table continues on the next page

Author Year, reference	n Eligible	% women Age BMI ESS AHI	Portable brand and measures	Portable score (automatic/ manual) Hypopnoea definition Sleep time measures Scoring subjects Inter/intra rater correlation Portable AHI	AHI tres- hold for dia- gnosis
Claman et al 2001 [44]	42	26% 54±12.9 30.6±6.7 Missing data 25.5±28.1	Bedbugg (sleep solu- tions Inc) Microphone 1 (respire) microphone 2 (snoring), pulsoximet- ry, respir- atory effort	Automatic Missing data Recording time Auto PSG-technicians Missing data 22.9±31.2	AHI >15
Dingli et al 2003 [42]	39 40	18% 46±10 32±6 Missing data 35±6	Embletta Nasal pres- sure, SaO ₂ , thorax/ abdominal belts, body position	Automatic and manual 50%/–/10 s* From signals PSG scorer No 27±3	Manual AHI >10 Manual AHI >15 Auto AHI >10 Auto AHI >15
Reichert et al 2003 [43]	44 51	25% 52±2 30±1 Missing data Missing data	NovaSom QSG Oronasal airflow from micro- phone, SaO ₂ , respiratory effort	Automatic 50%/2%/10 s* Recording time Automatic pro- gram, blinded PSG scorer No Missing data	AHI >15
Núñez et al 2003 [37]	60 70	23% 52±13 30±5 13.6±5.0 31±28	Breas SC 20 Nasal can- nula, thorax/ abdominal belts, SaO ₂ , microphone, leg move- ments	Manual 50%/3% or arousals/_* Time in bed No 28±24	AHI >5 AHI >10 AHI >15 AHI >20 AHI >30

Table 4.8 continued

* % decrease breathing/desaturation/time of event.

AHI = Apnoea-hypoapnea index; AI = Apnoea index; BMI = Body mass index; EOG = Electrooculography; ESS = Epworth sleepiness scale

n > AHI tres- hold	Sensi- tivity	Speci- ficity	True positive	False positive	True negative	False negative	Quality Comments
 21	0.86	0.95	18	1	20	3	Medium
							Author is paid consul- tant for the company
 33	0.88	1.00	29	0	6	4	High
24	0.96	0.87	23	2	13	1	Letter to
30	0.87	0.33	26	4	2	4	from author
22	0.95	0.57	21	6	8	1	
 22	0.95	0.91	20	2	21	1	High
50 39 34 31 29	0.98 0.97 0.97 0.94 0.79	0.70 0.76 0.92 0.97 1.00	49 38 33 29 23	3 5 2 1 0	7 16 24 28 31	1 1 2 6	Medium

CHAPTER 4 • DIAGNOSTIC PROCEDURES

103

Author Year, reference	n Eligible	% women Age BMI ESS AHI	Hypo- pnoea definition Scoring subject Inter/intra rater cor- relation	Oximeter brand Ear or finger Auto or manual ODI-Sleep time Mean ODI	AHI (PSG) tres- hold for dia- gnosis	n > AHI tres- hold
Douglas et al 1992 [47]	200	18% 50±13 Missing data Missing data Missing data	Missing data Automatic program, blinded Missing data	Ohmeda 3700 Ear Automatic Time in bed Missing data	AHI >15	91
Yamashiro et al 1995 [48]	269 300	30% 47±13 Missing data Missing data Missing data	Missing data Blinded 3 PSG scorer + 3 doctors Yes, inter	Ohmeda 3740 Ear Manual Recording time? Missing data	AHI >5	137
Chiner et al 1999 [49]	275	11% 52±11 32±5 13±5 42±20	50%+arou- sal/4%/–* 2 blinded observers No	Nellcor Finger Manual review Time in bed	AHI >15	216
Zamarrón et al 1999 [50]	233 240	20% 56±13 30±6 Missing data 22±17	50%/4%/–* 3 blinded observers Missing data	Criticare 504 AHI >10	AHI >10	124
Vázquez et al 2000 [51]	241 245	22% 45±11 31±6 11±5 26±17	30%/4%/ 10 s* Automatic program Missing data	Healthdyne 202-11 Finger 138, ear 108 Automatic Probe on recording time Missing data	AHI >10 AHI >15 AHI >20 AHI >30	142 118 92 65

 Table 4.9 Data extraction. Polysomnography vs pulse oximetry.

 Cut-off oxi-	Sensi-	ensi- Speci- vity ficity	True	False	True negative	False negative	Quality
of desatura- tions/hour)	civicy	iiiii)	positive	positive	negutive	negative	Comments
ODI4 >5 ODI4 >10	0.67	0.92 0.97	61 48	9	100 106	30 43	High
ODI4 >15	0.41	0.97	37	3	106	54	Letter to and answer from author
 ODI3 >5	0.94	0.76	133	31	96	9	Medium
							Letter to and answer from author
 ODI4 >5 ODI4 >10 ODI4 >15	0.82 0.71 0.62	0.76 0.90 0.93	178 154 135	14 6 4	45 53 55	38 62 81	Medium
 ODI4 >10 ODI3 >10 ODI2 >10	0.57 0.60 0.68	0.84 0.80 0.78	71 74 84	17 22 24	92 87 85	53 50 40	High
 ODI4 >10	0.97	0.80	138	20	79	4	High
ODI4 >15 ODI4 >20 ODI4 >30	0.98 0.97 0.95	0.88 0.85 0.93	116 89 62	15 22 12	108 127 164	2 3 3	5

The table continues on the next page

Author Year, reference	n Eligible	% women Age BMI ESS AHI	Hypo- pnoea definition Scoring subject Inter/intra rater cor- relation	Oximeter brand Ear or finger Auto or manual ODI-Sleep time Mean ODI	AHI (PSG) tres- hold for dia- gnosis	n > AHI tres- hold
Oeverland et al 2002 [46]	93 100	21% 44 (27–76) 28 (21–56) Missing data 23 (0–78)	>50% or <50%+3% desatura- tions or arousal Missing data Missing data	Nonin 8500 Missing data automatic Registration time	AHI >5 AHI >15	44
Nakano et al 2004 [45]	424 431	19% 49±13 26±2 11±5 29±24	50%/–/10 s* Manual PSG, automatic oximetry Missing data	Pulseox3i, Minolta Finger Automatic Hours of examination ODI4: 21±19	AHI >15	241

Table 4.9 continued

*% decrease breathing/desaturation/time of event.

AHI = Apnoea-hypoapnea index; BMI = Body mass index; ODI = Oxygen desaturation index; PSG = Polysomnography

Cut off oxi- meter (no of desatura- tions/hour)	Sensi- tivity	Speci- ficity	True positive	False positive	True negative	False negative	Quality Comments
 ODI2 >5 ODI3 >5 ODI4 >5 ODI5 >5 ODI2 >15 ODI3 >15 ODI4 >15 ODI5 >15	1.00 0.91 0.73 0.57 1.00 0.86 0.64 0.52	0.00 0.67 1.00 1.00 0.27 0.88 1.00 1.00	44 38 28 23	36 6 0 0	13 43 49 49	0 6 16 21	Medium
 ODI4 >15 ODI3 >15 ODI2 >15	0.78 0.86 0.95	0.97 0.89 0.66	188 208 228	6 20 63	177 163 120	53 33 13	Medium Letter and answer from author

Author Year, reference	n Eligible	% women Age BMI ESS AHI	Hypopnoea definition Scoring subject Inter/intra correlation	Global impression	AHI (PSG) treshold for diagnosis	n > AHI treshold
Viner et al 1991 [52]	410 410?	18% 46±11 28±5 Missing data	Missing data Experienced technologist Missing data	One phy- sician based on patients history and physical exa- mination	AHI >10	190
Hoffstein et al 1993 [53]	Auto- matic	21% 47±12 29±6 Missing data	>50% reduc- tion	One phy- sician based on patients history and physical exa- mination	AHI >10	275
Gyulay et al 1993 [54]	98 126	21% 50±2.5 30±1.2	>50% reduc- tion	Patients were seen by 1 of 4 clinicians who rated them as clinically significant OSA or not	AHI >15	43

Table 4.10 D	ata extraction.	Global im	bression vs	bolysomn	ography.
				F - /	· · · · / ·

AHI = Apnoea-hypoapnea index; BMI = Body mass index; ESS = Epworth sleepiness scale; OSA = Obstructive sleep apnea; PSG = Polysomnography

Sensitivity	Specificity	True positive	False positive	True negative	False negative	Quality
 0.52	0.70	99	66	154	91	High
0.51	0.71	140	94	225	135	Medium
0.79	0.51	34	27	28	9	Medium

 Table 4.11 Excluded studies. Day-to-day variability polysomnography.

Reason for exclusion	References
Not polysomnograms	[67–70]
Selected patients	[71,72]
Less than 10 patients included	[72]

Table 4.12 Excluded studies. Portable simplified recordings vs polysomnography.

Reason for exclusion	References
Do not include pulse oximetry + recordings of airflow and respiratory movements	[73–97]
Include EEG in the portable device	[75]
Outcomes not recorded in AHI vs AHI	[98]
Not AHI vs AHI, but a difference of >10 of AHI to score a false result	[99]
Partial night recordings	[100]
Investigations during two different nights	[96,101–111]
Selected patients or subjects not representative of patients who will receive the test in practice	[111–114]
No polysomnography	[115–118]
Polysomnographic score included recording time instead of total sleep time	[119]
Not portable devices	[120–122]
Index test not independent of polysomnography	[120,121]

AHI = Apnoea-hypoapnea index; EEG = Electroencephalograms
Table 4.13 Excluded studies. Pulse oximetry vs polysomnography.

Reasons for exclusion	References
Outcomes not presented in ODI vs AHI	[2,91,123–132]
Not pure ODI, but defined desaturation as >4% and below 90%	[128]
No polysomnography	[116]
Sensitivity or specificity not given and not possible to calculate	[80,81]
Investigations during two different nights	[54,76,133–142]
Selected patients	[93,140,142,143]
Not pulse oximetry alone	[76,77,80,81,85,87,91,144]
Index test not independent of polysomnography	[122,144]
Results from patients included in another article	[145]

AHI = Apnoea-hypoapnea index; ODI = Oxygen desaturation index

Table 4.14 Excluded studies. Global impression vs polysomnography.

Reason for exclusion	References
Nocturnal observation of patient and not global impression	[146]
Questionnaire and/or specific characteristics and not global impression	[25,76,147–149]
Selected patients	[147]
Outcomes not presented and not possible to calculate	[150]
No polysomnography	[151]

THE EPWORTH SLEEPINESS SCALE

Name: ______ Today's date: ______ Your age (years): _____

Your sex (male = M; female = F):

How likely are you to doze off or fall asleep in the following situations, in contrast to feeling just tired? This refers to your usual way of life in recent times. Even if you have not done some of these things recently try to work out how they would have affected you. Use the following scale to choose the most appropriate number for each situation:

- 0 = would *never* doze
- 1 = slight chance of dozing
- 2 = moderate chance of dozing
- 3 = high chance of dozing

Situation	Chance of dozing
Sitting and reading	
Watching TV	
Sitting, inactive in a public place (e.g. a theatre or a meeting)	
As a passenger in a car for an hour without break	
Lying down to rest in the afternoon when circumstances permit	
Sitting and talking to someone	
Sitting quietly after a lunch without alcohol	
In a car, while stopped for a few minutes in the traffic	

Thank you for your cooperation

Figure 4.6 The Epworth sleepingness scale.

References

1. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles: Barin Information Service/Brain Research Institute; 1968.

2. Zafar S, Ayappa I, Norman RG, Krieger AC, Walsleben JA, Rapoport DM. Choice of oximeter affects apnea-hypopnea index. Chest 2005;127:80-8.

3. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991;14:540-5.

4. Johns M, Hocking B. Daytime sleepiness and sleep habits of Australian workers. Sleep 1997;20:844-9.

5. Johns MW. Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the epworth sleepiness scale: failure of the MSLT as a gold standard. J Sleep Res 2000;9:5-11.

6. Carskadon MA, Dement WC, Mitler MM, Roth T, Westbrook PR, Keenan S. Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep 1986;9:519-24.

7. American Academy of Sleep Medicine. The international Classification of Sleep Disorders, Revised, Diagnostic and Coding Manual. Rochester, Davies Printing Co; 1997.

8. Mitler MM, Gujavarty KS, Browman CP. Maintenance of wakefulness test: a polysomnographic technique for evaluation treatment efficacy in patients with excessive somnolence. Electroencephalogr Clin Neurophysiol 1982;53:658-61. 9. Zwyghuizen-Doorenbos A, Roehrs T, Schaefer M, Roth T. Test-retest reliability of the MSLT. Sleep 1988;11:562-5.

10. Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep 1992;15:376-81.

11. Chung KF. Use of the Epworth Sleepiness Scale in Chinese patients with obstructive sleep apnea and normal hospital employees. J Psychosom Res 2000;49:367-72.

12. Chervin RD. The multiple sleep latency test and Epworth sleepiness scale in the assessment of daytime sleepiness. J Sleep Res 2000;9:399-401.

13. Chervin RD, Aldrich MS. The Epworth Sleepiness Scale may not reflect objective measures of sleepiness or sleep apnea. Neurology 1999;52:125-31.

14. Chervin RD, Aldrich MS, Pickett R, Guilleminault C. Comparison of the results of the Epworth Sleepiness Scale and the Multiple Sleep Latency Test. J Psychosom Res 1997;42:145-55.

15. Chervin RD, Kraemer HC, Guilleminault C. Correlates of sleep latency on the multiple sleep latency test in a clinical population. Electroencephalogr Clin Neurophysiol 1995;95:147-53.

16. Cheshire K, Engleman H, Deary I, Shapiro C, Douglas NJ. Factors impairing daytime performance in patients with sleep apnea/hypopnea syndrome. Arch Intern Med 1992;152:538-41.

17. Gottlieb DJ, Whitney CW, Bonekat WH, Iber C, James GD, Lebowitz M, et al. Relation of sleepiness to respiratory disturbance index: the Sleep Heart Health Study. Am J Respir Crit Care Med 1999; 159:502-7.

18. Guilleminault C, Hayes B. Naloxone, theophylline, bromocriptine, and obstructive sleep apnea. Negative results. Bull Eur Physiopathol Respir 1983;19:632-4.

19. Johns MW. Daytime sleepiness, snoring, and obstructive sleep apnea. The Epworth Sleepiness Scale. Chest 1993;103:30-6.

20. Olson LG, Cole MF, Ambrogetti A. Correlations among Epworth Sleepiness Scale scores, multiple sleep latency tests and psychological symptoms. J Sleep Res 1998;7:248-53.

21. Osman EZ, Osborne J, Hill PD, Lee BW. The Epworth Sleepiness Scale: can it be used for sleep apnoea screening among snorers? Clin Otolaryngol 1999;24:239-41.

22. Poceta JS, Timms RM, Jeong DU, Ho SL, Erman MK, Mitler MM. Maintenance of wakefulness test in obstructive sleep apnea syndrome. Chest 1992;101:893-7.

23. Roehrs T, Zorick F, Wittig R, Conway W, Roth T. Predictors of objective level of daytime sleepiness in patients with sleep-related breathing disorders. Chest 1989;95:1202-6.

24. Roth T, Hartse KM, Zorick F, Conway W. Multiple naps and the evaluation of daytime sleepiness in patients with upper airway sleep apnea. Sleep 1980;3:425-39.

25. Weaver EM, Kapur V, Yueh B. Polysomnography vs self-reported measures in patients with sleep apnea. Arch Otolaryngol Head Neck Surg 2004; 130:453-8. 26. Walter TJ, Foldvary N, Mascha E, Dinner D, Golish J. Comparison of Epworth Sleepiness Scale scores by patients with obstructive sleep apnea and their bed partners. Sleep Med 2002;3:29-32.

27. Benbadis SR, Mascha E, Perry MC, Wolgamuth BR, Smolley LA, Dinner DS. Association between the Epworth sleepiness scale and the multiple sleep latency test in a clinical population. Ann Intern Med 1999;130:289-92.

28. Sangal RB, Thomas L, Mitler MM. Maintenance of wakefulness test and multiple sleep latency test. Measurement of different abilities in patients with sleep disorders. Chest 1992;101:898-902.

29. Sangal RB, Sangal JM. Rating scales for inattention and sleepiness are correlated in adults with symptoms of sleep disordered breathing syndrome, but not in adults with symptoms of attentiondeficit/hyperactivity disorder. Sleep Med 2004;5:133-5.

30. Sangal RB, Mitler MM, Sangal JM. Subjective sleepiness ratings (Epworth sleepiness scale) do not reflect the same parameter of sleepiness as objective sleepiness (maintenance of wakefulness test) in patients with narcolepsy. Clin Neurophysiol 1999;110:2131-5.

31. Sangal RB, Sangal JM, Belisle C. Subjective and objective indices of sleepiness (ESS and MWT) are not equally useful in patients with sleep apnea. Clin Electroencephalogr 1999;30:73-5.

32. Weaver TE, Laizner AM, Evans LK, Maislin G, Chugh DK, Lyon K, et al. An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep 1997;20:835-43. 33. Ross SD, Sheinhait IA, Harrison KJ, Kvasz M, Connelly JE, Shea SA, et al. Systematic review and meta-analysis of the literature regarding the diagnosis of sleep apnea. Sleep 2000;23:519-32.

34. Perleth M, von der Leyen U, Schmitt H, Dintsios C-M, Felder S, Schwartz FW, et al. Das Schlaf-Apnoe-Syndrom. Systematische Ubersichten zur diagnostik, Threapie und Kosten-Effektivität. Sankt Augustin, Asgard-Verlag; 2003.

35. Flemons WW, Littner MR, Rowley JA, Gay P, Anderson WM, Hudgel DW, et al. Home diagnosis of sleep apnea: a systematic review of the literature. An evidence review cosponsored by the American Academy of Sleep Medicine, the American College of Chest Physicians, and the American Thoracic Society. Chest 2003;124:1543-79.

36. Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J. Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 2004;140:189-202.

37. Núñez R, Rey de Castro J, Socarrás E, Calleja JM, Rubio R, Aizpuru F, et al. [Validation study of a polygraphic screening device (BREAS SC20) in the diagnosis of sleep apnea-hypopnea syndrome]. Arch Bronconeumol 2003;39:537-43.

38. Emsellem HA, Corson WA, Rappaport BA, Hackett S, Smith LG, Hausfeld JN. Verification of sleep apnea using a portable sleep apnea screening device. South Med J 1990;83:748-52.

39. White DP, Gibb TJ, Wall JM, Westbrook PR. Assessment of accuracy and analysis time of a novel device to monitor sleep and breathing in the home. Sleep 1995;18:115-26. 40. Verse T, Pirsig W, Junge-Hulsing B, Kroker B. Validation of the POLY-MESAM seven-channel ambulatory recording unit. Chest 2000;117:1613-8.

41. Man GC, Kang BV. Validation of a portable sleep apnea monitoring device. Chest 1995;108:388-93.

42. Dingli K, Coleman EL, Vennelle M, Finch SP, Wraith PK, Mackay TW, et al. Evaluation of a portable device for diagnosing the sleep apnoea/hypopnoea syndrome. Eur Respir J 2003;21:253-9.

43. Reichert JA, Bloch DA, Cundiff E, Votteri BA. Comparison of the NovaSom QSG, a new sleep apnea home-diagnostic system, and polysomnography. Sleep Med 2003;4:213-8.

44. Claman D, Murr A, Trotter K. Clinical validation of the Bedbugg in detection of obstructive sleep apnea. Otolaryngol Head Neck Surg 2001;125:227-30.

45. Nakano H, Ikeda T, Hayashi M, Ohshima E, Itoh M, Nishikata N, et al. Effect of body mass index on overnight oximetry for the diagnosis of sleep apnea. Respir Med 2004;98:421-7.

46. Oeverland B, Skatvedt O, Kvaerner KJ, Akre H. Pulseoximetry: sufficient to diagnose severe sleep apnea. Sleep Med 2002;3:133-8.

47. Douglas NJ, Thomas S, Jan MA. Clinical value of polysomnography. Lancet 1992;339:347-50.

48. Yamashiro Y, Kryger MH. Nocturnal oximetry: is it a screening tool for sleep disorders? Sleep 1995;18:167-71.

49. Chiner E, Signes-Costa J, Arriero JM, Marco J, Fuentes I, Sergado A. Nocturnal

CHAPTER 4 • DIAGNOSTIC PROCEDURES

oximetry for the diagnosis of the sleep apnoea hypopnoea syndrome: a method to reduce the number of polysomnographies? Thorax 1999;54:968-71.

50. Zamarrón C, Romero PV, Rodriguez JR, Gude F. Oximetry spectral analysis in the diagnosis of obstructive sleep apnoea. Clin Sci (Lond) 1999;97:467-73.

51. Vázquez JC, Tsai WH, Flemons WW, Masuda A, Brant R, Hajduk E, et al. Automated analysis of digital oximetry in the diagnosis of obstructive sleep apnoea. Thorax 2000;55:302-7.

52. Viner S, Szalai JP, Hoffstein V. Are history and physical examination a good screening test for sleep apnea? Ann Intern Med 1991;115:356-9.

53. Hoffstein V, Szalai JP. Predictive value of clinical features in diagnosing obstructive sleep apnea. Sleep 1993;16:118-22.

54. Gyulay S, Olson LG, Hensley MJ, King MT, Allen KM, Saunders NA. A comparison of clinical assessment and home oximetry in the diagnosis of obstructive sleep apnea. Am Rev Respir Dis 1993;147:50-3.

55. Mendelson WB. Use of the sleep laboratory in suspected sleep apnea syndrome: is one night enough? Cleve Clin J Med 1994;61:299-303.

56. Le Bon O, Hoffmann G, Tecco J, Staner L, Noseda A, Pelc I, et al. Mild to moderate sleep respiratory events: one negative night may not be enough. Chest 2000;118:353-9.

57. Bittencourt LR, Suchecki D, Tufik S, Peres C, Togeiro SM, Bagnato MC, et al. The variability of the apnoea-hypopnoea index. J Sleep Res 2001;10:245-51. 58. Portier F, Portmann A, Czernichow P, Vascaut L, Devin E, Benhamou D, et al. Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome. Am J Respir Crit Care Med 2000;162:814-8.

59. Iber C, Redline S, Kaplan Gilpin AM, Quan SF, Zhang L, Gottlieb DJ, et al. Polysomnography performed in the unattended home versus the attended laboratory setting – Sleep Heart Health Study methodology. Sleep 2004;27:536-40.

60. Quan SF, Griswold ME, Iber C, Nieto FJ, Rapoport DM, Redline S, et al. Shortterm variablility of respiration and sleep during unattended nonlaboratory polysomnography – the Sleep Heart Health Study. Sleep 2002;25:843-9.

61. Aber WR, Block AJ, Hellard DW, Webb WB. Consistency of respiratory measurements from night to night during the sleep of elderly men. Chest 1989;96:747-51.

62. Chediak AD, Acevedo-Crespo JC, Seiden DJ, Kim HH, Kiel MH. Nightly variability in the indices of sleep-disordered breathing in men being evaluated for impotence with consecutive night polysomnograms. Sleep 1996;19:589-92.

63. Mosko SS, Dickel MJ, Ashurst J. Night-to-night variability in sleep apnea and sleep-related periodic leg movements in the elderly. Sleep 1988;11:340-8.

64. Bliwise DL, Benkert RE, Ingham RH. Factors associated with nightly variability in sleep-disordered breathing in the elderly. Chest 1991;100:973-6.

65. Wittig RM, Romaker A, Zorick FJ, Roehrs TA, Conway WA, Roth T. Nightto-night consistency of apneas during sleep. Am Rev Respir Dis 1984;129:244-6.

66. Gould GA, Whyte KF, Rhind GB, Airlie MA, Catterall JR, Shapiro CM, et al. The sleep hypopnea syndrome. Am Rev Respir Dis 1988;137:895-8.

67. Fietze I, Dingli K, Diefenbach K, Douglas NJ, Glos M, Tallafuss M, et al. Night-to-night variation of the oxygen desaturation index in sleep apnoea syndrome. Eur Respir J 2004;24:987-93.

68. Lord S, Sawyer B, O'Connell D, King M, Pond D, Eyland A, et al. Night-to-night variability of disturbed breathing during sleep in an elderly community sample. Sleep 1991;14:252-8.

69. Masaquel A, Stepnowsky C, Estline E, Mason WJ, Ancoli-Israel S. Night-to-night variability in sleep disordered breathing in elderly African-Americans recorded at home. Sleep reserach 1997;26:675.

70. Stepnowsky CJ, Jr, Orr WC, Davidson TM. Nightly variability of sleep-disordered breathing measured over 3 nights. Otolaryngol Head Neck Surg 2004; 131:837-43.

71. Meyer TJ, Eveloff SE, Kline LR, Millman RP. One negative polysomnogram does not exclude obstructive sleep apnea. Chest 1993;103:756-60.

72. Dean RJ, Chaudhary BA. Negative polysomnogram in patients with obstructive sleep apnea syndrome. Chest 1992;101:105-8.

73. Ancoli-Israel S, Kripke DF, Mason W, Messin S. Comparisons of home sleep recordings and polysomnograms

in older adults with sleep disorders. Sleep 1981;4:283-91.

74. Wang Y, Teschler T, Weinreich G, Hess S, Wessendorf TE, Teschler H. [Validation of microMESAM as screening device for sleep disordered breathing]. Pneumologie 2003;57:734-40.

75. Fischer Y, Junge-Hülsing B, Rettinger G, Panis A. The use of an ambulatory, automatic sleep recording device (QUISI version 1.0) in the evaluation of primary snoring and obstructive sleep apnoea. Clin Otolaryngol 2004;29:18-23.

76. Schäfer H, Ewig S, Hasper E, Lüderitz B. Predictive diagnostic value of clinical assessment and nonlaboratory monitoring system recordings in patients with symptoms suggestive of obstructive sleep apnea syndrome. Respiration 1997;64:194-9.

77. Esnaola S, Durán J, Infante-Rivard C, Rubio R, Fernández A. Diagnostic accuracy of a portable recording device (MESAM IV) in suspected obstructive sleep apnoea. Eur Respir J 1996;9:2597-605.

78. Hida W, Shindoh C, Miki H, Kikuchi Y, Okabe S, Taguchi O, et al. Prevalence of sleep apnea among Japanese industrial workers determined by a portable sleep monitoring system. Respiration 1993;60:332-7.

79. Issa FG, Morrison D, Hadjuk E, Iyer A, Feroah T, Remmers JE. Digital monitoring of sleep-disordered breathing using snoring sound and arterial oxygen saturation. Am Rev Respir Dis 1993;148:1023-9.

80. Koziej M, Cieslicki JK, Gorzelak K, Sliwinski P, Zielinski J. Hand-scoring of MESAM 4 recordings is more accurate than automatic analysis in screening for obstructive sleep apnoea. Eur Respir J 1994;7:1771-5.

81. Rauscher H, Popp W, Zwick H. Quantification of sleep disordered breathing by computerized analysis of oximetry, heart rate and snoring. Eur Respir J 1991;4:655-9.

82. Roche F, Gaspoz JM, Court-Fortune I, Minini P, Pichot V, Duverney D, et al. Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation 1999;100:1411-5.

83. Shochat T, Hadas N, Kerkhofs M, Herchuelz A, Penzel T, Peter JH, et al. The SleepStrip: an apnoea screener for the early detection of sleep apnoea syndrome. Eur Respir J 2002;19:121-6.

84. Stoohs R, Guilleminault C. Investigations of an automatic screening device (MESAM) for obstructive sleep apnoea. Eur Respir J 1990;3:823-9.

85. Stoohs R, Guilleminault C. MESAM 4: an ambulatory device for the detection of patients at risk for obstructive sleep apnea syndrome (OSAS). Chest 1992;101:1221-7.

86. Tvinnereim M, Mateika S, Cole P, Haight J, Hoffstein V. Diagnosis of obstructive sleep apnea using a portable transducer catheter. Am J Respir Crit Care Med 1995;152:775-9.

87. Roos M, Althaus W, Rhiel C, Penzel T, Peter JH, von Wichert P. [Comparative use of MESAM IV and polysomnography in sleep-related respiratory disorders]. Pneumologie 1993;47 Suppl 1:112-8.

88. Ficker JH, Wiest GH, Wilpert J, Fuchs FS, Hahn EG. Evaluation of a portable

recording device (Somnocheck) for use in patients with suspected obstructive sleep apnoea. Respiration 2001;68:307-12.

89. Baltzan MA, Verschelden P, Al-Jahdali H, Olha AE, Kimoff RJ. Accuracy of oximetry with thermistor (OxiFlow) for diagnosis of obstructive sleep apnea and hypopnea. Sleep 2000;23:61-9.

90. Pitson DJ, Stradling JR. Value of beatto-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/hypopnoea syndrome. Eur Respir J 1998;12:685-92.

91. Svanborg E, Larsson H, Carlsson-Nordlander B, Pirskanen R. A limited diagnostic investigation for obstructive sleep apnea syndrome. Oximetry and static charge sensitive bed. Chest 1990;98:1341-5.

92. Krieger J, Sforza E, Petiau C, Weiss T. Simplified diagnostic procedure for obstructive sleep apnoea syndrome: lower subsequent compliance with CPAP. Eur Respir J 1998;12:776-9.

93. Bar A, Pillar G, Dvir I, Sheffy J, Schnall RP, Lavie P. Evaluation of a portable device based on peripheral arterial tone for unattended home sleep studies. Chest 2003;123:695-703.

94. Saarelainen S, Himanen SL, Hasan J, Virkkala J, Koobi T. Whole-body impedance recording – a practical method for the diagnosis of sleep apnoea. Clin Physiol Funct Imaging 2003;23:110-3.

95. Pittman SD, Ayas NT, MacDonald MM, Malhotra A, Fogel RB, White DP. Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep 2004;27:923-33. 96. Ayappa I, Norman RG, Suryadevara M, Rapoport DM. Comparison of limited monitoring using a nasal-cannula flow signal to full polysomnography in sleep-disordered breathing. Sleep 2004;27:1171-9.

97. Miyazaki S, Tanaka T, Itasaka Y, Ishikawa K. A trial study of RhinoSleep for the diagnosis of sleep apnea. Psychiatry Clin Neurosci 2001;55:249-50.

98. Jiménez Gómez A, Golpe Gómez R, Carpizo Alfayate R, de la Roza Fernández C, Fernández Rozas S, García Pérez MM. [The validation of a portable 3-channel recording system (Oxyflow, Edentec) for the diagnosis of the sleep apnea syndrome]. Arch Bronconeumol 2000;36:7-12.

99. Zucconi M, Ferini-Strambi L, Castronovo V, Oldani A, Smirne S. An unattended device for sleep-related breathing disorders: validation study in suspected obstructive sleep apnoea syndrome. Eur Respir J 1996;9:1251-6.

100. Su S, Baroody FM, Kohrman M, Suskind D. A comparison of polysomnography and a portable home sleep study in the diagnosis of obstructive sleep apnea syndrome. Otolaryngol Head Neck Surg 2004;131:844-50.

101. Liesching TN, Carlisle C, Marte A, Bonitati A, Millman RP. Evaluation of the accuracy of SNAP technology sleep sonography in detecting obstructive sleep apnea in adults compared to standard polysomnography. Chest 2004;125:886-91.

102. Ancoli-Israel S, Mason W, Coy TV, Stepnowsky C, Clausen JL, Dimsdale J. Evaluation of sleep disordered breathing with unattended recording: the Nightwatch System. J Med Eng Technol 1997;21:10-4. 103. Carrasco O, Montserrat JM, Lloberes P, Ascasco C, Ballester E, Fornas C, et al. Visual and different automatic scoring profiles of respiratory variables in the diagnosis of sleep apnoea-hypopnoea syndrome. Eur Respir J 1996;9:125-30.

104. Finke R, Jurczok A, Matthys H. [Clinical experience with the Apnea Check System in screening for sleep apnea]. Pneumologie 1993;47 Suppl 1:119-21.

105. Golpe R, Jiménez A, Carpizo R. Home sleep studies in the assessment of sleep apnea/hypopnea syndrome. Chest 2002;122:1156-61.

106. Herer B, Fuhrman C, Roig C, Housset B. Prediction of obstructive sleep apnea by OxiFlow in overweight patients. Sleep Med 2002;3:417-22.

107. Lloberes P, Montserrat JM, Ascaso A, Parra O, Granados A, Alonso P, et al. Comparison of partially attended night time respiratory recordings and full polysomnography in patients with suspected sleep apnoea/hypopnoea syndrome. Thorax 1996;51:1043-7.

108. Parra O, García-Esclasans N, Montserrat JM, García Eroles L, Ruíz J, López JA, et al. Should patients with sleep apnoea/hypopnoea syndrome be diagnosed and managed on the basis of home sleep studies? Eur Respir J 1997;10:1720-4.

109. Redline S, Tosteson T, Boucher MA, Millman RP. Measurement of sleep-related breathing disturbances in epidemiologic studies. Assessment of the validity and reproducibility of a portable monitoring device. Chest 1991;100:1281-6.

110. Whittle AT, Finch SP, Mortimore IL, MacKay TW, Douglas NJ. Use of home

sleep studies for diagnosis of the sleep apnoea/hypopnoea syndrome. Thorax 1997;52:1068-73.

111. Quintana-Gallego E, Villa-Gil M, Carmona-Bernal C, Botebol-Benhamou G, Martinez-Martinez A, Sanchez-Armengol A, et al. Home respiratory polygraphy for diagnosis of sleep-disordered breathing in heart failure. Eur Respir J 2004;24:443-8.

112. Ballester E, Solans M, Vila X, Hernandez L, Quintó L, Bolivar I, et al. Evaluation of a portable respiratory recording device for detecting apnoeas and hypopnoeas in subjects from a general population. Eur Respir J 2000;16:123-7.

113. Marrone O, Salvaggio A, Insalaco G, Bonsignore MR, Bonsignore G. Evaluation of the POLYMESAM system in the diagnosis of obstructive sleep apnea syndrome. Monaldi Arch Chest Dis 2001;56:486-90.

114. Gyulay S, Gould D, Sawyer B, Pond D, Mant A, Saunders N. Evaluation of a microprocessor-based portable home monitoring system to measure breathing during sleep. Sleep 1987;10:130-42.

115. Sergi M, Rizzi M, Greco M, Andreoli A, Bamberga M, Castronovo C, et al. Validity of diurnal sleep recording performed by an ambulatory device in the diagnosis of obstructive sleep apnoea. Respir Med 1998;92:216-20.

116. Martínez García MA, Soler Cataluña JJ, Román Sánchez P. [Sequential use of nocturnal pulse oximetry and respiratory polygraphy (AutoSet) for diagnosing sleep apnea/hypopnea syndrome in high risk patients]. Arch Bronconeumol 2003;39:74-80. 117. Hamm M, Krause J, Felsmann M, Barnstorf D, Kothe R, Fabel H. [A computerized processing unit for ambulatory diagnosis of sleep apnea and nocturnal hypoxemia]. Pneumologie 1990;44 Suppl 1:627-8.

118. Yin M, Miyazaki S, Itasaka Y, Shibata Y, Abe T, Miyoshi A, et al. A preliminary study on application of portable monitoring for diagnosis of obstructive sleep apnea. Auris Nasus Larynx 2005;32:151-6.

119. Candela A, Hernandez L, Asensio S, Sanchez-Paya J, Vila J, Benito N, et al. [Validation of a respiratory polygraphy system in the diagnosis of sleep apnea syndrome]. Arch Bronconeumol 2005;41:71-7.

120. García Díaz EM, Capote Gil F, Cano Gómez S, Sánchez Armengol A, Carmona Bernal C, Soto Campos JG. [Respiratory polygraphy in the diagnosis of obstructive sleep apnea syndrome]. Arch Bronconeumol 1997;33:69-73.

121. Steltner H, Staats R, Timmer J, Vogel M, Guttmann J, Matthys H, et al. Diagnosis of sleep apnea by automatic analysis of nasal pressure and forced oscillation impedance. Am J Respir Crit Care Med 2002;165:940-4.

122. Bachour A, Herrala J, Maasilta P. Is there a cost-effective way to diagnose mild sleep-disordered breathing? Respir Med 2002;96:586-93.

123. Magalang UJ, Dmochowski J, Veeramachaneni S, Draw A, Mador MJ, El-Solh A, et al. Prediction of the apneahypopnea index from overnight pulse oximetry. Chest 2003;124:1694-701. 124. Pépin JL, Lévy P, Lepaulle B, Brambilla C, Guilleminault C. Does oximetry contribute to the detection of apneic events? Mathematical processing of the SaO2 signal. Chest 1991;99:1151-7.

125. Farney RJ, Walker LE, Jensen RL, Walker JM. Ear oximetry to detect apnea and differentiate rapid eye movement (REM) and non-REM (NREM) sleep. Screening for the sleep apnea syndrome. Chest 1986;89:533-9.

126. Duchna HW, Rasche K, Orth M, Schultze-Werninghaus G. [Sensitivity and specificity of pulse oximetry in diagnosis of sleep-related respiratory disorders]. Pneumologie 1995;49 Suppl 1:113-5.

127. Lévy P, Pépin JL, Deschaux-Blanc C, Paramelle B, Brambilla C. Accuracy of oximetry for detection of respiratory disturbances in sleep apnea syndrome. Chest 1996;109:395-9.

128. Epstein LJ, Dorlac GR. Cost-effectiveness analysis of nocturnal oximetry as a method of screening for sleep apnea-hypopnea syndrome. Chest 1998;113:97-103.

129. Unal M, Ozturk L, Kanik A. The role of oxygen saturation measurement and body mass index in distinguishing between non-apnoeic snorers and patients with obstructive sleep apnoea syndrome. Clin Otolaryngol Allied Sci 2002;27:344-6.

130. González-Moro JMR, de Lucas Ramos P, Juanes MJS, Alonso JLI, Adrados RP, Marcos JMC. [Utilidad del análisis visual de la oximetría nocturno como método de cribado en enfermos con sospecha clínica de SAOS]. Arch Bronconeumol 1996;32: 437-441. 131. Zamarron C, Gude F, Barcala J, Rodriguez JR, Romero PV. Utility of oxygen saturation and heart rate spectral analysis obtained from pulse oximetric recordings in the diagnosis of sleep apnea syndrome. Chest 2003;123:1567-76.

132. Whitelaw WA, Brant RF, Flemons WW. Clinical usefulness of home oximetry compared with polysomnography for assessment of sleep apnea. Am J Respir Crit Care Med 2005;171:188-93.

133. Cooper BG, Veale D, Griffiths CJ, Gibson GJ. Value of nocturnal oxygen saturation as a screening test for sleep apnoea. Thorax 1991;46:586-8.

134. Golpe R, Jiménez A, Carpizo R, Cifrian JM. Utility of home oximetry as a screening test for patients with moderate to severe symptoms of obstructive sleep apnea. Sleep 1999;22:932-7.

135. Wiltshire N, Kendrick AH, Catterall JR. Home oximetry studies for diagnosis of sleep apnea/hypopnea syndrome: limitation of memory storage capabilities. Chest 2001;120:384-9.

136. Roche N, Herer B, Roig C, Huchon G. Prospective testing of two models based on clinical and oximetric variables for prediction of obstructive sleep apnea. Chest 2002;121:747-52.

137. Olson LG, Ambrogetti A, Gyulay SG. Prediction of sleep-disordered breathing by unattended overnight oximetry. J Sleep Res 1999;8:51-5.

138. Sériès F, Marc I, Cormier Y, La Forge J. Utility of nocturnal home oximetry for case finding in patients with suspected

sleep apnea hypopnea syndrome. Ann Intern Med 1993;119:449-53.

139. Ryan PJ, Hilton MF, Boldy DA, Evans A, Bradbury S, Sapiano S, et al. Validation of British Thoracic Society guidelines for the diagnosis of the sleep apnoea/hypopnoea syndrome: can polysomnography be avoided? Thorax 1995;50:972-5.

140. Hussain SF, Fleetham JA. Overnight home oximetry: can it identify patients with obstructive sleep apnea-hypopnea who have minimal daytime sleepiness? Respir Med 2003;97:537-40.

141. Herer B, Roche N, Carton M, Roig C, Poujol V, Huchon G. Value of clinical, functional, and oximetric data for the prediction of obstructive sleep apnea in obese patients. Chest 1999;116:1537-44.

142. Series F, Kimoff RJ, Morrison D, Leblanc MH, Smilovitch M, Howlett J, et al. Prospective evaluation of nocturnal oximetry for detection of sleep-related breathing disturbances in patients with chronic heart failure. Chest 2005;127:1507-14.

143. Wessendorf TE, Alymov G, Wang YM, Stampa J, Thilmann AF, Teschler H. [Pulse oximetry screening for sleep-disordered breathing in stroke]. Pneumologie 2002;56:357-62.

144. Raymond B, Cayton RM, Chappell MJ. Combined index of heart rate variability and oximetry in screening for the sleep apnoea/hypopnoea syndrome. J Sleep Res 2003;12:53-61. 145. Zamarron C, Romero PV, Gude F, Amaro A, Rodriguez JR. Screening of obstructive sleep apnoea: heart rate spectral analysis of nocturnal pulse oximetric recording. Respir Med 2001; 95:759-65.

146. Haponik EF, Smith PL, Meyers DA, Bleecker ER. Evaluation of sleep-disordered breathing. Is polysomnography necessary? Am J Med 1984;77:671-7.

147. Dixon JB, Schachter LM, O'Brien PE. Predicting sleep apnea and excessive day sleepiness in the severely obese: indicators for polysomnography. Chest 2003;123:1134-41.

148. Rodsutti J, Hensley M, Thakkinstian A, D'Este C, Attia J. A clinical decision rule to prioritize polysomnography in patients with suspected sleep apnea. Sleep 2004;27:694-9.

149. Scharf SM, Garshick E, Brown R, Tishler PV, Tosteson T, McCarley R. Screening for subclinical sleep-disordered breathing. Sleep 1990;13:344-53.

150. Flemons WW, Whitelaw WA, Brant R, Remmers JE. Likelihood ratios for a sleep apnea clinical prediction rule. Am J Respir Crit Care Med 1994;150: 1279-85.

151. Lim PV, Curry AR. The role of history, Epworth Sleepiness Scale Score and body mass index in identifying non-apnoeic snorers. Clin Otolaryngol 2000;25:244-8.

5. Treatment

Background

Treatment options

Suggested treatment modalities include:

- Continuous positive airways pressure (CPAP) devices
- Oral appliances mandibular repositioning appliances (MRAs)
- Surgical procedures
- Pharmacological agents
- Weight reduction, various therapies and lifestyle modifications.

Continuous positive airways pressure (CPAP) devices

In 1981, Sullivan et al introduced continuous positive airway pressure (CPAP) applied to the nostrils in the treatment of obstructive sleep apnoea [1]. They wrote: "Five patients with severe obstructive sleep apnoea were treated with continuous positive airway pressure (CPAP) applied via a comfortable nose mask through the nares. Low levels of pressure (range 4.5–10 cm H_2 O) completely prevented upper airway occlusion during sleep in each patient and allowed an entire night of uninterrupted sleep. Continuous positive airway pressure applied in this manner provides a pneumatic splint for the nasopharyngeal airway and is a safe, simple treatment for the obstructive sleep apnoea syndrome".

CPAP acts as a pneumatic splint and prevents upper airway occlusion by pushing the soft palate and tongue forward and away from the posterior oropharyngeal wall (Figure 5.1) [1]. The CPAP device consists of a blower with a pressure control unit, a tube and a nasal or oronasal mask. Adequate pressure must be titrated, and a recoding must be made to verify that apnoeas have been eliminated at a given pressure before CPAP is prescribed for home use. Choosing a well-fitting mask is critical. Regular follow-up with technical assistance is mandatory for compliance with the treatment [2]. Interventions to improve compliance with CPAP were recently reviewed by the Cochrane Collaboration. Among the interventions are auto-CPAP, Bi-level PAP, heated humidification, patients-titrated CPAP, cognitive-behavioural therapy and educational programmes [3].

Figure 5.1 Nasal CPAP prevents upper airway occlusion by increasing upper airway pressure (Illustration K Franklin).

Mandibular repositioning appliances

A number of different mandibular repositioning appliances (MRAs) have been suggested for the treatment of snoring and obstructive sleep apnoea. MRAs, which were introduced by Soll and George in 1985, are by far the most commonly used appliances [4]. These appliances are also referred to as mandibular advancement devices/appliances or oral appliances. The upper airway is widened by anterior displacement of the base of the tongue, epiglottis and soft palate, produced by the MRA [5]. The device also prevents posterior displacement of the mandible in the supine position. Factors of importance for successful treatment with MRAs are severity of disease, degree of mandibular protrusion, supine position-related apnoea and BMI (Body mass index) [6]. The devices are individually fabricated and advance the mandible by about 5 mm or 50-75% of maximum protrusion. Protrusion by 75% of maximal range has been shown to decrease AHI more than protrusion by 50% in patients with severe OSAS [7]. This effect was not seen in patients with a mild to moderate form of the disease [8]. The appliances may be of a soft or hard material, either monoblock or adjustable two-piece devices (Figure 5.2). Patients must have their own teeth, and children should not be treated due to the high risk of dental displacement. Patients are usually treated and followed up by dentists. A sleep apnoea investigation during treatment is needed to monitor the effect on apnoea and hypopnoea reduction.

Other oral devices suggested as a treatment of OSAS include tongue retaining devices that hold the tongue anteriorly in a plastic bulb, mouth shields to prevent mouth breathing and soft palate lifters to reduce soft palate vibrations.

Figure 5.2 Two different kinds of individually adjusted mandibular repositioning appliances.

Surgical treatments

Surgical treatments for obstructive sleep apnoea aim to increase the upper airway cross-sectional area, remove obstructing tissues or bypass the upper airway. The objective of surgical treatment is to provide lifelong relief of symptoms with one intervention. Uvulopalatopharyngoplasty (UPPP), which was introduced in 1981 [9], shortly became a common procedure worldwide for snoring and obstructive sleep apnoea. Postoperative sleep apnoea recordings are recommended, given that apnoeas may be present even when snoring is reduced [10,11]. During the last few years, a number of other surgical methods – including laser and radiofrequency ablation techniques – have been introduced.

Various surgical techniques:

- 1. Tracheostomy, which bypasses the upper airway.
- 2. Uvulopalatopharyngoplasty (UPPP) removal of the tonsils, uvula and a small portion of the soft palate to enlarge the oropharyngeal airspace (Figure 5.3).
- 3. Uvulopalatoplasty (UPP) removal of the uvula and a small portion of the soft palate. Referred to as laser-assisted uvulopalatoplasty (LAUP) when a laser is used.
- 4. Temperature-controlled radio frequency tissue volume ablation (TCRAFTA) applies energy to the base of the tongue and/or the soft palate.
- 5. Inferior sagittal mandibular osteotomy and genioglossus advancement with hyoid myotomy and suspension aiming to enlarge the retrolingual airway.
- 6. Laser midline glossectomy and lingual plasty.
- 7. Maxillo-mandibular osteotomy and advancement, which enlarges both the retrolingual and retropalatal airway.
- 8. Nasal airways enlargement.
- 9. Epiglottoplasty for selected cases of laryngomalacia.
- 10. Removal of specific obstructing pathological lesions, ie, hypertrophy of the tonsils.

Figure 5.3 Normal pharynx vs after uvulopalatopharyngoplasty (UPPP).

Drug treatment

A number of different classes of drugs have been suggested as possible treatments for obstructive sleep apnoea. Sex hormones, ie medroxyprogesterone and oestrogen, have been suggested, given that sleep apnoea is more prevalent among men and increases in women after menopause. Ventilatory stimulants include theophylline, medroxyprogesterone and azetazolamide. Azetazolamide increases ventilatory drive by metabolic acidosis. Antidepressants have been suggested as a means of reducing sleep apnoea during REM sleep. Other suggested treatments are opoid antagonists, nicotine gum or transdermal nicotine, nasal corticosteroids, antihypertensive agents and physiostigmine.

Other treatments, including lifestyle modifications

A variety of different treatment modalities has been suggested, including cardiac pacemakers, submental electrical stimulation, weight reduction programmes, bariatric surgery, nasal dilators, didgeridoo playing, and various means of avoiding sleep in the supine position. Life style modifications include smoking cessation, as well as avoidance of alcohol and sleep deprivation.

Objectives

To examine the benefits of treatment for OSAS on daytime impairment and blood pressure in randomised controlled trials (RCTs). To examine types and frequencies of adverse effects from treatment and compliance regardless of study design.

Methods

Inclusion criteria

Benefits of treatment trial criteria:

- Randomised controlled trials of any intervention aimed at reducing obstructive apnoeas/hypopnoeas.
- At least 20 adults followed for a minimum of 4 weeks.

- Trials including patients investigated for suspicion of OSAS and studies including subjects with OSAS.
- The primary end point was daytime sleepiness. Secondary endpoints were the results of standardised generic or disease-specific, self-reported measures of functioning and well-being. The AHI and blood pressure were based on 24-hour monitoring.

Adverse effects study criteria

- Studies on CPAP, mandibular advancement appliances and surgical modalities used in treating obstructive sleep apnoea.
- Studies that reported any kind of clinical or patient-experienced adverse effect, including technical failures.
- Regardless of trial design without any restrictions on number of adults included, presence or absence of a comparison group, observation time or indication of the treatment.

Compliance study criteria

- At least 100 adults followed up for at least one year. Compliance with CPAP measured objectively.
- No restrictions regarding comparison group.

Exclusion criteria

- Studies of drugs aiming at reducing daytime sleepiness but not obstructive sleep apnoeas.
- Studies written in languages other than Danish, English, Finnish, French, German, Icelandic, Norwegian, Spanish or Swedish.

End-points for beneficial effects

- Excessive daytime sleepiness: Subjective sleepiness assessed with the Epworth sleepiness scale (ESS). Objective sleepiness was assessed with the multiple sleep latency test (MSLT) and the maintenance of wake-fulness test (MWT).
- Generic or disease-specific, self-reported measures of functioning and well-being: Functional Outcome of Sleep Questionnaire (FOSQ), Nottingham Health Profile (NHP) subscale on Energy and the subscale measuring Vitality from the Short Form 36 (SF-36) questionnaire.
- Frequency of sleep apnoeas: AHI or respiratory disturbances index (RDI), defined as the mean number of apnoeas and hypopnoeas per hour of sleep.
- Blood pressure: 24-hour blood pressure monitoring.

Search strategies

Benefits of treatment

PubMed, Embase and the Cochrane Controlled Trials Register were searched for randomised control trials (RCT) on 1 March 2006. The following search terms were used: Sleep apnoea syndromes [MeSH]; randomised control trial or clinical trial; all adult 19+ year. Titles and abstracts of all identified trials were first screened for relevance.

Reviews and meta-analyses were also searched. "Randomised control trial" or "clinical trial" was substituted for "review" or "meta-analysis". Twenty-one reviews were identified through the PubMed and Embase searches: [3,12–31]. Furthermore, the reference lists of all identified RCTs were checked for identification of additional trials.

All RCTs included in earlier reviews or reference lists were identified by the current PubMed search.

For all potentially relevant articles, the full reports were requested. Two independent readers went through 113 articles, of which 30 were included

in the final analysis. There was no disagreement between the reviewers concerning inclusion and exclusion of trials.

Data was independently extracted by two reviewers and presented in the form of means and standard deviations. Authors were contacted when needed. Data extractions of included studies are presented in Table 5.21 and excluded articles in Tables 5.22–5.24.

Adverse effects and compliance with therapy

PubMed was searched for reports of adverse effects of treatments until 1 March 2006. The following search terms were used: Sleep apnoea syndromes [MeSH] AND adverse effects [MeSH Subheading] OR complications [MeSH subheading] OR complication [Text Word] OR complications [Text Word], All Adult: 19+ years. RCTs reporting benefits for treatment were also screened for information on adverse effects.

PubMed was searched for compliance with treatments until 1 March 2006. The following search terms were used for finding reports on compliance: Sleep apnoea syndromes [MeSH], compliance [Text Word], adherence [Text Word], dropout [Text Word], attrition [Text Word], patient satisfaction [MeSH], questionnaires [MeSH], patient preference [Text Word]. RCTs reporting benefits of treatment were also screened for information on compliance.

Titles and abstracts were screened for relevance. A total of 131 articles were read, of which 82 were included in the final analysis. Data extractions of included studies are presented in Tables 5.25, 5.26, 5.28, 5.30 and excluded articles in Tables 5.27 and 5.29.

Quality assessment

Randomised controlled trials of treatment benefits

The following modified Jadad rating scale was used [32]:

- 1. Was the trial described as randomised? Yes = 1 No or not reported = 0
- 2. Was the allocation concealed? Yes = 1 No or not reported = 0 (performed by non-involved source)

- 3. Were patients blinded to treatment Yes = 1No or not reported = 0alternative? 4. Were investigators blinded to Yes = 1No or not reported = 0
- treatment alternative?
- 5. Was there a description of withdrawals? Lost to follow-up less than 30%
- Yes = 1No or not reported = 0

Trials with a summary rating of 0 or 1 were rated low quality, those with a rating of 2 or 3 were rated medium high quality, and those with a rating of 4 or 5 were rated high quality.

Reports of adverse effects and compliance

High quality required fulfilment of criteria 1-4:

- 1. Prospective study
- 2. Before and after data for adverse effects
- 3. Defined groups of patients, detailed description of methods, adverse effects and compliance
- 4. Assessment of outcomes either objective or blinded to exposure.

Medium quality required fulfilment of criteria 1–3:

- 1. Prospective design or consecutive patients
- 2. Baseline data (for adverse effects not attributable to the device)
- 3. Summary description of patients, methods, adverse effects or compliance.

Low quality was assigned to a study if at least one of the following was true:

- 1. Retrospective study
- 2. Only follow-up data (for adverse effects not attributed to the device)
- 3. Loss to follow-up >30%
- 4. No description of patients, methods, adverse effects or compliance.

Grading of evidence

See summary of the report.

Statistical analysis

Data are expressed as means and standard deviations or as percentages. Odds ratios (ORs) are presented with 95% confidence intervals (CIs). For meta-analysis, we used Review Manager (RevMan) version 4.2 for Windows. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2003. Weighted mean difference was used for comparisons, except when testing the MWT, MSLT and FOSQ, for which standard mean difference was used, given that the results were presented in different scales. Outcome values at follow-up were compared in the analysis. A p-value of <0.05 was considered significant. A random model was used when the p-value for heterogeneity was less than 0.10.

Baseline data, study design, outcome measures and quality ratings of included RCT studies

All in all, 30 trials were included that investigated a total of 1 850 subjects. Baseline mean values are given in Table 5.1.

CPAP vs placebo or conservative treatment was investigated in 17 studies that included a total of 1212 subjects, of whom 19% were women. Mean age was 50, mean BMI was 32 kg/sq m, mean ESS was 13 and mean AHI was 33. Studies included patients with mild, moderate and severe sleep apnoea. Ten studies were of parallel design and 7 of cross-over design. Six studies were rated high quality and 11 were rated medium quality (Table 5.2).

Mandibular repositioning appliances (individually produced) vs placebo was investigated in 4 studies that included a total of 277 patients, of whom 20% were women. Mean age was 48, mean BMI was 30 kg/sq m, mean ESS was 11 and mean AHI was 26. All studies were of crossover design. One study was rated high quality and 3 were rated medium quality (Table 5.3). CPAP vs individually produced mandibular repositioning appliances was investigated in 5 studies that included 230 patients, of whom 20% were women. Mean age was 46, mean BMI was 31 kg/sq m, mean ESS was 11 and mean AHI was 25. All studies were of cross-over design and rated medium quality (Table 5.4).

Surgery vs sham or conservative treatment was investigated in 3 parallel studies that included a total of 134 patients, of whom 17% were women. Mean age was 47, mean BMI was 30 kg/sq m, mean ESS was 11 and mean AHI was 17. One study of high quality investigated the effect of temperature-controlled radio frequency tissue volume ablation (TCRAFTA) and 2 studies of medium quality evaluated laser-assisted uvulopalatoplasty (LAUP) (Table 5.5).

One study of high quality compared uvulopalatopharyngoplasty (UPPP) with mandibular repositioning appliances. One study of medium quality compared the effect of lateral pharyngoplasty with UPPP, and one study of medium quality compared the effect of didgeridoo playing with subjects on a waiting list for didgeridoo lessons (Table 5.6).

No study reported any outcomes on cardiovascular morbidity, including hypertension or mortality.

	CPAP vs placebo/ conservative	MRA vs placebo/ conservative	CPAP vs MRA	
No of included trials	17	4	5	
No of subjects	1 212	277	230	
Range	23–142	21–104	24–104	
Age				
No of trials reporting	17	4	5	
Mean age	50	48	46	
Range of means	46–54	46-55	44–51	
Gender				
No of trials reporting	16	4	5	
Percent female (%)	19	20	20	
Range of percentages	0-48	19–21	17–25	
Body mass index				
No of trials reporting	17	4	5	
Mean, kg/m ²	32	30	31	
Range of means	29–37	29–31	29–32	
Epworth Sleepiness Scale				
No of trials reporting	16	3	4	
Mean score	13	11	11	
Range of means	7–17	10–14	10–14	
Apnoea-hypopnoea index				
No of trials reporting	17	4	5	
Mean, events/hour	33	26	25	
Range of means	10–64	22–32	22–31	

Table 5.1 Baseline characteristics of subjects in included trials (means weighted by sample size).

CPAP = Continuous positive airway pressure; MRA = Mandibular repositioning appliance

Surgery vs placebo/ conservative	Surgery vs surgery, surgery vs MRA, didgeridoo	All trials
3	3	30
134	132	1 850
28–60	16–52	21–142
3	2	29
47	50	49
44-49	49–50	44–55
3	2	28
17	4	16
09–24	0–16	0-48
2	2	20
30 2	3 27	30
27–32	26–29	26–37
2	C	24
د 11	12	20
10–12	13	7–17
3	3	29
17	19	30
15–18	19–39	10–64

Author, year, reference	Design	Duration	No	Men %	Age
Engleman et al, 1994 [33]	Cross-over	4 weeks	35	81	49±8
Engleman et al, 1998 [34]	Cross-over	4 weeks	24	81	47±12
Redline et al, 1998 [35]	Parallel	8 weeks	111	52	491±0
Ballester et al, 1999 [36]	Parallel	3 months	105	88	53±10
Engleman et al, 1999 [37]	Cross-over	4 weeks	37	62	44±8
Jenkinson et al, 1999 [38]	Parallel	4 weeks	107	100	49
Faccenda et al, 2001 [39]	Cross-over	4 weeks	71	83	50
McArdle et al, 2001 [40]	Cross-over	4 weeks	23	92	52±11
Monasterio et al, 2001 [41]	Parallel	6 months	142	86	54±9
Montserrat et al, 2001 [42]	Parallel	6 weeks	47	91	54±10
Barbé et al, 2001 [43]	Parallel	6 weeks	55	91	53±15
Barnes et al, 2002 [44]	Cross-over	3 months	42	83	46±11
Chakravorty et al, 2002 [45]	Parallel	3 months	71		50±11
Pepperell et al, 2002 [46]	Parallel	4 weeks	118	100	50±10
Becker et al, 2003 [47]	Parallel	2 months	60	90	53±9
Woodson et al, 2003 [48]	Parallel	8 weeks	60	72	49±8
Barnes et al, 2004 [49]	Cross-over	3 months	104	79	46±9

Table 5.2 CPAP vs placebo/conservative.

AHI = Apnoea-hypopnoea index; BMI = Body mass index; BP = Blood pressure; ESS = Epworth sleepiness scale; FOSQ = Functional outcomes of sleep questionnaire; MSLT = Multiple sleep latency test; MWT = Maintenance of wakefulness test

Table 5.3 Mandibular repositioning appliance vs placebo/conservative.

Author, year, reference	Design	Duration	No	Men %	Age	
Gotsopoulos et al, 2002 [50]	Cross-over	4 weeks	85	81	48±11	
Johnston et al, 2002 [51]	Cross-over	4–6 weeks	21	81	55±7	
Gotsopoulos et al, 2004 [52]	Cross-over	4 weeks	67	79	48±11	
Barnes et al, 2004 [49]	Cross-over	3 months	104	79	46±9	

AHI = Apnoea-hypopnoea index; BMI = Body mass index; BP = Blood pressure;

ESS = Epworth sleepiness scale; FOSQ = Functional outcomes of sleep questionnaire;

MSLT = Multiple sleep latency test; MWT = Maintenance of wakefulness test

BMI	Baseline Mean AHI	Baseline Mean ESS	Outcomes	Quality
33±9	Median 28		MSLT	Medium
30±7	43±37	12±4	ESS, MSLT	Medium
33±7	13±10	10±5	ESS, MSLT, AHI	Medium
32±5	56±29	12±5	ESS	Medium
30±5	10±3	13±3	ESS, MWT, SF-36	Medium
30±5	Median ODI4: 31	Median 16.5	ESS, MWT, SF-36	High
30±5	Median 35	Median 15	ESS, FOSQ, BP	Medium
31±5	Median 42	Median 14	ESS	High
29±4	20±6	13±5	ESS, MSLT, AHI, FOSQ	Medium
31±6	54±19	15±7	ESS, FOSQ, SF-36	High
29±5	55±25	7±3	ESS, MSLT, FOSQ, BP	High
30±5	13±6	11±5	ESS, MSLT, FOSQ, SF-36, BP	Medium
37±12	47±25	15±5	ESS, AHI	Medium
35±7	Mean ODI4: 37±20	16±4	BP	High
33±6	64±22	14±3	ESS, AHI, BP	Medium
29±4	18±9	12±4	ESS, AHI, FOSQ	
31±5	22±11	10±3	ESS, MWT, AHI, FOSQ, SF-36, BP	Medium

BMI	Baseline Mean AHI	Baseline Mean ESS	Outcomes	Quality
29±5	27±17	11±5	ESS, MSLT, AHI	Medium
32±6	32±21	14±6	ESS, AHI	Medium
29±5	27±15		BP	High
31±5	22±11	10±3	ESS, MWT, AHI, FOSQ, SF-36, BP	Medium

Author, year, reference	Design	Duration	No	Men %	Age
Ferguson et al, 1996 [53]	Cross-over	4 months	27	89	46±11
Ferguson et al, 1997 [54]	Cross-over	4 months	24	79	44±11
Tan et al, 2002 [55]	Cross-over	2 months	24	83	51±10
Engleman et al, 2002 [56]	Cross-over	8 weeks	51	75	46±9
Barnes et al, 2004 [49]	Cross-over	3 months	104	79	46±9

Tuble 3.4 Civil is multiplicit repositioning upplicated	Table	5.4	CPAP vs	Mandibular	repositioning	appliance.
--	-------	-----	---------	------------	---------------	------------

AHI = Apnoea-hypopnoea index; BMI = Body mass index; BP = Blood pressure; ESS = Epworth sleepiness scale; FOSQ = Functional outcomes of sleep questionnaire;

MWT = Maintenance of wakefulness test

Table 5.5 Surgery vs placebo/conservative.

Author, year, reference	Туре	Design	Duration	No	Men %	
Woodson et al, 2003 [48]	TCRAFTA	Parallel	8 weeks	60	80	
Ferguson et al, 2003 [6]	LAUP	Parallel	7 months	46	76	
Larrosa et al, 2004 [57]	LAUP	Parallel	3 months	28	100	

AHI = Apnoea-hypopnoea index; BMI = Body mass index; ESS = Epworth sleepiness scale; FOSQ = Functional outcomes of sleep questionnaire; LAUP = Laser-assisted uvulopalatoplasty; TCRAFTA = Temperature-controlled radio frequency tissue volume ablation

Author, year, reference	Туре	Design	Duration	No	Men %	
Wilhelmsson et al, 1999 [58]	UPPP vs MRA	Parallel	1 year	80	100	
Cahali et al, 2004 [59]	Lateral pha- ryngoplasty vs UPPP	Parallel	8 months	27		
Puhan et al, 2006 [60]	Didgeridoo vs waiting list	Parallel	4 months	25	84	

Table 5.6 Other comparisons.

AHI = Apnoea-hypopnoea index; Body mass index; ESS = Epworth sleepiness scale;

MRA = Mandibular repositioning appliance

BMI	Baseline Mean AHI	Baseline Mean ESS	Outcomes	Quality
30±5	25±9		AHI	Medium
32±8	27±12	11±3	ess, ahi	Medium
32±7	22±10	13±5	ESS, AHI	Medium
29±5	31±26	14±4	ESS, MWT, AHI, FOSQ	Medium
31±5	22±11	10±3	ESS, MWT, AHI, FOSQ, SF-36, BP	Medium

Age	ВМІ	Baseline Mean AHI	Baseline Mean ESS	Outcomes	Quality
49±8	29±4	18±9	12±4	ESS, AHI, FOSQ	High
45±8	32±5	17±4	10±4	ESS, AHI	Medium
44±7	27±3	15±13	11±5	ESS, AHI	Medium

Age	ВМІ	Baseline Mean AHI	Baseline Mean ESS	Outcomes	Quality
50	27	19±9		AHI	High
	29±5	39±22	14±12	AHI	Medium
 49±7	26±3	21±5	12±5	ESS, AHI, SF-36	Medium

Treatment effect on excessive daytime sleepiness

Conclusions

- There is strong evidence that CPAP reduces daytime sleepiness regardless of the severity of the sleep apnoea syndrome (Evidence Grade 1).
- Custom-made mandibular repositioning appliances reduce daytime sleepiness patients with mild to moderate sleep apnoea syndrome (Evidence Grade 3).
- There is insufficient scientific evidence for the effect of any surgical modality on daytime sleepiness.
- No studies that meet the present inclusion criteria show that weight reduction programmes, bariatric surgery, drugs, pacemakers, devices for sleep in lateral position, didgeridoo-playing or any other suggested treatment or lifestyle modification for obstructive sleep apnoea syndrome have any effect.

Results

A total of 22 studies investigated the effect of treatment on subjective sleepiness measured with the Epworth sleepiness scale (ESS). Thirteen studies measured sleep latency as an objective proxy for daytime sleepiness using the multiple sleep latency test (MSLT) and maintenance of wakefulness test (MWT). A summary of the results of a meta-analysis (Figures 5.4–5.12) and the evidence for the effects of included studies are presented in Tables 5.7 and 5.8.

	Number of studies	Weighted mean difference (95% confidence interval)	Evidence for included studies
CPAP vs placebo	15 ^{**†}	−3.0 (−4.1; −1.9) P<0.00001 [‡]	Evidence Grade 1
MRA vs placebo	3**	-1.1 (-2.1; -0.1) p=0.03	Evidence Grade 3
CPAP vs MRA	4 **	-1.06 (-3.0; 0.9) p=0.28 [‡]	Contradictory scientific evidence
LAUP vs placebo	2	-1.2 (-3.9; 1.6) p=0.40	Insufficient scientific evidence
TCRAFTA vs placebo	1†	-0.8 (-3.1; 1.5) p=0.50	Insufficient scientific evidence
CPAP vs TCRAFTA	1†	0.5 (-2.3; 3.3) p=0.72	Insufficient scientific evidence
Didgeridoo vs conservative	1	-2.2 (-5.9; 1.5) p=0.25	Insufficient scientific evidence

Table 5.7 The effect of different treatments on ESS*.

* A decrease in ESS denotes less sleepiness.

** One study included 3 arms with CPAP, MRA and placebo.

[†] One study included 3 arms with TCRAFTA, CPAP and placebo.

[‡] Analysed in a random model due to heterogeneity.

CPAP = Continuous positive airway pressure; LAUP = Laser-assisted uvulopalatoplasty; MRA = Mandibular repositioning appliance; TCRAFTA = Temperaturecontrolled radio frequency tissue volume ablation

	Num- ber of studies	Standardised mean difference (95% confidence interval)	Evidence for included studies
CPAP vs placebo	9 **	0.23 (0.08; 0.38) p=0.003	Evidence Grade 1
MRA vs placebo	2**	0.23 (0.01; 0.45) p=0.04	Evidence Grade 3
CPAP vs MRA	2**	0.09 (-0.15; 0.33) p=0.46	Insufficient scientific evidence

	Τα	able	5.8	The	effect	of	different	treatments	on	MSLT	and	MWT	-*
--	----	------	-----	-----	--------	----	-----------	------------	----	------	-----	-----	----

* An increase in MSLT or MWT denotes less sleepiness.

** One study included 3 arms with CPAP, MRA and placebo.

CPAP = Continuous positive airway pressure; MRA = Mandibular repositioning appliance

Daytime sleepiness (subjective and objective) was significantly less after CPAP than after placebo or conservative treatment (Tables 5.7 and 5.8). When comparing the effect on daytime sleepiness with regard to baseline mean AHI or ESS, CPAP was found to reduce subjective sleepiness among patients with mild, moderate and severe sleep apnoea. But the effect size was greater when mean AHI was above 30. A total of 712 patients in 18 studies were followed regarding ESS after active CPAP treatment. Their baseline mean ESS decreased from 12.4 ± 4.2 to 8.1 ± 4.5 during treatment, ie, from abnormal to normal values for daytime sleepiness.

Daytime sleepiness (subjective and objective) was significantly less after a mandibular repositioning appliance had been worn during sleep than after placebo (Tables 5.7 and 5.8). The effect size was greater for CPAP than for mandibular repositioning appliances compared with placebo on subjective sleepiness. However, there was no significant difference in effect size for studies that compared CPAP with mandibular repositioning appliances in a pooled analysis. A total of 250 patients in 6 studies who were treated with active mandibular advancement were monitored with the ESS, which decreased from a mean of 11.4 ± 4.9 to 9.0 ± 5.5 , ie, from abnormal to normal values for daytime sleepiness.

Neither LAUP nor TCRAFTA had any effect on subjective sleepiness. No surgical study was identified that included any objective test for sleep latency.

One study that compared didgeridoo playing with being on a waiting list for didgeridoo reported an effect on subjective sleepiness when the standard was baseline (-2.8 (-5.4; -0.2) p=0.04) [60]. But there was no difference in ESS at follow-up when comparing the results of didgeridoo playing with being on a waiting list (-2.2 (-5.9; 1.5) p=0.25).

Treatment effect on sleep apnoeas and hypopnoeas (AHI)

Conclusions

- There is strong evidence that CPAP is highly effective in reducing the frequency of obstructive sleep apnoeas among patients with mild, moderate and severe obstructive sleep apnoea to normal values (Evidence Grade 1).
- There is limited evidence that mandibular repositioning appliances reduce apnoea frequency but to a lesser degree than CPAP among patients with mild to moderate obstructive sleep apnoea (Evidence Grade 3).
- The scientific evidence is contradictory regarding the effect of laserassisted uvulopalatopharyngoplasty (LAUP). There is insufficient scientific evidence for the effect of any other treatment modality

 including surgery, pharmacological drugs, weight reduction and lifestyle changes – in reducing the frequency of obstructive sleep apnoeas.

Results

A total of 17 studies investigated the effect of treatment on the AHI. A summary of the results of a meta-analysis (Figures 5.13-5.16) and the evidence for an effect are presented in Table 5.9.

	Num- ber of studies	Weighted mean difference (95% confidence interval)	Evidence for included studies
CPAP vs placebo	6 **†	−13.0 (−17.7; −8.25) p<0.00001 [‡]	Evidence Grade 1
MRA vs placebo	3**	−9.8 (−15.5; −4.2) p<0.0007‡	Evidence Grade 3
CPAP vs MRA	5**	−7.6 (−9.2; −6.1) p<0.00001	Evidence Grade 3
LAUP vs placebo	2	–3.1 (–14.3; 8.1) p=0.59 [‡]	Contradictory scientific evidence
TCRAFTA vs placebo	1†	3.2 (-2.3; 8,7) p=0.25	Insufficient scientific evidence
CPAP vs TCRAFTA	1†	−12.2 (−18.0; −6.4) p<0.0001	Insufficient scientific evidence
MRA vs UPPP	1	-4.5 (-8.5; -0.50) p=0.03	Insufficient scientific evidence
Lateral pharyngo- plasty vs UPPP	1	–14.5 (–27.8; –1.2) p=0.03	Insufficient scientific evidence
Didgeridoo vs conservative	1	-3.8 (-11.0; 3.4) p=0.3	Insufficient scientific evidence

Table 5.9 The effect of different treatments on apnoea-hypopnoea index (AHI)*.

* A reduction in the AHI denotes a reduction in the frequency of apnoeas and hypopnoeas.

** One study included 3 arms with CPAP, MRA and placebo.

[†] One study included 3 arms with TCRAFTA, CPAP and placebo.

‡ Analysed in a random model due to heterogeneity.

CPAP = Continuous positive airway pressure; LAUP = Laser-assisted uvulopalatoplasty; MRA = Mandibular repositioning appliance; TCRAFTA = Temperature-controlled radio frequency tissue volume ablation; UPPP = Uvulopalatopharyngoplasty

The frequency of apnoeas and hypopnoeas (the AHI) was significantly less during CPAP treatment than during placebo or conservative treatment. The AHI was also significantly smaller using mandibular repositioning appliances than during placebo, but to a lesser extent than with CPAP (Table 5.9).

A total of 390 patients in 10 studies were followed regarding the AHI after active CPAP treatment. Their baseline mean AHI of 31.7 ± 14.6

decreased to 5.4 \pm 4.8 during treatment. A total of 332 patients in 8 studies were treated with active mandibular repositioning appliances. Their mean AHI decreased from 23.5 \pm 13.7 to 11.9 \pm 12.3 during active treatment.

Two studies were identified on LAUP vs placebo or conservative treatment and one on TCRAFTA. One study found no effect of LAUP vs placebo/conservative treatment at follow-up AHI +3.6 (95% CI -7.7; 14.9) [57], while the other study found a reduction of AHI, -8.0 (95% CI -14.9; -1.1) [6]. TCRAFTA had no effect on AHI compared with placebo at follow-up [48]. One study found a better effect on AHI after lateral pharyngoplasty than after uvulopalatopharyngoplasty [59]. One study found that MRA had a significantly better effect than UPPP. But the study did not investigate patients who did not comply with MRA at follow-up [58].

One study that examined didgeridoo playing vs being on a waiting list for lessons on didgeridoo reported an effect when results were compared with baseline in relation to no treatment (-6.6 (-13.3; -0.1) p=0.05) [60]. But there was no difference at follow-up of AHI when comparing didgeridoo playing with being on the waiting list (-3.8 (-11.0; 3.4) p=0.3).

Treatment effect on quality of life measured as functional outcomes and vitality

Conclusions

- There is contradictory scientific evidence concerning the effect of CPAP on quality of life measured with the Functional Outcome of Sleep Questionnaire (FOSQ) or SF-36 vitality subscale.
- There is insufficient scientific evidence for any effect on quality of life measured with the FOSQ or SF-36 vitality subscale on any treatment modality for sleep apnoea syndrome.

Results

A total of 9 studies investigated the effect of treatment on the FOSQ, 6 studies on the quality of life questionnaire's Short form 36 (SF-36) subscale measuring Vitality, and 1 study on the Nottingham Health Profile (NHP) subscale measuring Energy. A summary of the results of the meta-analysis (Figures 5.17–5.19) and the evidence for the effect are presented in Tables 5.10 and 5.11. Because the results of the FOSQ were given in three different ways, standardised mean difference was used in the meta-analysis.

	Num- ber of studies	Standardised mean difference (95% confidence interval)	Evidence for included studies
CPAP vs placebo	8**†	0.21 (-0.01, 0.44) p=0.06 [‡]	Contradictory scientific evidence
MRA vs placebo	1**	0.00 (-0.30, 0.30) p=1.0	Insufficient scientific evidence
CPAP vs MRA	2**	0.14 (-0.10, 0.38) p=0.26	Insufficient scientific evidence
TCRAFTA vs placebo	1†	0.24 (-0.33, 0.81) p=0.41	Insufficient scientific evidence
CPAP vs TCRAFTA	1†	0.09 (-0.69, 0.52) p=0.78	Insufficient scientific evidence

Table 5.10 The effect of different treatments on FOSQ*.

* An increase in FOSQ denotes a better functional outcome.

** One study included 3 arms with CPAP, MRA and placebo.

[†] One study included 3 arms with TCRAFTA, CPAP and placebo.

[‡] Analysed in a random model due to heterogeneity.

CPAP = Continuous positive airway pressure; MRA = Mandibular repositioning appliance; TCRAFTA = Temperature-controlled radio frequency tissue volume ablation
	Num- ber of studies	Weighted mean difference (95% confidence interval)	Evidence for included studies
CPAP vs placebo	5**	8.0 (-0.98, 17.0) p<0.08 [‡]	Contradictory scientific evidence
MRA vs placebo	1**	0.60 (-5.4, 6.6) p=0.84	Insufficient scientific evidence
CPAP vs MRA	1**	2.1 (-3.8, 8.0) p=0.48	Insufficient scientific evidence
Didgeridoo vs con- servative	1	-4.4 (-14.7, 5.9) p=0.40	Insufficient scientific evidence

Table 5.11 The effect of different treatments on SF-36 subscale vitality*.

* An increase in SF-36 subscale vitality denotes a better quality of life regarding the vitality.

** One study included 3 arms with CPAP, MRA and placebo.

[‡] Analysed in a random model due to heterogeneity.

CPAP = Continuous positive airway pressure; MRA = Mandibular repositioning appliance

There was an improvement in quality of life measured with the SF-36 vitality subscale (8.2 (4.5; 11.8) p<0.0001) and FOSQ (0.21 (0.06; 0.37) p<0.007) in a fixed model, but the results were heterogeneous and did not reach significance in a random model (Table 5.10 and 5.11). No effect was seen for any other treatment modality, but only a few studies were available. One trial reported an effect of CPAP vs conservative treatment on NHP (energy) when compared with baseline. But here was no significant difference of NHP at follow-up between patients given CPAP and conservative treatment (-9.5 (-21; 2.2) p=0.11) [36].

As regards effects on generic measures of quality of life, follow-up periods of 1–3 months may be considered too short for the full effect of the treatment to take hold. It is possible that a considerable percentage of subjects need more time to adjust to the device so as to benefit from its use and experience any adverse effects.

Treatment effect on 24-hour blood pressure

Conclusions

- There is contradictory scientific evidence concerning the effect of CPAP on arterial blood pressure among patients with obstructive sleep apnoea syndrome.
- There is insufficient scientific evidence that any other treatment for obstructive sleep apnoea syndrome reduces arterial blood pressure.

Results

A total of 7 studies investigated the effect on 24-hour blood pressure. A summary of the results of a meta-analysis (Figures 5.20-5.23) and the evidence for the effect are presented in Table 5.12.

	Num- ber of studies	Weighted mean dif- ference (95% confi- dence interval)	Evidence for included studies
Systolic blood pres	ssure		
CPAP vs placebo	6*	-1.5 (-3.4; 0.5) p=0.14	Contradictory scientific evidence
MRA vs placebo	2*	-1.5 (-3.9; 0.8) p=0.20	Insufficient scientific evidence
Diastolic blood pr	essure		
CPAP vs placebo	6*	-1.3 (-3.4; 0.9) p=0.24 [‡]	Contradictory scientific evidence
MRA vs placebo	2*	-1.3 (-2.8; 0.2) p=0.08	Insufficient scientific evidence

Table 5.12 The effect of different treatments on systolic blood pressure.

* One study included 3 arms with CPAP, MRA and placebo.

[‡] Analysed in a random model due to heterogeneity.

CPAP = Continuous positive airway pressure; MRA = Mandibular repositioning appliance

All studies of blood pressure were conducted on patients who had sought medical attention due to suspicion of sleep apnoea. No study investigated the effect on blood pressure among untreated patients with arterial hypertension. The frequency of patients with hypertension in the present studies varied from 0% to 39%.

According to the meta-analysis, there was no significant effect on blood pressure from CPAP or mandibular repositioning appliances. One study showed significantly lower blood pressure using CPAP than placebo [47]. But the study had a large loss to follow-up. No study was identified that tested the effect on blood pressure after surgery.

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	02 Epworth sleepiness scale (ESS)

Study		CPAP	Placebo/conservative		
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Engleman 1998 [34]	23	6.00 (3.00)	23	12.00 (4.00)	
Redline 1998 [35]	51	8.90 (4.30)	46	10.20 (5.60)	
Ballester 1999 [36]	68	5.60 (4.10)	37	10.60 (6.10)	
Engleman 1999 [37]	34	8.00 (4.00)	34	11.00 (4.00)	
Jenkinson 1999 [38]	52	7.50 (4.50)	49	12.30 (4.80)	
Barbé 2001 [43]	29	8.00 (3.00)	25	8.00 (5.00)	
Faccenda 2001 [39]	68	10.10 (5.80)	68	12.50 (6.60)	
McArdle 2001 [40]	22	8.00 (4.50)	22	12.10 (4.70)	
Monasterio 2001 [41]	66	9.60 (5.50)	59	11.80 (5.20)	
Montserrat 2001 [42]	23	6.70 (3.30)	22	14.60 (5.10)	
Barnes 2002 [44]	28	8.90 (4.90)	32	9.50 (5.10)	
Chakravorty 2002 [45]	32	8.00 (6.40)	21	11.00 (5.00)	
Becker 2003 [47]	16	5.10 (3.80)	16	8.90 (5.00)	
Woodson 2003 [48]	19	10.30 (5.00)	25	10.60 (3.50)	
Barnes 2004 [49]	89	9.20 (3.80)	90	10.20 (3.80)	
Total (95% CI)	620		569		
Test for heterogeneity: Chi2=59.92	2, df=14 (p<0.00	0001), I2=76.6%			
Test for overall effect: Z=5.18 (p<	0.0001)				

Figure 5.4 CPAP, effect on Epworth sleepiness scale (ESS).

Review:

Obstructive sleep apnoea

Comparison: 13 CPAP vs Placebo/conservative

Outcome:

10 CPAP effect on Epworth sleepiness scale in relation to baseline mean Apnoea-hypopnea index (AHI)

Study		CPAP	Place	bo/conservative	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
01 mean AHI 5–15					
Redline 1998 [35]	51	8.90 (4.30)	46	10.20 (5.60)	
Engleman 1999 [37]	34	8.00 (4.00)	34	11.00 (4.00)	
Barnes 2002 [44]	28	8.90 (4.90)	32	9.50 (5.10)	
Subtotal (95% CI)	113		112		
Test for heterogeneity: Chi2=2.6	63, df=2 (p=0	.27), 12=23.9%			
Test for overall effect: Z=2.50 (p	p=0.01)				
02 mean AHI 15–30					
Monasterio 2001 [41]	66	9.60 (5.50)	59	11.80 (5.20)	
Woodson 2003 [48]	19	10.30 (5.00)	25	10.60 (3.50)	
Barnes 2004 [49]	89	9.20 (3.80)	90	10.20 (3.80)	
Subtotal (95% CI)	174		174		
Test for heterogeneity: Chi2=1.6	6, df=2 (p =	0.44), 12=0%			
Test for overall effect: Z=2.60 (p	p=0.009)				
03 mean AHI >30					
Engleman 1998 [34]	23	6.00 (3.00)	23	12.00 (4.00)	
Ballester 1999 [36]	68	5.60 (4.10)	37	10.60 (6.10)	
Jenkinson 1999 [38]	52	7.50 (4.50)	49	12.30 (4.80)	
Barbé 2001 [43]	29	8.00 (3.00)	25	8.00 (5.00)	
Faccenda 2001 [39]	68	10.10 (5.80)	68	12.50 (6.60)	
McArdle 2001 [40]	22	8.00 (4.50)	22	12.10 (4.70)	
Montserrat 2001 [42]	23	6.70 (3.30)	22	14.60 (5.10)	
Chakravorty 2002 [45]	32	8.00 (6.40)	21	11.00 (5.00)	
Becker 2003 [47]	16	5.10 (3.80)	16	8.90 (5.00)	
Subtotal (95% CI)	333		283		
Tests for heterogeneity: Chi2=29 Tests for overall effect: Z=5.40 (9.14, df=8 (p= /p<0.00001)	=0.0003, 12=72.5%			
Total (95% CI)	620		569		
Test for heterogeneity: Chi2=59. Test for overall effect: Z=5.18 (p	92, df=14 (p< o<0.00001)	<0.00001), I2=76.6%			

Figure 5.5 CPAP, effect on Epworth sleepiness scale (ESS) in relation to baseline AHI.

Review:

Obstructive sleep apnoea

Comparison:

13 CPAP vs Placebo/conservative

Outcome: 11 CPAP effect in Epworth sleepiness scale (ESS) score in relation to baseline mean ESS

Study		CPAP	Placeb	oo/conservative	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
01 mean ESS <11					
Redline 1998 [35]	51	8.90 (4.30)	46	10.20 (5.60)	
Barbé 2001 [43]	29	8.00 (3.00)	25	8.00 (5.00)	
Barnes 2004 [49]	89	9.20 (3.80)	90	10.20 (3.80)	
Subtotal (95% CI)	169		161		
Test for heterogeneity: Chi2=0.80	, df=2 (p=0.67),	12=0%			
Test for overall effect: Z=1.98 (p=	=0.05)				
02 mean ESS 11–<15					
Engleman 1998 [34]	12	6.00 (3.00)	23	12.00 (4.00)	
Ballester 1999 [36]	68	5.60 (0.10)	37	10.60 (6.10)	
Engleman 1999 [37]	34	8.00 (4.00)	34	11.00 (4.00)	
McArdle 2001 [40]	22	8.00 (4.50)	22	12.10 (4.70)	
Monasterio 2001 [41]	66	9.60 (5.50)	59	11.80 (5.20)	
Barnes 2002 [44]	28	8.90 (4.90)	32	9.50 (5.10)	
Chakravorty 2002 [45]	32	8.00 (6.40)	21	11.00 (5.00)	
Becker 2003 [47]	16	5.10 (3.80)	16	8.90 (5.00)	
Woodson 2003 [48]	19	10.30 (5.00)	25	10.60 (3.50)	
Subtotal (95% CI)	308		269		
Test for heterogeneity: Chi2=20.8	1, df=8 (p=0.00	8), 12=61.6%			
Test for overall effect: Z=4.93 (p<	:0.00001)				
03 mean ESS 15 and over					
Jenkinson 1999 [38]	52	7.50 (4.50)	49	12.30 (4.80)	
Faccenda 2001 [39]	68	10.10 (5.80)	68	12.50 (6.60)	
Montserrat 2001 [42]	23	6.70 (3.30)	22	14.60 (5.10)	
Subtotal (95% CI)	143		139		
Test for heterogeneity: Chi2=10.8 Test for overall effect: Z=3.40 (p=	6, df=2 (p=0.00 =0.0007)	4), I2=81.6%			
Total (95% CI)	620		569		
Test for heterogeneity: Chi2=60.9	4, df=14 (p<0.0	0001), I2=77.0%			
Test for overall effect: Z=5.19 (p<	:0.0001)				

Figure 5.6 CPAP, effect on Epworth sleepiness scale (ESS) in relation to baseline ESS.

Review:	Obstructive sleep apnoea syndrome
Comparison:	02 Mandibular repositioning appliance (MRA) vs Placebo
Outcome:	02 Epworth sleepiness scale (ESS)

Study		MRA	F	Placebo	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Gotsopoulos 2002 [50]	73	7.00 (8.50)	73	9.00 (8.50)	
Johnston 2002 [51]	18	11.60 (6.70)	18	12.60 (6.30)	
Barnes 2004 [49]	85	9.20 (3.70)	90	10.20 (3.80)	
Total (95% CI)	176		181		
Test for heterogeneity: Chi2=0.44,	df=2 (p=0.80),	12=0%			
Test for overall effect: Z=2.21 (p=	0.03)				

Figure 5.7 Mandibular repositioning appliance (MRA), effect on Epworth sleepiness scale (ESS).

Review:	Obstructive sleep apnoea
Comparison:	03 CPAP vs Mandibular repositioning appliance (MRA)
Outcome:	02 Epworth sleepiness scale (ESS)

Study		CPAP		MRA	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Ferguson 1997 [54]	20	5.10 (3.30)	20	4.70 (2.60)	
Engleman 2002 [56]	48	8.00 (5.00)	48	12.00 (5.00)	
Tan 2002 [55]	24	8.10 (4.10)	24	9.00 (5.10)	
Barnes 2004 [49]	89	9.20 (3.80)	85	9.20 (3.70)	
Total (95% CI)	181		177		
Test for heterogeneity: Chi2=13	.36, df=3 (p=0.004), 12=77.5%			
Test for overall effect: Z=1.09 (p	p=0.28)				

Figure 5.8 CPAP vs mandibular repositioning appliance (MRA), effect on Epworth sleepiness scale (ESS).

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	10 CPAP effect on Epworth sleepiness scale in relation to baseline mean Apnoea-hypopnea index (AHI)

Study	Surgery		Conservative/placebo	
or sub-category	N I	Mean (SD)	Ν	Mean (SD)
01 Laser-assisted uvulopalatoplasty				
Ferguson 2003 [6]	21	9.30 (3.80)	24	10.80 (9.30)
Larrosa 2004 [57]	13	9.60 (3.80)	12	10.50 (5.40)
Subtotal (95% CI)	34		36	
Test for overall effect: Z=0.84 (p=0.40)	,,,.2 0,0			
02 Temperature-controlled radio-frequency	tissue ablatior	1		
Woodson 2003 [48]	23	9.80 (4.60)	25	10.60 (3.50)
Subtotal (95% CI)	23		25	
Test for heterogeneity: not applicable Test for overall effect: Z=0.67 (p=0.50)				
Total (95% CI)	57		61	
Test for overall effect: Z=1.06 (p=0.29)	=0.96), 12=0%			

Figure 5.9 Surgery, effect on Epworth sleepiness scale (ESS).

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	09 Multiple sleep latency test (MSLT) and Maintenance of wakefulness test (MWT)

Study	CPAP		Placebo/conservative		
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
 Engleman 1994 [33]	32	7.20 (4.00)	32	6.10 (4.00)	
Engleman 1998 [34]	23	9.20 (3.90)	23	6.80 (4.30)	
Redline 1998 [35]	51	10.40 (4.80)	46	10.30 (5.00)	
Engleman 1999 [37]	34	16.20 (10.60)	34	14.40 (8.50)	
Jenkinson 1999 [38]	52	30.40 (10.00)	49	23.90 (10.70)	
Barbé 2001 [43]	29	13.00 (5.00)	25	11.00 (5.00)	
Monasterio 2001 [41]	20	10.00 (5.00)	20	11.00 (5.00)	
Barnes 2002 [44]	28	11.50 (4.90)	32	12.60 (5.10)	
Barnes 2004 [49]	89	30.00 (8.50)	90	28.00 (8.50)	
Total (95% CI)	358		351		
Test for heterogeneity: Chi2=11.27	7, df=8 (p=0.19	9), 12=29.0%			
Test for overall effect: Z=3.00 (p=	0.003)				

Figure 5.10 CPAP, effect on Multiple sleep latency test (MSLT) or Maintenance of wakefulness test (MWT).

Review:	Obstructive sleep apnoea
Comparison:	02 Mandibular repositioning appliance (MRA) vs Placebo
Outcome:	03 Multiple sleep latency test (MSLT) and Maintenace of wakefulness test (MWT)

Study	MRA		Placebo		
or sub-category	N	Mean (SD)	Ν	Mean (SD)	
Gotsopoulos 2002 [50]	73	10.30 (4.30)	73	9.10 (4.30)	
Barnes 2004 [49]	85	29.60 (8.30)	90	28.00 (8.50)	
Total (95% CI)	158		163		
Test for heterogeneity: Chi2=0.15, o	df=1 (p=0.70)), 12=0%			
Test for overall effect: Z=2.05 (p=0	.04)				

Figure 5.11 Mandibular repositioning appliance (MRA), effect on MSLT or MWT.

CHAPTER 5 • TREATMENT

Review:	Obstructive sleep apnoea
Comparison:	03 CPAP vs Mandibular repositoning appliance (MRA)
Outcome:	03 Maintenance of wakefulness test (MWT)

Study	СРАР		MRA		
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Engleman 2002 [56]	48	24.00 (12.00)	48	22.00 (12.00)	
Barnes 2004 [49]	89	30.00 (8.50)	85	29.60 (8.30)	
Total (95% CI)	137		133		
Test for heterogeneity: Chi2=0.21, df=	=1 (p=0.64)	, 12=0%			
Test for overall effect: Z=0.73 (p=0.4	6)				

Figure 5.12 CPAP vs mandibular repositioning appliance (MRA), effect on MWT.

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	01 Apnea hypopnea index (AHI)

Study	CPAP		Placebo/conservative		
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Redline 1998 [35]	51	4.70 (7.20)	46	9.80 (9.30)	
Monasterio 2001 [41]	66	6.00 (8.00)	59	17.00 (10.00)	
Chakravorty 2002 [45]	32	8.00 (28.00)	21	34.00 (21.00)	
Becker 2003 [47]	16	3.40 (3.10)	16	33.40 (29.20)	
Woodson 2003 [48]	19	4.60 (2.70)	25	13.60 (7.80)	
Barnes 2004 [49]	89	4.80 (4.70)	90	20.30 (10.40)	
Total (95% CI)	273		257		
Test for heterogeneity: Chi2=38.45	5, df=5 (p<0.00	0001), I2=87.0%			
Test for overall effect: Z=5.38 (p<	0.00001)				

Figure 5.13 CPAP, effect on apnoea-hypopnoea index (AHI).

Review:	Obstructive sleep apnoea
Comparison:	02 Mandibular repositioning appliance (MRA) vs Placebo
Outcome:	01 Apnea hypopnea index (AHI)

Study	MRA		Placebo		
or sub-category	N	Mean (SD)	Ν	Mean (SD)	
Gotsopoulos 2002 [50]	73	12.00 (17.00)	73	25.00 (17.00)	
Johnston 2002 [51]	20	22.90 (22.80)	20	37.70 (24.90)	
Barnes 2004 [49]	85	14.00 (10.10)	90	20.30 (10.40)	
Total (95% CI)	178		183		
Test for heterogeneity: Chi2=5.17, df	=2 (p=0.08)	12=61.3%			
Test for overall effect: Z=3.39 (p=0.0	0007)				

Figure 5.14 Mandibular repositioning appliance (MRA), effect on apnoea-hypopnoea index (AHI).

Review:	Obstructive sleep apnoea syndrome
Comparison:	03 CPAP vs Mandibular repositioning appliance (MRA)
Outcome:	01 Apnea hypopnea index (AHI)

Study		CPAP		MRA	
or sub-category	Ν	Mean (SD)	N	Mean (SD)	
Ferguson 1996 [53]	25	3.60 (1.70)	25	9.70 (7.30)	
Ferguson 1997 [54]	20	4.00 (2.20)	20	14.20 (14.70)	
Engleman 2002 [56]	48	8.00 (6.00)	48	15.00 (16.00)	
Tan 2002 [55]	24	3.10 (2.80)	24	8.00 (10.90)	
Barnes 2004 [49]	89	4.80 (4.70)	85	14.00 (10.10)	
Total (95% CI)	204		202		
Test for heterogeneity: Chi2=4.8 Test for overall effect: Z=9.60 (206 32, df=4 (p=0.31), p<0.00001)	12=17.0%	202		

Figure 5.15 CPAP vs mandibular repositioning appliance (MRA), effect on apnoea-hypopnoea index (AHI).

Review:	Obstructive sleep apnoea
Comparison:	01 Surgery vs Placebo/conservative
Outcome:	02 Apnoea hypopnea index

Study	Surgery		Placebo/conservative	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)
01 Laser-assisted uvulopalatoplasty				
Ferguson 2003 [6]	21	14.70 (7.50)	24	22.70 (15.20)
Larrosa 2004 [57]	13	15.10 (17.50)	12	11.50 (10.70)
Subtotal (95% CI)	34		36	
Test for heterogeneity: Chi2=2.96, df=1	(p=0.09), 12=66.3%		
Test for overall effect: Z=0.54 (p=0.59)				
02 Temperature-controlled radio-freque	ncy tissue	e ablation		
Woodson 2003 [48]	23	16.80 (11.10)	25	13.60 (7.80)
Subtotal (95% CI)	23		25	
Test for heterogeneity: not applicable				
Test for overall effect: Z=1.15 (p=0.25)				
Total (95% CI)	57		61	
Test for heterogeneity: Chi2=6.84, df=2 Test for overall effect: Z=0.17 (p=0.86)	(p=0.03), 12=70.7%		

Figure 5.16 Surgery, effect on apnoea-hypopnoea index (AHI).

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	05 Functional outcome of sleep questionnaire (FOSQ)

Study	CPAP		Placebo/conservative		
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Barbé 2001 [43]	29	108.00 (11.00)	25	110.00 (10.00)	
Faccenda 2001 [39]	68	111.30 (17.00)	68	100.60 (16.00)	
Monasterio 2001 [41]	66	106.00 (20.00)	59	102.00 (21.00)	
Montserrat 2001 [42]	23	109.40 (12.50)	22	100.70 (20.60)	
Barnes 2002 [44]	28	3.45 (0.43)	31	3.38 (0.40)	
Woodson 2003 [48]	19	17.50 (2.60)	25	17.20 (2.10)	
Barnes 2004 [49]	89	3.30 (0.90)	90	3.30 (0.90)	
Total (95% CI)	322		320		
Test for heterogeneity: Chi2=11.22, o	lf=6 (p=0.08)), 12=46.5%			
Test for overall effect: Z=1.87 (p=0.0	06)				

Figure 5.17 CPAP, effect on Functional outcome of sleep questionnaire (FOSQ).

Review:	Obstructive sleep apnoea syndrome
Comparison:	03 CPAP vs Mandibular repositioning appliance (MRA)
Outcome:	05 Functional outcome of sleep questionnaire (FOSQ)

Study		CPAP		MRA	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Engleman 2002 [56]	48	14.00 (2.00)	48	13.00 (3.00)	
Barnes 2004 [49]	89	3.30 (0.90)	85	3.30 (0.90)	
Total (95% CI)	137		133		
Test for heterogeneity: Chi2=2.37 Test for overall effect: Z=1.12 (p	1, df=1 (p=0.13) =0.26)	, 12=56.7%			

Figure 5.18 CPAP vs mandibular repositioning appliance (MRA), effect on FOSQ.

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	06 SF-36 vitality

Study	CPAP		Placebo		
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Engleman 1999 [37]	34	58.00 (19.00)	34	46.00 (23.00)	
Jenkinson 1999 [38]	52	73.00 (17.00)	49	50.90 (20.50)	
Montserrat 2001 [42]	23	69.40 (27.30)	22	68.40 (20.50)	
Barnes 2002 [44]	28	59.80 (19.40)	32	59.40 (19.00)	
Barnes 2004 [49]	88	58.70 (18.20)	88	56.00 (19.30)	
Total (95% CI)	225		225		
Test for heterogeneity: Chi2=21.47, Test for overall effect: Z=1.75 (p=0	df=4 (p=0.00 .08)	03), I2=81.4%			

Figure 5.19 CPAP, effect on SF-36 vitality.

Review:	Obstructive sleep apnoea syndrome
Comparison:	01 CPAP vs Placebo/conservative
Outcome:	07 24 hour, Systolic blood pressure

Study		CPAP	Placebo		
or sub-category	N	Mean (SD)	Ν	Mean (SD)	
Barbé 2001 [43]	29	124.00 (11.00)	25	122.00 (15.00)	
Faccenda 2001 [39]	68	126.90 (10.70)	68	128.20 (9.90)	
Barnes 2002 [44]	27	130.30 (9.80)	29	129.00 (12.00)	
Pepperell 2002 [46]	48	130.20 (14.60)	47	135.90 (17.70)	
Becker 2003 [47]	16	126.40 (14.30)	16	137.30 (11.10)	
Barnes 2004 [49]	89	127.30 (11.30)	90	128.20 (11.40)	
Total (95% CI)	277		275		
Test for heterogeneity: Chi2=7.89	df=5 (p=0.16)	12=36.6%	270		
Test for overall effect: Z=1.47 (p=	=0.14)	12 30.070			

Figure 5.20 CPAP, effect on 24-hour systolic blood pressure.

Review:	Obstructive sleep apnoea
Comparison:	13 CPAP vs Placebo/conservative
Outcome:	08 24, Diastolic blood pressure

Study	CPAP		Placebo		
or sub-category	Ν	Mean (SD)	N	Mean (SD)	
Barbé 2001 [43]	29	79.00 (5.00)	25	77.00 (10.00)	
Faccenda 2001 [39]	68	77.80 (8.20)	68	79.20 (7.40)	
Barnes 2002 [44]	27	81.00 (7.20)	29	78.70 (15.30)	
Pepperell 2002 [46]	48	82.70 (9.20)	47	85.90 (8.50)	
Becker 2003 [47]	16	73.10 (10.50)	16	82.10 (9.10)	
Barnes 2004 [49]	89	76.70 (7.50)	90	77.30 (6.60)	
Total (95% CI)	277		275		
Test for heterogeneity: Chi2=9.92, df=	5 (p=0.08),	12=49.6%			
Test for overall effect: Z=1.17 (p=0.24	+)				

Figure 5.21 CPAP, effect on 24-hour diastolic blood pressure.

Review:	Obstructive sleep apnoea syndrome
Comparison:	02 Mandibular repositioning appliance (MRA) vs Placebo
Oucome:	07 24 hour, Systolic blood pressure

Study		MRA		lacebo	
or sub-category	Ν	Mean (SD)	Ν	Mean (SD)	
Barnes 2004 [49]	85	126.70 (9.20)	90	128.20 (11.40)	
Gotsopoulos 2004 [52]	61	125.30 (10.20)	61	126.90 (10.20)	
Total (95% CI)	146		151		
Test for heterogeneity: Chi2=0.00, o	df=1 (p=0.97),	, 12=0%			
Test for overall effect: Z=1.29 (p=0	.20)				

Figure 5.22 Mandibular repositioning appliance (MRA), effect on 24-hour systolic blood pressure.

Favours MRA Favours Placebo

CHAPTER 5 • TREATMENT

Review:	Obstructive sleep apnoea syndrome
Comparison:	02 Mandibular repositioning appliance (MRA) vs Placebo
Oucome:	08 24 hour, Systolic blood pressure

Study	MRA		Placebo		
or sub-category	N	Mean (SD)	Ν	Mean (SD)	
Barnes 2004 [49]	85	76.30 (6.50)	90	77.30 (6.60)	
Gotsopoulos 2004 [52]	61	76.20 (7.00)	61	78.00 (6.20)	
Total (95% CI)	146		151		
Test for heterogeneity: Chi2=0.27, c Test for overall effect: Z=1.74 (p=0.27)	lf=1 (p=0.61) .08)	, I ² =0%			

Figure 5.23 Mandibular repositioning appliance (MRA), effect on 24-hour diastolic blood pressure.

Compliance with CPAP

Conclusion

• Tolerance and compliance with CPAP are good. About 70% of patients still use it after 1–4 years for a mean of 5.3 (range 4.4–6.2) hours per night (Evidence Grade 2), provided that patients and their CPAP equipments are seen by physicians shortly after treatment starts, followed by individual intervals, but always at least once a year.

Baseline data

Ten studies fulfilled the criteria for compliance with CPAP. One study was of high quality, 6 were of medium quality and 3 were of low quality. A total of 5 971 patients were followed. Men accounted for 84–91% of the populations. Mean age varied from 50 to 59. Mean BMI was 30–35 kg/sq m. Mean AHI was 31–53. Fixed CPAP was used in all studies and had a mean pressure of 8–11 cm [61–65].

Results

Tolerance and compliance with CPAP in studies of medium and high quality

In studies of medium and high quality, a mean of 9% (range 5–18%) immediately refused to test or to take CPAP at home after one night [63,65-68]. Of patients who were prescribed CPAP, a mean of 74% (range 61–87%) used it after 1–4 years, corresponding to 69% (range 50–74%) in an intention-to-treat analysis (Table 5.13). These patients used CPAP during a mean of 5.2 (range 4.4–6.2) hours per night, according to objective measurements. One study reported that 76% of patients on CPAP used it more than 25 hours/week, another that 77% used it more than 21 hours/week, and a third that 73% used it more than 21 hours/week [63,68,72]. The reasons for quitting CPAP treatment were

death in up to 6% of patients, lack of improvement, discomfort, choosing another treatment or no longer suffering from the disease.

A thorough follow-up of patients and CPAP equipment was performed in 5 of the 7 studies [63,64,66,68,72]. A physician saw patients within 2 weeks to 3 months after onset of CPAP and then individually, but always at least once a year. Patients had additional phone support if problems occurred. One study phoned them after two weeks of treatment. The effect of treatment on symptoms was addressed and difficulties using CPAP were taken care off at follow-up. Patients in one study had a less comprehensive follow-up, the first visit coming after 9 months [67]. A mean of 27% (range 24–31%) of the patients did not tolerate CPAP at titration or had stopped using the device in studies with vigorous follow-up, as opposed to 50% in the study with a less comprehensive programme.

Predictors of compliance

A favourable subjective effect on daytime sleepiness and the AHI predicted good compliance with CPAP [62,65,68]. Other predictors of good compliance were good compliance during the first three months of treatment, daytime sleepiness and obesity. Tolerance of nasal masks was related to good compliance, while inconvenience, nasal dryness, air leakage and complaints of a noisy machine were related to poorer compliance [62,63,65,69,70].

Time at follow-up	n	Still using CPAP*, %	Hours/ night**	Author, year, reference	Quality
12 months	209	68	5.0±2.3	Popescu 2001 [68]	High
12 months	1 103	84		McArdle 1999 [63]	Medium
19±7 months	193	95	6.5±3	Pépin 1995 [61]	Low
22 (12–36) months	1 103	77	5.6 (3.8–7)	McArdle 1999 [63]	Medium
30 (3–70) months	151	71		Lojander 1999 [71]	Medium
30 (25–35) months	149	61	4.4±2.4	Grote 2000 [67]	Medium
32 (6–66) months	325	77	4.7±2.4	Noseda 1997 [72]	Medium
40±20 months	227	74	6.2±2.7	Lacassagne 2000 [66]	Medium
43±20 months	108	85		Hollandt 2003 [65]	Medium
48 months	1 103	68		McArdle 1999 [63]	Medium
72 months	227	74		Lacassagne 2000 [66]	Medium

Table 5.13 Compliance with CPAP at follow-up.

* Of patients being prescribed CPAP for home use.

** According to time counters of CPAP.

Adverse effects of CPAP

Conclusion

Mild to moderate discomfort – pain at the bridge of the nose, skin problems, air leaks and disturbing noise from the CPAP machine – from the CPAP mask are common adverse effects of CPAP (Evidence Grade 2). Mild nasal adverse effects such as rhinitis are also common (Evidence Grade 3).

Baseline data

Ten studies investigated the adverse effects of CPA. Only 1 study was prospective [73] and 1 was part of an RCT [48]. Men represented 75–94% of the populations. Mean age varied between 46 and 59. Mean BMI was 29–35 kg/sq m. Mean AHI was 20–53. A total of 4 434 patients were followed. The observation period varied from 2 months to 2.5 years. Studies were published between 1995 and 2003. Two studies distinguished mild from severe symptoms [74,75].

Results

Mild to moderate discomfort related to the mask – pain at the bridge of the nose, skin problems, air leaks or disturbing noise from the CPAP machine – were common (Table 5.14). Almost 50% of patients and partners complained of noisy machines in studies published during the 1990s, but that declined to 16% of patients and 7% of patients in a 2004 study that used modern, more silent machines [76].

One prospective study of medium quality that included 51 patients reported that rhinitis increased from 37% to 57% p=0.013 and sneeze from 53% to 75% p=0.013 [73]. Another study of medium quality reported mild nasal adverse effects in 38% of patients [48]. No increase in nasal symptoms were found in a third study of medium quality [71]. The dry nose and mouth and nasal stuffiness that were common before CPAP did not increase with treatment [71,73]. Nasal bleeding was reported by 5 authors. One study that compared bleeding with baseline data did not find any significant increase [73]. Nasal congestion or drippy nose occurred in 30% (16–57%) of patients on CPAP, sneeze in 44% (29–75%), red eyes or pain in the eyes from mask leaks in 20% (3–31%), claustrophobia in 5% (4–5%), and aerophagia, bloating or flatulence in 0–37%. However, these symptoms were also common before CPAP was started, and the scientific evidence that they were adverse effects of CPAP is insufficient. Only reversible and adverse effects were found.

	Frequency Mean, range	Severe problems	Evidence Grade	References
Mask discomfort	42% (32–53%)	1–5%	2	Kalan 1999 [70] Hohenhaus-Beer 1995 [77] Engleman 1996 [74] Verse 1999 [78] Hui 2001 [75] Masa 2004 [76]
Nasal bridge pain/ skin problems	39% (23–52%)	4%	2	Pépin 1995 [61] Kalan 1999 [70] Lojander 1999 [64] Hohenhaus-Beer 1995 [77] Hui 2001 [75] Masa 2004 [76]
Mild nasal side effects	38–57%		3	Brander 1999 [73] Woodson 2003 [48]
Air leak	52% (20–73%)	<1%	3	Pépin 1995 [61] Kalan 1999 [70] Lojander 1999 [64] Engleman 1996 [74]
Noisy CPAP*	32% (15–45%)	2%	2	Pépin 1995 [61] Meslier 1998 [62] Kalan 1999 [70] Hohenhaus-Beer 1995 [77] Engleman 1996 [74] Masa 2004 [76]
Partner complaints of noise	36% (7–50%)		3	Pépin 1995 [61] Meslier 1998 [62] Kalan 1999 [70] Hohenhaus-Beer 1995 [77] Masa 2004 [76]

Table 5.14 Adverse effects of CPAP.

* Noise from the CPAP machine was less of a problem after more silent devices were introduced.

Systematic reviews of auto-CPAP compared to fixed CPAP

Conclusion

• Auto-CPAP utilises a lower mean pressure than fixed CPAP, but the effect on daytime sleepiness, apnoea reduction and compliance is the same (Evidence Grade 1).

Baseline data

Four systematic reviews that compared auto-CPAP with fixed CPAP were identified (Table 5.15). A review by the American Academy of Sleep Medicine included 22 studies [19], a Canadian HTA report identified 24 studies on treatment outcomes [27], a 2004 Cochrane report with a last amendment in September 2003 included 13 studies [3], and a 2004 meta-analysis by Ayas et al was based on 9 studies [28]. The reviews contained a total of 49 different studies. Another 2 studies from 2004 were identified but did not affect the results and conclusions of the 4 reviews [79,80]. We decided to do a review of reviews, given that the prior reviews were of high quality and their results did not differ from either one another or the 2 studies published after the last review.

Results

CPAP pressure is significantly lower during auto-CPAP than fixed CPAP (Table 5.15) [3,19,27,28]. This difference had little effect on outcomes. All reviews reported that there was no difference in reduction of apnoea frequency (AHI) or subjective sleepiness between auto-CPAP and fixed CPAP measured with the ESS [3,19,27,28]. There was no difference in the arousal index or sleep architecture [19,27]. Compliance did not differ between auto-CPAP and fixed CPAP [3,19,27,28]. However, the studies were characterised by high machine usage in the control groups and low withdrawal rates, making it less likely that any compliance benefit could be demonstrated [3]. It is feasible that auto-CPAP increases usage by 15–20 minutes and that this effect is limited to a subgroup of patients who struggle to accept fixed CPAP or require high pressure [3]. Most participants preferred auto-CPAP to fixed CPAP when that distinction was measured.

Berry 2002 [19]	Hailey 2003 [27]	Haniffa 2004 [3]	Ayas 2004 [28]
AASM* review	HTA report	Cochrane report	Meta-analysis
22	24	13	9
No difference No difference No difference	No difference No difference No difference	No difference No difference	No difference No difference
Lower with Auto-CPAP	Lower with Auto-CPAP	Lower with Auto-CPAP	Lower, -2.2 (-1.9 to -2.5) cm
	Auto-CPAP in 3 of 4 studies	Auto-CPAP in 4 of 5 studies	
Medium	Medium	No difference High	No difference High
	Berry 2002 [19] AASM* review 22 No difference No difference Lower with Auto-CPAP	Berry 2002 [19]Hailey 2003 [27]AASM* reviewHTA report2224No difference No difference Lower with Auto-CPAPNo difference Lower with Auto-CPAPAuto-CPAPAuto-CPAP in 3 of 4 studiesMediumMedium	Berry 2002 [19]Hailey 2003 [27]Haniffa 2004 [3]AASM* reviewHTA reportCochrane reportAASM* reviewHTA reportCochrane report222413No difference No difference Lower with Auto-CPAPNo difference Lower with Auto-CPAPNo difference Lower with Auto-CPAPAuto-CPAPAuto-CPAP in 3 of 4 studiesAuto-CPAP in 4 of 5 studies No difference Lower with

Table 5.15 Auto-CPAP vs fixed CPAP.

* American Academy of Sleep Medicine

Two reviews raised potential safety issues for individuals with heart failure, given that they often have central apnoea and Cheyne-Stokes respiration [19,27]. The studies usually excluded people with congestive heart failure or obstructive respiratory disorders. None of the studies included patients with substantial central apnoea at baseline [19,27].

Results concerning the use of one type of machine are not necessarily generalisable to other devices, given that there are several different types of auto-CPAP machines available, all of which differ in terms of method of operation [19,27].

Compliance with mandibular repositioning appliances

Conclusion

• Mandibular repositioning appliances are still used by 76% of patients after 1 year and by 56% after 5 years (Evidence Grade 3).
Background

Compliance was assessed on the basis of questionnaires or personal interviews. Detailed data on how much the device was used are lacking. The end points are used/not used, how many hours per night and how many nights per week the device was used at the time of follow-up, ie, 1 and 5 years.

Results

Five articles met the inclusion criteria for compliance studies. Two medium-quality studies presented follow-up data on partly the same patients after 1 and 5 year [81,82]. Three low-quality studies presented data for up to 5 years [83–85]. Of the patients 54-75% were still using the device after 1 and 5 years. Marklund used a soft elastomer device, and Izci used a hard acrylic device, while the studies by Pantin and Rose did not report the material used. The reasons for not using the device were no effect (15–34%), adverse effects, ie, uncomfortable odontologic problems (16–31%), other treatment (2–13%) and other or unknown reasons (3–22%). Adverse effects were less common in the study that used the soft elastomer device [81].

The included studies that assessed compliance reported that more than 50% of the patients still used the device after 1 year. However, compliance varied from 51% to 76% independent of the length of the observation period.

Time at follow-up	n	Still using MRA	Use of the device	Author, year, reference	Quality
7 months (mean)	144	51%	5±2 nights/ week	lzci 2005 [85]	Low
1 year	619	76%	Use/no use	Marklund 2004 [81]	Medium
2 years (mean)	192	54%	Use/no use	Rose 2002 [84]	Low
5 years	132	76%	Use/no use	Pantin 1999 [83]	Low
5.4 years (mean)	423	56%	Use/no use	Marklund 2006 [82]	Medium

Table 5.16 Compliance with mandibular repositioning appliances at follow-up.

MRA = Mandibular repositioning appliance

Adverse effects of mandibular repositioning appliances

Conclusions

- A minor (0.5 mm) reduction of overbite and overjet, measured as means for a group treated with a mandibular repositioning appliance, can be seen after one year follow-up (Evidence Grade 3).
- No increase in symptoms or signs in the masticatory system as a consequence of treatment could be seen in the included studies (Evidence Grade 3).
- Transient pain and discomfort in the teeth, along with hypersalivation, are the most frequent adverse effects (Evidence Grade 3).

Background

Subjective symptoms reported as adverse effects were dry mouth, excessive salivation, pain in the teeth or jaws and a feeling of change or discomfort in occlusion. Clinical signs regarded as adverse effects were changes in occlusion, measured as differences in overbite and overjet as well as loss of occlusal contacts. Symptoms in the masticatory system – such as temporomandibular joint pain or clicking, headache, jaw muscle fatigue or soreness – were also recorded.

Results

One study of high quality and 12 studies of medium quality fulfilled the inclusion criteria. Three studies of medium quality with a relatively short follow-up period of 4 weeks to 4 months found more temporary discomfort in the jaws or teeth in the morning than with placebo devices or CPAP devices [50,56,86]. This was also seen in a study of low quality [51]. In 2 studies of low quality, over 80% of the patients reported some sort of adverse effect, mostly excessive salivation or dry mouth, that they attributed to the device [83,87]. Pain, soreness or other discomfort in the teeth were also common [83,87]. Fritsch and Pantin did not report any comparative baseline data, making it difficult to compare the frequency

of symptoms at follow-up and baseline. Three studies of medium quality [88–90] and 1 case report [91] compared masticatory system symptoms – such as temporomandibular pain or clicking, headache, jaw muscle fatigue or soreness – to baseline data or to a control group without mandibular repositioning appliances. No increase in the incidence of such symptoms could be seen from these studies. There were no differences in reported or registered adverse effects between studies designed to investigate treatment effects [50,51,53–56,86,90] and those that mainly concerned adverse effects. Nor did the severity of the OSAS/snoring diagnosis seem to influence adverse effects.

There seemed to be no difference in the clinical signs of changes in the occlusion after the use of various types of devices: hard, soft, with or without full occlusal coverage. Of 11 studies – 5 of high or medium high quality [88,89,92–94], 5 of low quality [5,82,85,87,95] and 1 case report [96] – that reported on signs of occlusal changes, 10 showed reductions in overjet and overbite. These changes were usually small, less than 1 millimetre, and of no clinical significance. However, some patients appeared to be more at risk for developing larger reductions of vertical and horizontal relations, up to more than 3 millimetres, as seen in 2 cases [96] and 1 long-term follow-up study [94]. In all 12 studies with more than 1 year of follow-up, which included a total of 746 patients, a bilateral open bite was reported in 12 patients, ie, 1.6%. All of these patients used hard acrylic devices. For the different occlusal changes, no relation between the severity of the changes and the grade of protrusion of the mandible could be seen.

None of the studies with less than 5 months of follow-up reported clinical signs of changes in the occlusion. There was no difference in reported occlusal changes between studies with 2 or 4 years of follow-up. One study with 5 years of follow-up showed a more marked change in overjet and overbite of nearly 3 mm [94]. However, one prospective long term study, did not show any further changes in occlusion [82]. According to most of these studies, changes seemed to develop during the first few years of use of the device and then stabilise.

Side effects	Frequency	Evidence grade	Author, year, reference	Quality
Non-structural sid	le effects			
Pain from teeth	26–69%	3	Engleman 2002 [56] Pantin 1999 [83] Gotsopoulos 2002 [50]	Medium Low Medium
Pain from jaws/ joints/muscles	26%	-	Pantin 1999 [83]	Low
Excessive salivation	19–68%	3 Engleman 2002 [56] Fritsch 2001 [87] Johnston 2002 [51] Pantin 1999 [83] Izci 2005 [85] Gotsopoulos 2002 [50]		Medium Low Low Low Low Medium
Dry mouth	26-86%	-	Pantin 1999 [83] Fritsch 2001 [87]	Low Low
Muscle fatigue	3%	_	Fransson 2003 [88]	Medium
Tooth discomfort	59%	-	Fritsch 2001 [87]	Low
Temporary discomfort in the morning	40–50%	3	Johnston 2002 [51] Marklund 2001 [5] Randerath 2002 [86] Tan 2002 [55]	Low Low Medium Medium
Structural side eff	ects			
Changes in overjet	<1 mm	3	Bondemark 2000 [89] Fransson 2003 [88] Fritsch 2001 [87] Marklund 2001 [5] Battagel 2005 [95] Marklund 2006 [82]** Robertson 2003 [92]	Medium Medium Low Low Low Low Medium
Changes in overjet	>1 mm	-	Almeida 2006 [94] Rose 2001 [96] (n=2)	Low Low
Changes in over- bite	<1 mm	3	Bondemark 2000 [89] Fritsch 2001 [87] Marklund 2001 [5] Battagel 2005 [95] Fransson 2004 [93] Marklund 2006 [82]** Robertson 2003 [92]	Medium Low Low Low Medium Low Medium

Table 5.17 Side effects from mandibular repositioning appliances.

Side effects	Frequency	Evidence grade	Author, year, reference	Quality
Changes in over- bite	>1 mm	_	Almeida 2006* [94] Rose 2001 [96] (n=2)	Low Low
Damaged crowns/ fillings	6%	-	Engleman 2002 [56]	Medium
Lateral open bite	14% + 2 cases	-	Fransson 2004 [93] Rose 2001 [96]	Low Medium
Occlusal changes (not defined)	14–33%	-	Pantin 1999 [83] Walker-Engström 2003 [7] Battagel 2005 [95]	Low Medium Low
Apposition of bone in mandibu- lar fossa	1 case	-	Panula 2000 [91]	Low

* \geq 5 years follow-up.

** \geq 5 years follow-up of earlier study.

Adverse effects of surgery

Conclusions

- The adverse effects of uvulopalatopharyngoplasty (UPPP) due to snoring or obstructive sleep apnoea include serious perioperative and postoperative complications, including death, bleeding and respiratory compromise (Evidence Grade 2). Persistent adverse effects are frequent, and difficulty in swallowing occurs in about 28% of patients (Evidence Grade 2). Voice changes are also common (Evidence Grade 3).
- The adverse effects of uvulopalatoplasty (UPP) and laser-assisted uvulopalatoplasty (LAUP) due to snoring or obstructive sleep apnoea include serious postoperative complications (Evidence Grade 3). Persistent adverse effects occur in 50–60% of patients and difficulty swallowing in about 26% (Evidence Grade 2). Globus sensation in the throat and voice changes are common (Evidence Grade 3).

Background

We identified 48 studies that addressed the questions concerning the adverse effects of surgery due to snoring and sleep apnoea. There were

28 studies on uvulopalatopharyngoplasty (UPPP), 20 on uvulopalatoplasty (UPP) and laser-assisted uvulopalatoplasty (LAUP), and 9 on temperature-controlled radio frequency tissue volume reduction (TCRAFTA). Acute complications during the perioperative and post-operative period were reported by 27 studies, postoperative pain by 19 studies, difficulty in swallowing by 18 studies, voice problems by 6 studies, velopharyngeal stenosis and insufficiency by 6 studies, dry throat by 5 studies, taste and smell disturbances by 2 studies and breathing disturbances by 2 studies.

Men made up 69–100% of the populations. Mean age varied between 30 and 54. Mean BMI varied between 24 and 33 kg/sq m. Mean AHI varied between 5 and 59 (range 0–89). Data on age, BMI, AHI and daytime sleepiness were lacking in many studies. The observation period varied from 18 hours to 8 years. Information on the follow-up period was lacking in 5 studies.

Two studies were regarded as high quality, 32 as medium quality and 14 as low quality (Table 5.30).

Results

Uvulopalatopharyngoplasty (UPPP)

Perioperative and postoperative complications

Thirty cases of death were reported in 6 studies (Table 5.18). Respiratory compromise, bleeding, intubation difficulties, infections and cardiac arrest were the main causes of death (Table 5.18) [97–102]. A recent study of high quality comprising 3 130 operations reported perioperative death in 7 patients (0.2%) [102].

Serious perioperative and postoperative complications were reported in 0–16% [97,98,100–108]. These complications included respiratory compromise, bleeding, intubation difficulties, re-intubation, emergency tracheostomy, infections and cardiovascular complications. Postoperative pain was reported for 12–14 days [109–112]. Other complications were seroma and squamos papilloma [103,113].

Persistent complications (Table 5.19)

Persistent adverse effects were reported in 14–62% [101,114,115]. Difficulty in swallowing, including nasal regurgitation, was introduced in 13–36% of patients [114,116,117], globus sensation in 40% [115], voice changes in 7–14% [101,114,115], persistent throat dryness in 3–56% [101,118,119], taste disturbances in 7%, smell disturbances in 8% [115], velopharyngeal insufficiency in 3% [114] and velopharyngeal stenosis in occasional patients [120]. Eleven percent regretted the surgery according to one study [116].

Author Year, reference	uthor Operation Quality ear, reference		Source population	Death cases	Reasons for death	
			Ν	n		
Esclamado et al 1989 [97]	UPPP	Medium	135	1	Intubation problems	
Harmon et al 1989 [98]	UPPP	Medium	132	2	Bleeding (n=1), pulmonary embolism (n=1)	
Fairbanks 1990 [99]	UPPP	Low		16	Bleeding (n=1), loss of airway (n=12), un- known (n=3)	
Carenfelt et al 1993 [100]	UPPP LAUP	Low	9 000 2 900	3 1*	Cardiac arrest (n=2), bleeding (n=1), infection (n=1)	
Haavisto et al 1994 [101]	UPPP	Low	101	1	Breathing dif- ficulties and asystole (n=1)	
Lysdahl et al 2000 [121]	LAUP	Medium	256	1	Infection (n=1)	
Kezirian et al 2004 [102]	UPPP	High	3 130	7 *	Unknown (n=4), respira- tory problems (n=2), cardiac arrest (n=1)	

Table 5.18 Deaths in the perioperative and postoperative period.

 $^{*}\,$ Probably the same patient who died from an infection 5 days after LAUP.

LAUP = Laser-assisted uvulopalatoplasty; UPPP = Uvulopalatopharyngoplasty

	Frequency Mean, range	Evidence Grade	Author, year, references
Death	0–1.5%	2	Esclamado 1989, Harmon 1989, Haavisto 1994, Riley 1997, Mickelson 1998, Terris 2002, Osman 2000, Rombaux 2003, Kezirian 2004, Kim 2005 [97,98,101–104,106–108,122]
Persistent side effects	14–62%	3	Grøntved 2000, Hagert 2000 [114,115]
Difficulty in swallowing	28% (13–36%)	2	Grøntved 2000, Hagert 2000, Lysdahl 2002, Jäghagen 2004 [114–117]
Globus sensation	40%	Inconclusive	Hagert 2000 [115]
Voice changes	7–14%	3	Grøntved 2000, Hagert 2000 [114,115]
Smell disturbances	8%	Inconclusive	Hagert 2000 [115]
Taste disturbances	7%	Inconclusive	Hagert 2000 [115]
Velopharyngeal insufficiency	Single cases	Inconclusive	Katsantonis 1987 [120]

Table 5.19 Persistent adverse effects of uvulopalatopharyngoplasty (UPPP).

Uvulopalatoplasty (UPP) and laser-assisted uvulopalatoplasty (LAUP)

Perioperative and postoperative complications

One death due to septicaemia was reported in one study [100]. Postoperative complications were reported in up to 5%, including postoperative bleeding, local infections and temporal palatal incompetence [6,106,107,123]. Postoperative pain lasted for a mean of 10–18 days [109, 110,119,122,124,125].

Persistent complications (Table 5.20)

Persistent adverse effects were reported in 52–62% [115,117,126]. Difficulty in swallowing, including nasal regurgitation, was introduced in 19–29% of patients [6,115–117,126,127], globus sensation in 17–36% [115,126], voice changes in 6–10%, taste disturbances in 7%, smell disturbances in 8% [115], increased vomiting reflexes in 4% [126] and velopharyngeal stenosis in one patient [119]. Thirteen to twenty-two percent regretted the surgery [116,128].

	Frequency Mean, range	Evidence Grade	Author, year, reference
Death	Single case		Carenfelt 1993 [100] Lysdahl 2002 [116]
Persistent side effects	57% (52–62%)	3	Hultcrantz 1999 [126] Hagert 2000 [115] Berger 2003 [119]
Difficulty in swallowing	26% (19–29%)	2	Levring-Jäghagen 1999 [127] Lysdahl 2002 [116] Hultcrantz 1999 [126] Jäghagen 2004 [117] Ferguson 2003 [6] Hagert 2000 [115]
Globus sensation in throat	17–36%	3	Hultcrantz 1999 [126] Hagert 2000 [115]
Voice changes	6–10%	3	Remacle 1999 [109] Hagert 2000 [115]
Smell disturbances	8%	Inconclusive	Hagert 2000 [115]
Taste disturbances	7%	Inconclusive	Hagert 2000 [115]
Velopharyngeal stenosis	Single cases	Inconclusive	Berger 2003 [119]

Table 5.20 Persistent adverse effects of uvulopalatoplasty (UPP and LAUP).

Temperature-controlled radio frequency tissue volume reduction (TCRAFTA)

Perioperative and postoperative complications

The perioperative and postoperative complications reported were palatal mucosal breakdown or mucosal ulcers in 3–37% of patients [129–133], palatal fistula in 2% [107,132], uvula loss in 2–7% [131,132], haemorrhage in 5% [132], infections [107], transient choking sensation in 28% [129], transient voice change in 11% [129], abnormal sensation in 19% [129], difficulty swallowing in 13% and pain in 19% [129]. Treatment of the tongue in 1 study of 18 patients reported 1 tongue base abscess and 3 patients with severe tongue swellings requiring hospital admission [130]. Another study on treatment of the tongue reported mouth floor oedema in 2 of 30 patients and tongue base abscess in 2 patients [131]. Postoperative pain lasted for 3–7 days [110,122,130]. But 1 randomised controlled trial that followed 48 patients reported no difference in adverse effects ie, pain and acute complications, within 3 weeks of surgery [48]. No long-term follow-up studies on the adverse effects of TCRAFTA were identified.

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Ballester et al 1999 [36] Spain	 Weight reduction Parallel AHI >15 + severe EDS or AHI >30 + mild EDS 	1. 105 2. 53±10 3. 12 4. 32±5 5. 56±20 6. 12±5 7. Missing data 8. Missing data 9. Missing data	3 months	0
Barbé et al 2001 [43] Spain	1. Sham CPAP 2. Parallel 3. AHI >30, ESS <10	1. 55 2. 53±15 3. 9 4. 29±5 5. 55±25 6. 7±3 7. 0 8. 124±15 9. 78±11	6 weeks	1
Barnes et al 2002 [44] Australia	1. Placebo pill 2. Cross-over 3. AHI 5–30	1. 42 2. 45.5±10.7 3. 17 4. 30.2±4.8 5. 13±6.3 6. 11.3±5.0 7. 25 8. 130.3±10.5 9. 81.6±7.5	8 weeks	10

 Table 5.21 Data extraction. Treatment effect from RCT studies.

En	d		CPAP P			oo/conser	vative	Quality rating
ро	ints —	N	Mean	SD	N	Mean	SD	 1. RCT? 2. Concealed allocation? 3. Patients blinded? 4. Investigators blinded? 5. Withdrawals described? 6. Sum of 1–5
ES	S		СРАР		Wei	ght reduc	tion	Medium
NF (er	HP hergy)	68 68	5.6 12.7	4.1 27.2	37 37	10.6 22.2	6.1 30.4	1. 1 2. 0 3. 1 4. 0 5. 0 6. 2
MS	IT		СРАР			Placebo		High
ES FC SB DE	S DSQ P BP	29 29 29 29 29 29	13 8 108 124 79	5 3 11 11 5	25 25 25 25 25 25	11 8 110 122 77	5 5 10 15 10	1. 1 2. 0 3. 1 4. 1 5. 1 6. 4
M	SLT		СРАР			Placebo		Medium
ES SF (v FC SE D	55 -36 itality) DSQ BP BP	28 28 28 28 28 27 27	11.5 8.9 59.8 3.45 130.3 81.0	4.9 4.9 19.4 0.43 9.8 7.2	32 32 32 31 29 29	12.6 9.5 59.4 3.38 129.0 78.7	5.1 5.1 19.0 0.40 12.0 15.3	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Barnes et al 2004 [49] Australia	1. Placebo pill 2. Cross-over 3. AHI 5–30	1. 104 2. 46±9 3. 21 4. 31±5 5. 22±11 6. 10±3 7. 15 8. 126.5±9.4 9. 76.3±7.5	3 months	20
Becker et al 2003 [47] Germany	1. Sham CPAP 2. Parallel 3. AHI >5 + ESS >10	1. 60 2. 53±9 3. 10 4. 33±6 5. 64±22 6. 14±3 7. Missing data 8. Missing data 9. Missing data	2 months	28
Chakravorty et al 2002 [45] United Kingdom	1. Lifestyle 2. Parallel 3. AHI >15	1. 71 2. 50±11 3. Missing data 4. 37±12 5. 47±25 6. 15±5 7. Missing data 8. Missing data 9. Missing data	3 months	18

End	CPAP			Placel	bo/conser	Quality rating	
points [–]	Ν	Mean	SD	N	Mean	SD	 1. RCT? 2. Concealed allocation? 3. Patients blinded? 4. Investigators blinded? 5. Withdrawals described? 6. Sum of 1–5
AHI		CPAP			Placebo		Medium
ESS	89 89	4.8	4.7	90	20.3	10.4	1. 1

ESS FOSQ SF-36 (vitality) SBP DBP	89 89 89 89 88 89 89	4.8 30.0 9.2 3.3 58.7 127.3 76.7	4.7 8.5 3.8 0.9 18.2 11.3 7.5	90 90 90 90 88 90 90	20.3 28.0 10.2 3.3 56.0 128.2 77.3	10.4 8.5 3.8 0.9 19.3 11.4 6.6	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2
AHI ESS SBP DBP	16 16 16 16	CPAP 3.4 5.1 126.4 73.1	3.1 3.8 14.3 10.5	16 16 16 16	Placebo 33.4 8.9 137.3 82.1	29.2 5.0 11.1 9.1	Medium 1. 1 2. 1 3. 1 4. 0 5. 0 6. 3

AHI		СРАР		Со	nservativ	e	Medium
ESS –	32 32	8 8	28 6.4	21 21	34 11	21 5	1. 1 2. 0 3. 1 4. 0 5. 1 6. 3

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up	
Engleman et al 1994 [33] United Kingdom	1. Placebo pill 2. Cross-over 3. AHI >5	1. 35 2. 49±8 3. 19 4. 33±9 5. Median: 28 6. Missing data 7. Missing data 8. Missing data 9. Missing data	4 weeks	3	
Engleman et al 1998 [34] United Kingdom	1. Placebo pill 2. Cross-over 3. AHI >15	1. 23 2. 47±12 3. 9 4. 30±7 5. 43±37 6. 12±4 7. Missing data 8. Missing data 9. Missing data	4 weeks	1	
Engleman et al 1999 [37] United Kingdom	1. Placebo pill 2. Cross-over 3. AHI 5–15	1. 37 2. 44±8 3. 38 4. 30±5 5. 10±3 6. 13±3 7. Missing data 8. Missing data 9. Missing data	4 weeks	3	

	End	CPAP			Placeb	o/conser	Quality rating	
	points –		Mean	SD	Ν	Mean	SD	 1. RC1? 2. Concealed allocation? 3. Patients blinded? 4. Investigators blinded? 5. Withdrawals described? 6. Sum of 1–5
	MSLT		CPAP			Placebo		Medium
		32	7.2	4.0	32	6.1	4.0	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2
	MSLT		СРАР			Placebo		Medium
ESS -	23 23	9.2 6	3.9 3	23 23	6.8 12	4.3 4	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2	
	MWT		СРАР			Placebo		Medium
	ESS SF-36 (vitality)	34 34 34	16.2 8 58	10.6 4 19	34 34 34	14.4 11 46	8.5 4 23	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Faccenda et al 2001 [39] United Kingdom	1. Placebo pill 2. Cross-over 3. AHI >15	1. 71 2. Median: 50 3. 17 4. 30±5 5. Median: 35 6. Median: 15 7. Missing data 8. Missing data 9. Missing data	4 weeks	3
Jenkinson et al 1999 [38] United Kingdom	1. Sham CPAP 2. Parallel 3. ODI 4 >10 + ESS >10	1. 107 2. Median: 49 3. 0 4. 35±6 5. Median ODI-4: 30.8 6. Median: 16.5 7. Missing data 8. Missing data 9. Missing data	4 weeks	6
McArdle et al 2001 [40] United Kingdom	 Placebo pill Cross-over PSG AHI >15 or Non-PSG AHI >30 ESS from letter to authors 	1. 23 2. 52±11 3. 8 4. 31±5 5. Median: 42 6. Median: 14 7. Missing data 8. Missing data 9. Missing data	4 weeks	1

points N Mean SD N Mean SD 1. RCT? 2. Concealed allocation? 3. Patients blinded? 4. Investigators blinded? 5. Withdrawals described? 6. Sum of 1–5	End		CPAP	CPAP		bo/conser	Quality rating	
	points -	Ν	Mean	SD	Ν	Mean	SD	 RCT? Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5

ESS	CPAP			Placebo			Medium
FOSQ ⁻ SBP	68	10.1	5.8	68	12.5	6.6	- 1. 1
DBP	68	111.3	17.0	68	100.6	16.0	2.0
	68	126.9	10.7	68	128.2	9.9	3.0
	68	77.8	8.2	68	79.2	7.4	4.0
							5. 1
							6. 2

MWT		CPAP			Placebo		High
ESS SF-36 (vitality)	52 52 52	30.4 7.5 73.0	10.0 4.5 17.0	49 49 49	23.9 12.3 50.9	10.7 4.8 20.5	1. 1 2. 1 3. 1 4. 1 5. 1 6. 5

ESS		СРАР			Placebo		High
	22	8	4.5	22	12.1	4.7	1. 1 2. 1 3. 1 4. 0 5. 1
							6. 4

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Monasterio et al 2001 [41] Spain	1. Conservative 2. Parallel 3. AHI 10–30	1. 142 2. 54±9 3. 14 4. 29±4 5. 20±6 6. 13±5 7. Missing data 8. Missing data 9. Missing data	6 months	17
Montserrat et al 2001 [42] Spain	1. Sham CPAP 2. Parallel 3. AHI >10 + EDS	1. 47 2. 54±10 3. 9 4. 31±6 5. 54±19 6. 15±7 7. Missing data 8. Missing data 9. Missing data	6 weeks	2
Pepperell et al 2002 [46] United Kingdom	 Sham CPAP Parallel ODI4 >10 + ESS >9 	1. 118 2. 50±10 3. 0 4. 35±7 5. ODI4: 37±20 6. 16±4 7. 19 8. 134±2 9. 85±1	4 weeks	23

	End	CPAP			Placel	oo/consei	Quality rating	
	points [–]	Ν	Mean	SD	N	Mean	SD	 Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5
	AHI		СРАР		C	onservati	ve	Medium
	MSLT ESS FOSQ	66 20 66 66	6 10 9.6 106	8 5 5.5 20	59 20 59 59	17 11 11.8 102	10 5 5.2 21	1. 1 2. 0 3. 1 4. 0 5. 1 6. 3
	ESS		CPAP			Placebo		High
FOSQ SF-36 (vitality)	23 23 23	6.7 109.4 69.4	3.3 12.5 27.3	22 22 22	14.6 100.7 68.4	5.1 20.6 20.5	1. 1 2. 1 3. 1 4. 0 5. 1 6. 4	
	SBP		CPAP			Placebo		High
	DBP -	48 48	130.2 82.7	14.6 9.2	47 47	135.9 85.9	17.7 8.5	1. 1 2. 1 3. 1 4. 1 5. 1 6. 5

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Redline et al 1998 [35] USA	 Weight reduction and nasal dilators Parallel AHI 5–30 Ads in the area 	1. 111 2. 49±10 3. 48 4. 33±7 5. 13.3±10 6. 10±5 7. Missing data 8. Missing data 9. Missing data	8 weeks	14
Woodson et al 2003 [48] USA	1. Sham TCRAFTA 2. Parallel design 3. AHI 10–30	1. 60 2. 49±8 3. 28 4. 29±4 5. 18±9 6. 12±4 7. Missing data 8. Missing data 9. Missing data	8 weeks	16
Barnes et al 2004 [49] Australia	1. Placebo pill 2. Cross-over 3. AHI 5–30	1. 104 2. 46±9 3. 21 4. 31±5 5. 22±11 6. 10±3 7. 15 8. 126.5±9.4 9. 76.3±7.5	3 months	24

	End points [_]	CPAP			Placebo/conservative			Quality rating
		Ν	Mean	SD	Ν	Mean	SD	 Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5
	AHI		CPAP			Placebo		High
	MSLT - ESS	51 51 51	4.7 10.4 8.9	7.2 4.8 4.3	46 46 46	9.8 10.3 10.2	9.3 5.0 5.6	1. 1 2. 0 3. 1 4. 1 5. 1 6. 4
	AHI		СРАР			Placebo		High
	ESS FOSQ	19 19 19	4.6 10.3 17.5	2.7 5.0 2.6	25 25 25	13.6 10.6 17.2	7.8 3.5 2.1	1. 1 2. 1 3. 1 4. 0 5. 1 6. 4
	AHI		MRA			Placebo		Medium
	MVV I ESS FOSQ SF-36 (vitality) SBP DBP	85 85 85 86 85	14.0 29.6 9.2 3.3 56.6 126.7 76.3	10.1 8.3 3.7 0.9 21.1 9.2 6.5	90 90 90 88 90	20.3 28.0 10.2 3.3 56.0 128.2 77.3	10.4 8.5 3.8 0.9 19.3 11.4	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Gotsopoulos et al 2002 [50] Australia	1. Sham MRA 2. Cross-over 3. RDI >110	1. 85 2. 48±11 3. 19 4. 29±5 5. 27±17 6. 11±5 7. Missing data 8. Missing data 9. Missing data	4 weeks	12
Gotsopoulos et al 2004 [52] Australia	1. Sham MRA 2. Cross-over 3. AHI >10 AHI not used since same patients as in Gotsopoulos 2002 [50]	1. 67 2. 48±11 3. 21 4. 29±5 5. 27±15 6. Missing data 7. 39 8. 127.3±10.6 9. 77.7±7.4	4 weeks	6
Johnston et al 2002 [51] Ireland	1. Sham MRA 2. Cross-over 3. ODI4 >10	1. 21 2. 55.1±6.9 3. 19 4. 31.6±5.9 5. 31.9±21.2 6. 14±6 7. Missing data 8. Missing data 9. Missing data	4–6 weeks	1

End		CPAP	AP Placebo/conservative		vative	Quality rating	
points	Ν	Mean	SD	N	Mean	SD	 RCT? Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5
 AHI		MRA			Placebo		Medium
ESS	73 73 73	12 10.3 7	17 4.3 8.5	73 73 73	25 9.1 9	17 4.3 8.5	1. 1 2. 0 3. 0 4. 1 5. 1 6. 3
 SBP		MRA			Placebo		High
DBP	61 61	125.3 76.2	10.2 7.0	61 61	126.9 78.0	10.2 6.2	1. 1 2. 1 3. 0 4. 1 5. 1 6. 4
 AHI		MRA			Placebo		Medium
ESS	20 18	22.9 11.6	22.8 6.7	20 18	37.7 12.6	24.9 6.3	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up	
Engleman et al 2002 [56] United Kingdom	1. MRA vs CPAP 2. Cross-over 3. AHI >5 + ESS >8	1. 51 2. 46±9 3. 25 4. 29±4 5. 31±26 6. 14±4 7. Missing data 8. Missing data 9. Missing data	8 weeks	3	
Ferguson et al 1996 [53] Canada	1. MRA vs CPAP 2. Cross-over 3. AHI 15–50	1. 27 2. 46±11 3. 11 4. 30±5 5. 25±9 6. Missing data 7. Missing data 8. Missing data 9. Missing data	4 months	2	
Ferguson et al 1997 [54] Canada	1. MRA vs CPAP 2. Cross-over 3. AHI 15–55	1. 24 2. 44±11 3. 21 4. 32±8 5. 27±12 6. 11±3 7. Missing data 8. Missing data 9. Missing data	4 months	4	

	End		CPAP		Placel	oo/conser	vative	Quality rating
	points	Ν	Mean	SD	N	Mean	SD	 RCT? Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5
	AHI		CPAP			MRA		Medium
MWT ESS FOSQ	48 48 48 48	8 24 8 14	6 12 5 2	48 48 48 48	15 22 12 13	16 12 5 3	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2	
	AHI		СРАР			MRA		Medium
		25	3.6	1.7	25	9.7	7.3	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2
	AHI		СРАР			MRA		Medium
	ESS	20 20	4.0 5.1	2.2 3.3	20 20	14.2 4.7	14.7 2.6	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up
Tan et al 2002 [55] United Kingdom	1. MRA vs CPAP 2. Cross-over 3. AHI 10–50	1. 24 2. 51±10 3. 17 4. 32±7 5. 22±10 6. 13±5 7. Missing data 8. Missing data 9. Missing data	2 months	0
Ferguson et al 2003 [6] Canada	1. No treatment 2. Parallel 3. AHI 10–27	1. 46 2. 45±8 3. 24 4. 32±5 5. 17±4 6. 10±4 7. Missing data 8. Missing data 9. Missing data	7 months	1
Larossa et al 2004 [57] Spain	 LAUP vs sham LAUP + placebo pill Parallel AHI <30 	1. 28 2. 44±7 3. 0 4. 27±3 5. 15±13 6. 11±5 7. Missing data 8. Missing data 9. Missing data	3 months	3

End		СРАР		Place	oo/conser	vative	Quality rating
points	Ν	Mean	SD	N	Mean	SD	 RCT? Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5
 AHI		СРАР			MRA		Medium
ESS	24 24	3.1 8.1	2.8 4.1	24 24	8.0 9.0	10.9 5.1	1. 1 2. 0 3. 0 4. 0 5. 1 6. 2
AHI		LAUP		N	o treatme	ent	Medium
ESS	21 21	14.7 9.3	7.5 3.8	24 24	22.7 10.8	15.2 9.3	1. 1 2. 0 3. 1 4. 0 5. 1 6. 3
 AHI		LAUP			Placebo		Medium
ESS	13 13	15.1 9.6	17.5 3.8	12 12	11.5 10.5	10.7 5.4	1. 1 2. 0 3. 1 4. 0 5. 1 6. 3

Author Year Reference Country	 Nature of control Design Inclusion criteria 	Baseline characteristics 1. Number randomised 2. Age (mean, SD) 3. Female (%) 4. BMI 5. AHI (mean, SD) 6. ESS (mean, SD) 7. Hypertensive (%) 8. SBP (mean, SD) 9. DBP (mean, SD)	Follow- up time	Number lost to follow-up	
Woodson et al 2003 [48] USA	1. Sham TCRAFTA 2. Parallel design 3. AHI 10–30	1. 60 2. 48±9 3. 20 4. 28±4 5. 18±9 6. 12±4 7. Missing data 8. Missing data 9. Missing data	8 weeks	12	
Wilhelmsson et al 1999 [58] Sweden	1. UPPP vs MRA 2. Parallel 3. AI 5–25	1. 95 2. 50 3. 0 4. 27 5. 19±9 6. Missing data 7. Missing data 8. Missing data 9. Missing data	1 year	15	
Cahali et al 2004 [59] Brazil	 Lateral pharyngo- plasty (LAUP) vs UPPP Parallel AHI >10, failed CPAP 	1. 29 2. Missing data 3. Missing data 4. 29±5 5. 39±22 6. 14±12 7. Missing data 8. Missing data 9. Missing data	8 months	2	

End		СРАР		Placebo/conservat		vative	ative Quality rating	
points	Ν	Mean	SD	Ν	Mean	SD	 1. RCT? 2. Concealed allocation? 3. Patients blinded 4. Investigators blinded? 5. Withdrawals described? 6. Sum of 1–5 	
AHI		TCRAFT	A		Placebo		High	
ESS FOSQ	23 23 23	16.8 9.8 17.7	13,8 3.9 2.0	25 25 25	13.6 10.6 17.2	7.8 3.5 2.1	1. 1 2. 1 3. 1 4. 1 5. 1 6. 5	
AHI		UPPP			MRA		High	
	43	10.4	9.3	37	5.9	9.0	1. 1 2. 1 3. 1 4. 0 5. 1 6. 4 No ITT. 8 drop- outs in MRA were not studied at follow-up	
AHI	Latera	l pharyng	goplasty		UPPP		Medium	
	15	15.5	10.4	12	30.0	21.6	1. 1 2. 0 3. 1 4. 0 5. 1 6. 3	

Author Year Reference Country	 thor in Nature of control in control in control in characteristics in characteristics in characteristics in Number randomised criteria in Age (mean, SD) in Female (%) in BMI in AHI (mean, SD) in ESS (mean, SD) in Hypertensive (%) in SBP (mean, SD) in DBP (mean, SD) 		Follow- up time	Number lost to follow-up	
Puhan et al 2006 [60] Switzerland	 Waiting list for didgeridoo Parallel Snoring + AHI 15–30 age >18 	1. 25 2. 48.6±7.4 3. 16 4. 25.8±3.4 5. 21.2±4.7 6. 11.5±4.8 7. Missing data 8. Missing data 9. Missing data	4 months	0	

AHI = Apnoea-hypopnoea index; CPAP = Continuous positive airways pressure; DBP = Diastolic blood pressure; EDS = Exessive day time sleepiness; ESS = Epworth sleepiness scale; FOSQ = Functional outcome of sleep questionnaire; LAUP = Laser-assisted uvulopalatoplasty; MRA = Mandibular repositioning appliance; MSLT = Multiple sleep latency test;

End		CPAP		Place	ebo/conse	rvative	Quality rating
points	Ν	Mean	SD	N	Mean	SD	 Concealed allocation? Patients blinded? Investigators blinded? Withdrawals described? Sum of 1–5
AHI		Didgerido	00	N	lo treatm	ent	Medium
ESS SF-36 (vitality)	14 14 14	11.6 7.4 48.6	8.1 2.3 15.2	11 11 11	15.4 9.6 53.0	9.8 6.0 11.1	1. 1 2. 0 3. 1 4. 0 5. 1 6. 3

MWT = Maintenance of wakefulness test; NHP = Nottingham health profile; ODI = Oxygen desaturation index; PSG = Polysomnography; SBP = Systolic blood pressure; SF-36 = Short form 36; TCRAFTA = Temperature-controlled radio frequency tissue volume ablation; UPPP = Uvulopalatopharyngoplasty

Table 5.22 Excluded studies. Treatment effect from CPAP, oral appliances and operations.

Reason for exclusion	References
Follow-up shorter than 4 weeks	[134–151]
Do not include any endpoint of interest for this review	[71,136,152–154]
Effect of blood pressure on selected and healthy patients without hypertension	[155]
Low quality	[86]
Only baseline data	[156]
Less than 20 patients	[122,136,143,151,157–160]
Studies on selected patients with heart failure who did not seek medical attention for a recording, and without any symptoms of sleep apnea syndrome	[161,162]
Compare one mandibular repositioning appliance with another	[7,8,84]
Before and after study, no RCT	[163–169]

RCT = Randomised controlled trial

Table 5.23 Excluded studies. Treatment effect from pacemakers and sleep positions.

Reason for exclusion	References
Less than 20 patients	[170–173]
Follow-up shorter than 4 weeks	[174,175]

Table 5.24 Excluded studies. Treatment effect from pharmacological drugs.

Author, year, reference	n<20	Follow-up <4 weeks	Not the ESS, MSLT or MWT
Sex hormones			
Collop, 1994 [176]	Х	Х	Х
Cook, 1989 [177]	Х	Х	Х
Keefe, 1999 [178]	Х	Х	Х
Liu, 2003 [179]	Х	Х	-
Ventilatory stimulants			
Espinoza, 1987 [180]	Х	Х	Х
Mulloy, 1992 [181]	Х	-	Х
Oberndorfer, 2000 [182]	-	Х	Х
Hein, 2000 [183]	Х	Х	Х
Guilleminault, 1983 [184]	_	Х	Х

Author, year, reference	n<20	Follow-up <4 weeks	Not the ESS, MSLT or MWT		
Anti-depressants					
Brownell, 1982 [185] Brownell, 1983 [186] Stepanski, 1988 [187] Whyte, 1988 [188] Hanzel, 1991 [189] Berry, 1999 [190] Kraiczi, 1999 [191]	× × × × × ×	- - X X X X	× × × × ×		
Anxiolytic drugs					
Mendelson, 1991 [192] Berry, 1995 [193] Camacho, 1995 [194] Cirignotta, 1988 [195] Hoijer, 1994 [196]	X X X X X	X X X X X	X X X X X		
Steroids					
Craig, 1998 [197] Kiely, 2004 [198]	×	X _	x		
Immunosuppressive					
Vgontzas, 2004 [199]	Х	-	-		
Anti-hypertensive					
Mayer, 1990 [200] Issa, 1992 [201]	X X	X X	X X		
Opoid antagonists					
Suratt, 1986 [202]	Х	Х	Х		
Acetylcholinesterase inhibitor					
Hanzel, 1991 [189]	Х	_	Х		
Hedner, 2003 [258]	Х	Х	Х		
Glutamate antagonist					
Hedner, 1996 [203]	Х	Х	Х		
Seretonin (5HT3) receptorantagonists					
Stradling, 2003 [204] Rasche, 1998 [205]	× _	X X	X X		
NMDA antagonist					
Torvaldsson, 2005 [206]	Х	Х	Х		
Nicotine tooth patch					
Zevin, 2003 [207]	Х	Х	-		

ESS = Epworth sleepiness scale; MSLT = Multiple sleep latency test; MWT = Maintenance of wakefulness test

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	Design Inclusion criteria	% women Age BMI AHI ESS
Pépin et al 1995 [61] France	1. 193 2. – 3. 19±7 months	Consecutive patients receiving CPAP 1983–1991 in two centres. AHI >10	15% 59±12 years 32±7 kg/m ² 53±25 Missing data
Noseda et al 1997 [72] Belgium	1. 325 2. – 3. Median: 2.7 (0.5–5.5) years	Patients on CPAP from 1991 to 1995. AHI >20	11% 52±10 years 34± 5 57±27 Missing data
Meslier et al 1998 [62] France	1. 3 225 2. 5 339 3. (0.5–>4 years)	Questionnaire to all registered patients in 28 centres who had used CPAP >6 months	13% 59±11 years Missing data Missing data Missing data
Kalan et al 1999 [70] United Kingdom	1. 301 2. 354 3. (0.5–11 years)	Questionnaire to all patients treated with CPAP for >6 months during 1989–1998	10% 54±11 years 75% of the patients were obese with a mean BMI of 32 (24–41) kg/m ² Missing data Missing data
Lojander et al 1999 [64] Finland	1. 151 2. 194 3. Median: 30 (3–70) months	Consecutive patients on CPAP 1990–1995. Questionnaire	15% 55 (31–76) years 34 (17–54) kg/m ² ODI-4: 41 (4–108)
McArdle et al 1999 [63] United Kingdom	1. 1 155 2. 1 211 3. 22 months (inter- quartile range 12–36)	Consecutive patients who had received CPAP 1986–1997	14% 50 (43–58) years 30 (27–35) kg/m ² 31 (18–53) 12 (8–16)

Table 5.25 Data extraction. Compliance to CPAP.
 Type of device Pressure	Compliance	Follow-up	Quality	Comments
 Fixed CPAP 11±2 cm 33% used humidifiers	95% still used CPAP mean use: 6.5±3 hours (time counter)	To a chest physician every 6 months. Telephone when needed	Low	
CPAP n=311 BiPAP n=10 Auto-CPAP n=4	77% used CPAP 4.7±2.4 (0.0–8.6) hours/night (time counters). 73% used CPAP >21 hours/ week	After 4–6 weeks, then on indivi- dual basis	Medium	Patients stopped CPAP because doctors did not allow them to continue or because of intolerance
12 different CPAP 9.9±2.4 cm 18% used humidifiers	100% had used it for >6 months mean use: 6.6±2.3 hours/night, 89% every night and 73% every night and the whole night. 78% used it >1 year	Missing data	Low	Predictor for success: effect on snoring, EDS and good tolerance to mask. Selected and not consecu- tive patients
Fixed CPAP Missing data	No mean time of follow-up given. 97% used CPAP during 7.8±4 hours/night self reported use. 83% of patients used CPAP every night	Once a year. Telephone when needed	Low	Lower compli- ance when dry- ness nose, leakage, noisy machine. Selected and not consecutive patients
 Fixed CPAP 11 (4–20) cm	71% still using CPAP. 79% of them used CPAP >5 nights, >4 hours/night self reported	3 to 4 times a year to both a doctor and a nurse	Medium	Only self reported data on use/hour
Fixed CPAP 8 (7–10) cm	4.5% refused home CPAP at titration. 77% used it at 22 months 5.6 (3.8–7) hours/night (time counter). Of these, 76% used it >25 hours/ week. 84% used CPAP after 1 year and 68% after 4 years	Telephone by a nurse after 2 weeks. Clinical follow-up within 3 months. Then individually but always once a year	Medium	CPAP free of charge. Success: Male gender, age <50, ESS >10, BMI >30, CPAP >8, arousals >32, good compliance at start. Death, intolerance, other treatment or cure were reasons for non-compliance

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	Design Inclusion criteria	% women Age BMI AHI ESS	
Grothe et al 2000 [67] Sweden	1. 149 2. 149 3. 30 (25–35) months	Consecutive patients trying CPAP during 1994	16% Questionnaire 57±12 30±5.1 33.2 Missing data	
Lacassagne et al 2000 [66] France	1. 248 2. 248 3. 39.5±20.4 months	Prospective Consecutive patients evaluating CPAP 1990–1995	10% 57±11 years 33.4±7.27 37.7±22.4	
Popescu et al 2001 [68] United Kingdom	1. 187 2. 209 3. 1 year	Prospective Patients who had been offered a CPAP a least one year before June 1995–June 1998	9% 51.0±10.6 years 34.6±7.7 kg/m ² 38.1±22.9 15 (11–18)	
Hollandt et al 2003 [65] Germany	1. 108 2. 109 3. 43±25 (0.8–109) months	Prospective Consecutive patients receiving CPAP 1992–1997	Missing data 54±9.7 years 32±6 kg/m ² 47±19 15.4±4.7	

Table 5.25 continued

AHI = Apnoea-hypopnoea index; BMI = Body mass index; CPAP= Continuous positive airway pressure; EDS = Excessive daytime sleepiness; ESS = Epworth sleepiness scale; ITT = Intention-to-treat

Typ dev Pre	oe of vice essure	Compliance	Follow-up	Quality	Comments
Fixe 8.5	ed CPAP (2.4) cm	27 (18%) rejected CPAP directly after trial. 74/122 (61%) of patients prescri- bed CPAP used it after 30 months (ITT 50%). Infor- mation from time counters in 47/74: 4.4±2.4 hours/day	Patients were contacted at 2 weeks. Follow- up at 9, 18, 30 months	Medium	
Fixe 8.6:	ed CPAP ±1.6 cm	9.2% refused CPAP at start. At 39.5±20.4 months 76% (ITT 69%) continued with CPAP use 6.2±2.7 hours/day. 16% quit CPAP, 6% dead	After 1 month then after 3 months and then every 6 months	Medium	No difference in clinical parame- ters of patients stopped use CPAP and compliant patients
Fixe Aut titra	ed CPAP co-CPAP ation	8 (6.2%) did not take CPAP home. One year 128/187 68,5% with a mean use of 5.0±2.4 hours/night. 76.6% used it >21 hours/ week (time counter)	After 2 weeks then after 3–6 months and then annually	High	First a 2 weeks loan then 2 weeks without CPAP then CPAP again. Good compliance: high BMI, male, high AHI, good effect on AHI, ESS, feeling better with CPAP
Fixe 9±3	ed CPAP 3 cm	6 (5.5%) refused CPAP after the first night. 43 ± 25 months: 87 (85%) (ITT 81%) used CPAP. 47% used it \geq 5 hours/night	Missing data	Medium	EDS and ESS predicted suc- cess. Inconve- nience and lack of improvement predicted failure

Author Year Reference Country	1. Number of patients followed up 2. Eligible 3. Time follow	Design Inclusion criteria	% women Age BMI AHI ESS
Hohenhaus-Beer et al 1995 [77] Germany	1. 87 2. 104 3. 9.3 months	Questionnaire to 104 subjects on CPAP with AHI >10 Unclear whether consecutive patients	15% 54.9±9.1 29.8±5.5 kg/m ² Missing data Missing data
Pépin et al 1995 [61] France	1. 193 2. – 3. 19±7 months	Questionnaire to consecutive patients receiving CPAP 1983–1991 in two centres. AHI >10	15% 59±12 years 32±7 kg/m ² 53±25 Missing data
Engleman et al 1996 [74] United Kingdom	1. 215 2. 253 3. 21 (0.5–97) months	Questionnaire to all patients who had received CPAP before 1994 and used it for >2 weeks. AHI >5 + symptoms of EDS	10% 53±10 years Missing data 47±38 15±6
Meslier et al 1998 [62] France	1. 3 225 2. 5 339 3. >6 months (0.5->4 years), 78% >1 year	Questionnaire to all registered patients in 28 centres who had used CPAP >6 months	13% 59±11 years Missing data Missing data Missing data
Brander et al 1999 [73] Finland	1. 49 2. 52 3. 6 months	Prospective Consecutive patients on CPAP	24% 54±7 years 35±6 kg/m ² ODI-4: 43±19 Missing data

Table 5.26 Data extraction. Side effects from CPAP.

Type of devi Pressure	ce Side effects	Quality
		Comments
Fixed CPAP Missing data 20 patients us humidifiers	Mask discomfort 53%, pain nasal bridge/lip 33%, noisy CPAP 40%, noisy CPAP for partner 36%, transport problems with CPAP 7%, sexual disturbance 11%, dry mouth 44%, nasal stuffiness 27%, eye pain 14%, chest pain 11%, dry nose/mouth among subjects without humidifiers	Medium for device. Low for other side effects
Fixed nCPAP 11±2 cm 33% used humidifiers	Pain bridge nose 30%, air leaks 20%, dry nose/ mouth 65%, sneeze and nasal drip 35%, nasal congestion 25%, nose bleeding 4%, sinusitis 5%, noisy CPAP 34%, partner complains of noisy CPAP 50%, CPAP too cumbersome 20%. More side effects due to silicone mask than too individually moulded masks	Low
Fixed nCPAP Missing data	% problem/% severe problem: Nasal stuffiness 64/4, mask leak 63/<1, dry throat 62/1, cold air stream 45/2, mask rubbing 41/1, noise 41/2, bloating/flatulence 37/<1, red/sore eyes 31/1, nose bleedings 10/0, chest wheeze 21/<1, difficulty exhaling 18/1	Medium for device. Low for other side effects
12 different CPAP 9.9±2.4 cm 18% used hun difiers	Dry mouth/throat 52%, noisy CPAP disturb partner 47%, nasal congestion 26%, nasal soreness 27%, drippy nose 24%, red eyes 28%, ni- too noisy CPAP 15%	Medium for device. Low for other side effects
Fixed CPAP 11±3 cm	Before: 33% chronic rhinitis. 41% had had a sinusitis. <u>Before %-after %:</u> Rhinorrhea: 37%-57% p=0.013 Sneeze: 53%-75% p=0.013 Nasal stuffiness: 45-55% ns Mucus in throat: 51-57% ns Dry nose: 75-70% ns Dry mouth/throat: 74-75% ns Blocked ears: 18-19% ns Nose bleeds: 10-15% ns	Medium

Table 5.26 continued

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	Design Inclusion criteria	% women Age BMI AHI ESS
Kalan et al 1999 [70] United Kingdom	1. 301 2. 354 3. ≥6 months (0.5–11 years)	Questionnaire to all patients treated with CPAP for >6 months during 1989–1998	10% 54±11 years 75% of the patients were obese with a mean BMI of 32 (24–41) kg/m ² Missing data Missing data
Lojander et al 1999 [64] Finland	1. 151 2. 194 3. 30 (3–70) months	Questionnaire Consecutive patients on CPAP during 1990–1995	15% 55 (31–76) years 34 (17–54) kg/m ² ODI-4: 41 (4–108)

Verse et al 1999 [78] Germany	1.80 2.92 3.28±21 months	Questionnaire to patients receiv- ing CPAP during 1990–1997 and still using CPAP	6% 56.5±9.3 years 30.2±5.1 kg/m ² 47.9 (range 13–86) Missing data	
Hui et al 2001 [75] China	1. 112 2. 112 3. 3 months	Consecutive patients receiving CPAP 1997–1998. AHI >10 and EDS	10% 45.6±11.2 years 29.3±5.2 kg/m ² 48±24 12.9±4.0	
Mason 2002 [208] USA	1. 1 2. 1	Case report	0 57	
Woodson et al 2003 [48] USA	1. 21 2. 28 3. 8 weeks	RCT. AHI 10–30, BMI <34	25% 49±9.2 years 29±3.7 20±9.9 13±5.0	

Type of device Pressure	Side effects	Quality
		Comments
Fixed CPAP Missing data	Air leak 73%, mask discomfort 43%, sore eyes 34%, pain nasal bridge 52%, dry nose 46%, dry mouth 70%, rhinorrea 35%, nasal congest 43%, epistaxis 0.9%, blood stained mucus 17%, sinusitis 0.4%, noisy CPAP 45%, allergic phenomena from silicon masks 27%, sneezing 29%, aerophagia leading to bloating and flatulence 0.4%, partners complain of CPAP 39%. No life threatening symptoms	Low Selected and not consecutive patients
Fixed CPAP 11 (4–20) cm	Before: chronic rhinitis 24%, chronic sinusitis 9%, nasal stuffiness 46–38%, dry throat 51–46%, sneezing 36–35%, rhinorrea 21–28%, dry nose 39–46% all non significant changes. Dry nose, sneeze more common at pressure >11 cm than below. After: pain or skin problems from mask 50%, mouth leak 44%, air leak to eyes 50%, air swal- lowing 27%, difficult exhaling 29%, suffocation 26%. More mouth leak and air swallowing among non users	Medium
Fixed nCPAP 6.8±1.2 cm 6/92 used humi- difiers	Sleep disturbances 71%, dry mouth 48%, dry nose 46%, mask discomfort 41%, nasal crusts 39%, hearing loss 26%, nose bleedings 19%, rhinorrea 16%, conjunctivitis 15%, sinusitis 6%, claustrophobia 5%	Low Selected patients tolera- ting CPAP, not consecutive
Regular CPAP 10.4±2.3 cm Auto-CPAP titration	% overall/% severe problem: inconvenience 70/7, nasal block/dry 46/9, mask discomfort 32/4, sore nasal bridge 46/4, embarrassed 26/0, sleep disrupt by CPAP 33/5, less intimacy with partner 22/3	Medium for device, low for other side effects
	Localized gingival recession on the labial of upper tooth, second frontal	Low
Constant CPAP Mean 8 cm	Most CPAP subjects experienced at least one side effect but none were serious. Nasal 8 (38%), sleep 9 (43%), inconvenience 7 (33%), air mechanics 7 (33%), skin or eyes 8 (38%), subjects affected 20 (95%)	Medium

Table 5.26 continued

Author Year Reference Country	1. Number of patients followed up 2. Eligible 3. Time follow	Design Inclusion criteria	% women Age BMI AHI ESS
Masa et al 2004 [76] Spain	1. 315 2. 466 3. 12 weeks	Consecutive patients with severe OSA from 10 cen- tres requiring CPAP with AHI ≥30, ESS ≥12	11% 51.7 years 33.5 kg/m ² 62.7 15.7

AHI = Apnoea-hypopnoea index; BMI = Body mass index; CPAP= Continuous positive airway pressure; EDS = Excessive daytime sleepiness; ESS = Epworth sleepiness scale; ITT = Intention-to-treat; nCPAP = Nasal continuous positive airway pressure;

ODI = Oxygen desaturation index; OSA = Obstructive sleep apnoea;

RCT = Randomised controlled trial

Table 5.27 Excluded studies. Side effects of and compliance with CPAP.

Reason for exclusion	References
Less than 100 patients (compliance)	[74,209–223]
Shorter follow-up than 1 year (compliance)	[135,209,211–213,216,220,223–228]
No data on compliance or side effects	[45,213,228–235]
No data on compliance for the whole cohort	[236–238]

Type of device Pressure	Side effects	Quality Comments
 Missing data 8.8 cm	Skin abrasion 23%, rhinitis 19%, conjunctivitis 3%, oral dryness 21%, mask intolerance 5%, chest discomfort 2%, aerophagia 3%, noise 16%, headache 4%, claustrophobia 4%, smothering sensation 3%, insomnia 9%, difficult exhaling 2%, bed partner intolerance 7%, want to continue with CPAP 96%	Medium for device, low for other side effects

Author Year Reference Country	Number of patients followed up Eligible	Design Inclusion criteria	% women Age BMI	
Pantin et al	132 (questionn-	Retrospective	10%	
1999	aire), 106 (clinical	Snoring with or	47.5	
[83]	examination)	without OSA	Missing data	
Australia	191		0	

Table 5.28 Data extraction. Side effects of and compliance with mandibular repositioning appliances.

Tegelberg et al	67 (30 MRA,	RCT	Same study as	
1999	37 UPPP)	Mild to moderate	Wilhelmsson 1999	
[90]	95	OSA	[58]	
Sweden				

Bondemark et al 2000 [89] Sweden	32 32	Prospective follow-up. Habitual snoring or obstructive apnoea	28% 54 (43–80) Missing data	
Panula et al 2000 [91] Finland	1 case	Case report Snoring without OSA	1 woman 56 27	
Fritsch et al 2001 [87] Switzerland	22	Prospective follow-up. OSA	Missing data Missing data Missing data	

Type of device	Compliance at	Side effects at	Quality
			Comments
Material of device not reported, approximately 75% of max protrusion	5 years: 32 patients (24%) did not use the device. Reasons for non-use: no effect 8%, side effects 7.5%, other treatment 3%, other reason 5.5%	5 years: 107 (81%) patients reported side effects, excess- ive salivation 30%, dry mouth 26%, TMJ pain 26%, dental pain 26%, myofacial pain 25%, occlusal changes 12% (14% at clinical exam)	Low No comparative data on subject- ive symptoms at baseline
Hard acrylic, full occlusal coverage except incisors, 50% of max protrusion	4 years: 62% used the splint, mean 6.1 nights/week	4 years: No signi- ficant difference in occlusion or TMD symptoms between MRA group and UPPP group	Medium Technical failures of the device: Fractures of Adam's clasps 5/180 (3%), 1 case of fracture of lingual bar, 2 cases of acrylic fractures
Hard acrylic device, full occlusal cover- age, 50–70% of max protrusion	2 years: All patients used the device 6–8 hours/night, 5–7 nights/week	2 years: Overjet -0.4 mm, overbite -0.1 mm compared to baseline. No changes in TMD symptoms	Medium
Hard acrylic, full occlusal coverage, protruded position: mandibular incisors 1–2 mm anterior maxillary incisors	3 years: Device used 7–8 hours every night	3 years: Lateral open bite bilaterally. Apposition of bone in mandibular fossa seen on radiographs. No subjective dis- comfort	Low Case report
Hard acrylic device, full occlusal cover- age. No data on protrusion	≤30 months: All patients used the device	≤30 months: 86% reported dry mouth, 59% tooth discom- fort, 55% hyper- salivation. <1 mm reduction of overjet and overbite	Low No comparative data on subject- ive symptoms at baseline

Table 5.28 continued

Author Year Reference Country	Number of patients followed up Eligible	Design Inclusion criteria	% women Age BMI	
Marklund et al 2001 [5] Sweden	92 (75 used the device >50% of the nights, 17 did	Retrospective OSA or snoring	15% 53 (25–70) Missing data	

Rose et al 2001 [96] Germany	2 cases	Case report OSA	Case 1: 1 woman 61 year, BMI 25.6 Case 2: 1 male 53 year, BMI 24.3
Engleman et al 2002 [56] United Kingdom	48 51	RCT, cross-over (MRA vs CPAP). AHI ≥5 + ≥2 symptoms	25 46 (18–70) Missing data
Gotsopoulos et al 2002 [50] Australia	73 85	RCT, cross-over (MRA vs placebo device). OSA, RDI ≥10 and ≥2 symptoms	19% 48 (±11) 29 (±4.7)

Туре оf о	levice Complia	ince at Side eff	ects at Quality	
			Commen	ts
Soft elast device (47 hard acry patients). protrusio 10mm ve	omer Not repo 7 patients), lic (28 6 mm n and rtical	rted 2.5 year -0.4 mm -0.4 mm changes to non-u subjectiv 37/69 pa ges in th 28/69, p change 3 know" 1	s: Overjet Low a, overbite b, significant No separat compared analysis for and soft sp re changes in respectivel tients, chan- e morning ermanent /69, "don't /69	te • hard lints, Y
Hard acry occlusal c mandible, and molar in maxilla protrusio	lic, full Case 1: 2 overage in 6–7 hour premolar night. regions Case 2: 2 Individual complian n reported	.8 years: Case 1, 2 s each Overbite 3.8 mm, .3 years: 3.1 mm. ce not bite bilat Case 2, 2 Overbite 2.3 mm, 2.8 mm. bite bilat	2.8 years: Low e reduced overjet Case report Lateral open erally. 2.3 years: e reduced overjet Lateral open erally	rts
1. Soft ela device, fu coverage 2. Hard a device, no coverage No data o sion	stomer 6 weeks: I occlusal the devic night crylic o occlusal in front. on protru-	79% used 6 weeks e ≥3 hours/ ted pain jaws or g excessiv 6% dent damaged	69% repor- from teeth, gums, 19% Short follo e salivation, Adverse ev al crown frequency severity co able with C treatment	w-up. vents and mpar- CPAP
Hard acry occlusal c No data c sion. Place only in ma	lic, full 4 weeks: overage. for both on protru- placebo c ebo device axilla	6.7 h/night 4 weeks test and more for levice jaw disco tooth te excessiv No data quency	significantly Medium test device, omfort, Short follo nderness, e salivation. on fre-	w-up

Table 5.28 continued

Author Year Reference Country	Number of patients followed up Eligible	Design Inclusion criteria	% women Age BMI	
Johnston et al 2002 [51] Ireland	20 21	RCT, cross-over (MRA vs placebo device). OSA, ≥10 desatu- rations (≥4% fall in SaO ₂	19% 55 (35–64) 31.6 (21.1–43.8)	
Randerath et al 2002 [86] Germany	20	RCT, cross-over (MRA vs CPAP). OSA, AHI 5–30	20% 56.5 (±10.2) 31.2 (±6.4)	
Rose et al 2002 [239] Germany	192	Retrospective OSA	12% 54.4 (26–80) 27.5 (19–41.5)	
Tan et al 2002 [55] United Kingdom	21 24	RCT, cross-over (MRA vs CPAP). AHI 10–49	16% 51 (±10.1) 32 (±6.8)	
Fransson et al 2003 [240] Sweden	65 77	Prospective follow-up. OSA or snoring	18 55 (31–73) 29.2	
	100	Duo on o stiluo	120/	

Robertson et al	100	Prospective	13%
2003		OSA with or	49 years men,
[92]		without habitual	51 years women
New Zealand		snoring	Missing data

Type of device	Compliance at	Side effects at	Quality
			Comments
Soft elastomer device, 75% of max protrusion. Placebo device only in maxilla	4–6 weeks: >4 hours/night 79%, ≥6 nights/week 68%. No data on placebo device	4–6 weeks: Exces- sive salivation 68%, temporary occlusal changes in the morn- ing 44%, temporary TMJ discomfort in the morning 42%, 1 patient during the day. No data on placebo device	Low Short follow-up
Soft elastomer, full occlusal coverage, adjustable telescopic guide rods, 75% of max protrusion	6 weeks: >8 hours/ night 33% MRA, 9% CPAP (ns), ≥5 nights/week 100% MRA and CPAP	6 weeks: Temporary discomfort in the mouth or TMJ 40% MRA, 0% CPAP, pressure on the face 10% MRA, 40% CPAP	Medium Short follow-up
Device model not stated, 4–8 mm protrusion	Mean 22.7 months: 105 patients (54.4%) used the device	Not reported	Low
14 patients soft devi- ce, modified Silensor buccal connectors 10 patients soft one- piece device	2 months: 17/21 patients preferred MRA. 4/21 patients preferred CPAP	2 months: Tempo- rary jaw discomfort in the morning 50%. 1 patient did not tolerate the device	Medium
Hard acrylic device with full occlusal coverage, 75% of max protrusion	2 years: 71% (55 of 77) used the device every night, 5 several times/week	2 years: Overjet -0.5 mm, overbite -0.8 mm compared to baseline. 9 patients lateral open bite, 2 patients muscle fatigue. No other subjective symptoms	Medium
Hard acrylic, full occlusal coverage, 75% of max protrusion	Not reported	2 years (20 patients), 30 months (20 patients) reduced overjet and overbite	Medium Small, unpre- dictable changes

Table 5.28 continued

Author Year Reference Country	Number of patients followed up Eligible	Design Inclusion criteria	% women Age BMI	
Walker-Engström et al 2003 [7] Sweden	32 45	Before–after regarding side effects. Al >5, <25	Missing data Missing data 26	
Gotsopoulos et al 2004 [52] Australia	61 67	RCT, cross-over (MRA vs placebo device). Blinded assessor. OSA, RDI ≥10 and ≥2 symptoms	19% 48 (±11) 29 (±4.7)	
Marklund et al 2004 [81] Sweden	619 630	Prospective follow-up. Snoring or mild to moderate OSA	29% 51 (25–74) years men 55 (30–75) years women 28 (19–42)	

AHI = Apnoea-hypopnoea index; AI = Apnoea index; BMI = Body mass index; CHF = Congestive heart failure; CPAP = Continuous positive airway pressure; MRA = Mandibular repositioning appliance;

Table 5.29 Excluded studies. Side effects and compliance with oral appliances.

Reason for exclusion	References
Central sleep apnoea, not OSA or snoring	[241]
No usable data on compliance or side effects	[53,54]
Only cephalometric measures	[242,243]
Same study as Fransson 2002 [243]	[240]
Experimental study	[244]
Same study as Tegelberg 1999 [90], Walker-Engström 2003 [7]. No additional data on side effects	[245]
No mandibular repositioning appliance	[246]
No data on side effects, same study as Tegelberg 1999 [90] and Walker-Engström 2003 [7]	[58]

OSA = Obstructive sleep apnoea

Type of devic	ce Compliance at	Side effects at	Quality
			Comments
Hard acrylic, n on occlusal cov 50% of maxima protrusion	o data 4 years: 28 still using verage device (62%) al	 4 years: 4/27 (1 missing data) minor occlusal changes, 1/27 obvious occlusal changes 	Medium
Hard acrylic, fu occlusal covera Protrusion 7±2 Placebo device in maxilla	III4 weeks: 6.8±0.1age.hours for test and2 mm6.9±0.1 hours foronlyplacebo device.97%±1% of nights	No data on side effects	Probably same patients as in Gotsopoulos 2002?
Soft elastomer device or hard acrylic. 4–6 mr protrusion, ≥5 mm vertical	1 year: 148 patients (24%) did not use the device. Reasons for non-use: uncomfort- able 14%, no effect 3%, odontologic problem 2%, other treatment 2%, other unknown reason 3%	See "Compliance". e See also Marklund 2001 [5] for clinical side effects (same patients?)	Medium for compliance. Low for side effects

OSA = Obstructive sleep apnoea; RCT = Randomised control trial; RDI = Respiratory disturbance index; TMD = Temporomandibular dysfunction; UPPP = Uvulopalatopharyngoplasty

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Katsantonis et al 1987 [120] USA	1. 85 2. – 3. 6 weeks–6 months	Retrospective of patients operated May 1982–July 1985	 Missing data
Esclamado et al 1989 [97] USA	1. 135 2. – 3. Within 24 hours	Retrospective review of patients operated 1983–1987 because of OSAS	1. 6 2. 50±11 3. Missing data 4. 59±25 5. Missing data 6. 100?
Harmon et al 1989 [98] USA	 1.132 2. – 3. Peri- and post- operative period 	Consecutive patients operated 1981–1987	1. 20 2. 19–70 3. Missing data 4. Missing data 5. Missing data 6. 4.5
Fairbanks 1990 [99] USA	1. 72 centres 2. – 3. 8 years	Retrospective	 Missing data
Zohar et al 1991 [247] Israel	1. 71 2. – 3. 20–24 months	Retrospective on consecutive patients operated because of snoring or OSA during 1983–1988	 Missing data 44 (25-68) Missing data Missing data Missing data Missing data Missing data
Grøntved et al 1992 [248] Denmark	1. 21 2. – 3. Postoperative period		 20 Missing data 30±4 Missing data Missing data Missing data Missing data
Carenfelt et al 1993 [100] Sweden	1. 9 000 (UPPP), 2 700 (LAUP) 2. – 3. –	Retrospective Questionnaire to 37 ear-nose-throat departments	 Missing data

Table 5.30 Data extraction. Adverse effects of surgery for obstructive sleep apnoea and snoring.

ר o	Type of operation	Side effects	Quality Comments
L	JPPP	3 (4%) severe nasopharyngeal stenosis. 1 (1%) velopharyngeal insufficiency	Low
L	JPPP	Perioperative: Airway obstruction after extubation 5%, failed intubation 5%, severe postoperative haemorrhage 2%, postoperative arrhythmia 1%. 1 died during intubation	Medium
L 4 1 t	JPPP tracheostomy, tracheostomy + onsillectomy. 1 eptoplasty	Deaths: 1 died the day after op due to haemorrhage. 1 died on day 21 from pulmonary embolism. Severe bleedings 1,5%, pneumonia, emergency tracheostomy after extubation 1.5%, intubation problems 5%, rhinolalia 1.5%	Medium
L	JPPP	16 fatalities were reported. 1 because of haemorrhage and 12 due to loss of airway.8 near fatalities. 46 nasopharyngeal stenosis and 42 palatal incompetence	Low
L	JPPP ± antibiotics	10 days: Pain 100%, hyper nasality 100%, dysphagia 97%, bleeding 4%, local infection 4%. 20–24 months: Nasal reflux 3%, nasal reflux over a tap 15%	Low
L	JPPP	33 severe pain, 38% moderate pain. Pain during 1–3 weeks	Medium
L	JPPP AUP	UPPP: 3 deaths (2 cardiac arrest, 1 bleeding). 16 acute complications (severe bleeding or re-intubation) (<0.5%). 20 late complications. LAUP: 1 death in septicaemia. 3 late complica- tions. Prolonged discomfort when swallowing in >10% irrespective of operation method used	Low

Table 5.30 continued

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Stepnick 1993 [249] USA	1. 1 2. – 3. 18 months	Case report	A 38-year-old black man
Haavisto et al 1994 [101] Finland	 100 (postoperative), 90 (long-term) 101 1 year 	Retrospective review on consecutive patients operated for snoring or OSA during 1989–1990	1. 10 2. 47 (24–73) 3. Missing data 4. Missing data 5. Missing data 6. Missing data
Dickson et al 1996 [124] USA	1. 220 2. – 3. –	Patients operated April 1994–Dec 1994	1. 16 2. Missing data 3. Missing data 4. Missing data 5. Missing data 6. 33
Walker et al 1996 [123] USA	1. 275 2. – 3. 6 weeks– 18 months	Consecutive patients operated July 1993–Dec 1994 Questionnaire on bleeding, velopha- ryngeal insufficiency, pain, speech	 19 49.9 years Missing data Missing data Missing data Missing data Missing data
lkeda et al 1997 [125] Japan	1. 30 2. 30 3. –	Missing data 1994–1995 Consecutive operated snoring and mild OSA	 Missing data 50 (30-70) 24±4 Missing data Missing data Missing data Non with moderate or severe OSA
Riley et al 1997 [103] USA	 182 182 Postoperative during hospital stay 	Prospective on consecutive patients. Review of risk man- agement protocol	1. 114 2. 48.2±11.2 3. 30.3±6.7 4. 42.3±30.6 5. Missing data 6. 100

Type of operation	Side effects	Quality
operation		Comments
UPPP	Nasopharyngeal stenosis. He had an almost total obstruction at the level of the palate. Unable to breath through the nose. Problems eating. He had undergone several operation to correct the stenosis	Low
UPPP	Immediate postoperatively: Early postoperative complications 25%. 57% postoperative compli- cation. Dead 1 (1%), severe bleedings 4 (4%), severe airway problems 5 (5%). After a year: Pharyngeal regurgitation when eating 24%, pharyngeal dryness 31%, difficulty swallowing 10%, speech difficulties 7%, loss of taste 2%, breathing difficulties 5%	Low
LAUP	Postoperative period. Mild 34% (sore throat for one week). Moderate 45% (sore throat with only liquids for 7–10 days). Severe 21% (no liquids for 2 weeks)	Medium
LAUP	26 complications = 3.45% were postoperative haemorrhage 2.12%, local infections 0.53%, temporal palatal incompetence 0.53%, tem- porary loss of taste 0.27%. No case of hyper nasal speech, permanent palatal incompetence, nasopharyngeal stenosis, airway compromise or death	Medium
LAUP	Peri- and postoperative: Slight pain 30%, moderate pain 20%, severe pain 23%. No troublesome bleeding and no asphyxia after operation	Medium
Different op for OSAS. Total 210 operations. UPPP (n=169)	During hospital stay postoperatively: Haemorrhage 1.9%, infections 2.4%, seroma 1.4%, arrhythmia 1.9%, unstable angina 0.5%, death 0	Medium
	The table conti	nues on the next page

Table 5.30	continued
-------------------	-----------

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
lsberg et al 1998 [250] Sweden	1. 79 2. 91 3. >2 years	Consecutive patients operated 1991–1993 Questionnaire	 Missing data
Mickelson et al 1998 [104] USA	1. 347 2. – 3. Postoperative period	Retrospective review of consecutive patients operated 1987–1996	1. Missing data 2. 45±11 3. 33±6 4. 52±35 5. Missing data 6. Missing data
O'Reilly et al 1998 [118] United Kingdom	1. 52 2. 63 3. <18 months	Questionnaire to patients operated during preceding 18 months ie March 1993–June 1994	1. 2 2. 40 3. Missing data 4. Missing data 5. Missing data 6. Missing data
Pinczower 1998 [251] USA	1. 60 2. – 3. 2–3 months	Consecutive operated 1994. Volunteer informa- tion and questioned	 Missing data
Terris et al 1998 [105] USA	 1. 109 2. 109 3. Peri- and post- operative 	Retrospective on consecutive patients operated for snoring or OSA from 1991–1996	1. 12 2. 45±10 3. 29±6 4. 38±12 5. Missing data 6. All?
Hultcrantz et al 1999 [126] Sweden	1. 55 (at 1 year), 48 (at 5 year) 2. 55 3. 1 and 5 years	Questionnaire to 55 consecutive patients operated	1. 7% 2. Mean 48 years 3. Mean 26 kg/m ² 4. Missing data 5. Missing data 6. 35

 Type of	Side effects	Quality
operation		Comments
 LAUP	21/79 patients (27%) reported persistent dysphagia. Such as choking at meals 17 (21%), need to concentrate during meals 6 (8%), nasal regurgitation 4 (5%), globus sensation 4 (5%), food stuck in throat 3 (4%), deficient control of bolus in mouth 2 (3%), difficulty initiating swallowing 1 (1%)	Low
UPPP with or without associate procedures for OSA ie nasal surgery, tracheostomy etc	Postoperative period: 3 severe and 2 minor respiratory problems, 1 bleeding + chest pain, 2 severe epistaxis, 1 tracheostomy bleeding, 1 bleeding from tonsils and 4 other complica- tions	Medium
UPPP (laser) (n=19) UPPP (n=16) UPP (knife) (n=17)	All patients experienced pain and 31 had it after 2 months. Drinking problems after 2 months 13%, dryness in throat 42%, food sticking = globus 50%	Low
LAUP	15 (25%) reported globus sensation. 5 having severe globus and 10 mild globus. Insensitive area on the anterior palatal mucosa was related to globus sensation	Low
 UPPP sometimes combined with other surgery for OSA	Peri- and postoperatively. No deaths. 39 com- plications. Major complications in 8% of patients and minor in 19%. Bleeding, airway obstruction and postoperative hypertension most common. 4 (3.2%) bleedings after discharge from hospital	Medium
UPP	56% reported side effects. After one year had 27% swallowing problems, 8% velopharyngeal insufficiency and 4% increased vomiting reflexes. After 5 years: 27 (56%) side effects from LAUP, swallowing problems 19%, velopharyngeal insufficiency 4% and vomiting reflex 4%	Medium

radie 3.30 continued	Та	Ы	e 5	.30) со	ntin	ueo
----------------------	----	---	-----	-----	------	------	-----

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	 Design Data collection Inclusion criteria 	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Levring-Jäghagen et al 1999 [127] Sweden	68	1. 76 2. – 3. >6 months + >1 year Consecutive patients operated with UPP 1989–1993. Postal questionnaire	1. 13 2. 48 (26–65) years 3. 26 (21–34) kg/m ² 4. Missing data 5. Missing data 6. Missing data
Remacle et al 1999 [109] Belgium	1. 89? 2. 89 3. 17 (1–37) months	Prospective Consecutive during April 1994–May 1997	1. 21 2. 52 (23–77) 3. Missing data 4. Missing data 5. Missing data 6. 17
Virtaniemi et al 1999 [112] Finland	1. 53 2. 53 3. 24 hours	Prospective VAS Consecutive patients operated	UPPP or tonsillectomy 1. 6% and 45% 2. 45±3 and 32±7 3. 27±3 and 25±4 4. ODI: 16±20 5. Missing data 6. Missing data
Andsberg et al 2000 [111] Sweden	1. 22 2. 22 3. 8 years	Prospective on con- secutive patients. Questionnaire	1. 5 2. 50 (37–73) years 3. Missing data 4. Al: 35 (5–89) 5. Missing data 6. 100
Brosch et al 2000 [252] Germany	1. 12 2. 12 3. 9 (6–15) months	Prospective Spectral analysis of voice	1. 0 2. 43 (32–61) years 3. 25 (23–33) kg/m ² 4. Missing data 5. 8.5 (3–16) 6. 42
Boudewyns et al 2000 [132] Belgium	1. 44 2. 103 3. 8 weeks	Prospective Inspection, PSG, questionnaire	1. 14 2. 43.7±10.9 years 3. 26.6±3.2 kg/m ² 4. 5.1±4.3 5. 8.0±5.0 6. Missing data

Type of operation	Side effects	Quality Comments
 UPP performed with steel scalpel	After 1 year. Dysphagia reported by 29%. It included coughing at meals, nasal regurgita- tion, food stuck in throat. Deviant swallowing pattern observed in 12/17 patients studied videoradiographically	Medium
 LAUP (n=43) UPPP (n=46)	Pain (0–10): LAUP during 14±6 days, max 8.4. UPPP during 12±9 days max 8.0. Voice changes: LAUP 8%, UPPP 25%. Voice changes lasted in average one year. Postoperative bleeding LAUP 3%. Severe dysphagia LAUP 3%	Medium
UPPP (n≈31) Tonsillectomy (n=22)	Postoperative pain during 24 hours especially during swallowing was common especially for patients operated with UPPP	Medium

UPPP + midline glossectomy	All patients had postoperative pain during 2 weeks. At 11 months: 42% inconvenience from tongue, 18% increased secretion in throat and unpleasant smell or taste. At 98 months had 23% postoperative complications and 1 case with problems of swallowing	Low
UPPP	Increase in fundamental frequency of 10 Hz of 5 vowels	Medium

TCRAFTA	Mucosal erosion 15.6%, palatal fistula 1 (2.3%),	Medium
	uvula loss 1 (2.3%), excessive swelling 1 (2.3%),	
	haemorrhage 2 (4.5%). Only little pain	

Table 5.30 continued

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Grøntved et al 2000 [114] Denmark	1. 69 2. – 3. 27 (12–48) months	Prospective Consecutive patients operated with UPPP 1991–1994. Questionnaire	1. 16 2. 49 (22–82) 3. 26 (18–34) 4. Missing data 5. Missing data 6. 32
Hagert et al 2000 [115] Sweden	1. 415 2. 457 3. 3.3 (1.5–8) years	Retrospective consecutive	1. 17 2. 50±11 3. Missing data 4. Missing data 5. Missing data 6. 27%

Osman et al 2000 [106] United Kingdom	1. 47 2. 47 3. Postoperative	Prospective Snorers and OSA with AHI <20	1. 13 2. 49 (27–71) 3. 28 (23–38) 4. Missing data 5. Missing data 6. Missing data
Troell et al 2000 [110] USA	1. 41 2. – 3. –	Prospective Snoring and mild SDB. RDI <15, BMI <32	1. Missing data 2. 18–65 years 3. Missing data 4. Missing data 5. Missing data 6. Missing data
Bäck et al 2001 [253] Finland	1. 21 2. 16 3. 2 weeks	Prospective Snorers with ODI-4% <15, and daytime sleepiness	1. 0 2. Median: 44 (35–55) years 3. Median BMI: 26.9 (22.7–32.3) kg/m ² , Median ODI: 4% 4. 0.8 (0–7.3) 5. Missing data 6. 43

T	ype of	Side effects	Quality
o	peration		Comments
U	PPP	Mean 27 months (range 12–48): Complaints of operation 29%, generally dissatisfied 14%, nasal regurgitation 13%, pharyngeal hypersecretion 10%, swallowing problems 9%, speech disturb- ances 7%, dryness 3%, rhinolalia 3%, serious complications 3%	Medium
U L/	PPP (n=292) AUP (n=121)	2–8 years postoperative: 255 (62%) experience side effects. UPPP: Taste 21 (7%), smell 22 (8%), voice 41 (14%), globus 116 (40%), regurgitation 101 (35%). LAUP: Taste 8 (7%), smell 10 (8%), voice 12 (10%), globus 44 (36%), regurgitation 38 (31%). Side effects were the same for LAUP and UPPP and was not affected by OSA or snoring as a diagnosis except for globus which was more common in OSA patients. Author was con- tacted for questions	Medium
U L⁄	PPP (n=18) AUP (n=29)	Pain was common among both operations. LAUP: 1 severe anaesthetic problem UPPP: 1 severe infection, 3 bleedings, 3 temporal velopalatal insufficiency	Medium
L/ U T(AUP (n=10) IPPP (n=9) CRAFTA (n=22)	Mean days of pain: LAUP: 14 days, UPPP: 14 days and TCRAFTA 3 days	Medium
Tı pa	CRAFTA soft alate	14 mucosal blanching	Medium

Table 5.30 continued

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Pazos et al 2001 [131] USA	1. 30 (51 operations) 2. 30 3. 4 weeks	Retrospective on consecutive patients operated with radio- frequency. Medical charts	 Missing data 46 (range 9–81) Missing data Missing data Missing data Missing data Missing data Missing data
Haraldsson et al 2002 [133] Sweden	1. 16 2. – 3. 2 months	Prospective Missing data BMI <30, AHI/ODI <15	1. 31 2. 49.4±10.4 3. 26.2±2.0 4. ODI: 4.0 ±3.4 5. 11.4±5.0 6. Missing data
Lysdahl et al 2002 [116] Sweden	1. 61 (UPPP), 60 (LUPP) 2. 75 (UPPP), 75 (LUPP) 3. 5–8 years	Prospective consecutive. Questionnaire 75 UPPP and 75 LUPP patients	<u>UPPP:</u> 1. 18 2. 45 (10.6) years 3. 27.9 (5.4) kg/m ² 4. Missing data 5. Missing data 6. Missing data <u>LAUP:</u> 1. 15 2. 48.1 (8.8) years 3. 26.0 (4.0) kg/m ² 4. Missing data 5. Missing data 6. Missing data
Stuck et al 2002 [130] Germany	1. 18 2. 20 3. Perioperative	Prospective AHI >15, BMI <35, age 18-65	1. 20 2. 49±8 3. 29±3 4. 32±14 5. Missing data 6. 100
Terris et al 2002 [122] USA	1. 17 2. 20 3. 16 weeks	Prospective AHI <20, age >18 BMI <40	1. Missing data 2. 50.3±10.3 3. 27.5±3.5 4. 6.1±5.0 5. 7.1±4.4 6. Missing data

Type of operation	Side effects	Quality
·		Comments
TCRAFTA 26 operations on the palate and 25 on the tongue	Within 4 weeks: Palatal mucosal breakdown in 11 cases (37%), uvular slough in 2 cases (7%), mouth floor oedema in 2 cases, tongue abscess in 2 cases	Medium
 TCRAFTA soft palate	No effect on speech according to nasal-oral radio meter and trained listener. Ulceration in 2 patients, sustained blanching first week 3 patients, 1 TMJ disk luxation	Medium
 UPPP LAUP	Follow-up at 5–8 years postoperatively UPPP: Swallowing disturbances 35 (57%), persistent swallowing disturbances 22 (36)%, regretted operation 7 (11%). LAUP: Swallowing disturbances 40 (67%), persistent swallowing disturbances 16 (27%), regretted operation 8 (13%)	Medium
 TCRAFTA	Postoperative period: Severe infection in tongue base (5%), Severe tongue swellings requiring hospital admission (15%). Pain for a mean of 3.5±2.8 days	Medium
 TCRAFTA (=10) LAUP (n=7)	Pain: TCRAFTA 7±4.4 days LAUP 15±4.5 days LAUP patients had more difficulty swallowing than patients in TCRAFTA group	Medium

Table 5.30 continued

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Walker- Engstrom et al 2002 [254] Sweden	1. 40 2. 43 3. 4 years	RCT Missing data Male, AI 5–25, Age 20–65	1. 0 2. 50 years 3. 27 kg/m ² 4. 19±9 5. Missing data 6. 100
Berger et al 2003 [119] Israel	1. 25 (LAUP), 24 (UPPP) 3. 12.2±9.9 month 2. –	Prospective questions Subject operated with LAUP	1. 12 2. 49.6 (9.8) years 3. 27.5 (3.2) kg/m ² 4. 25 (14) 5. Missing data 6. Missing data
Ferguson et al 2003 [6] Canada	1. 45 2. 46 3. 7.2±5.9 months	RCT Missing data AHI 10–25	1. 24 2. 45±8 years 3. 32±5 kg/m ² 4. 17±4 5. 10±4 6. 100
Gessler et al 2003 [255] USA	1. 130 2. – 3. 18 hours	Retrospective on patients operated 1995–1998	1. 1.5 2. 36 (20–77) 3. Missing data 4. 40 (7–87) 5. Missing data 6. 100
Rombaux et al 2003 [107] Belgium	1. 49 2. – 3. 6 weeks	Prospective. Disturb snoring BMI <32	1. 18 2. 40 3. 26 4. 9 (0–19) 5. Missing data 6. Missing data (no sleep apnoea investigations)

Туре opera	of ation	Side effects	Quality
			Comments
UPPP		4 years: Pronounced complaints of nasopha- ryngeal regurgitation of fluid by 8%. Difficulty swallowing in 10%	Low
LAUP UPPP	? (n=24) (n=24)	LAUP results: Postoperative pain during 9.7 (3.8) days. Away from work during 9.7 (3.8) days. Persistent throat dryness or itching in 12 patients (48%). Velopharyngeal stenosis which was later operated in one patient (4%). No deaths	Medium
		No data on UPPP complications	
LAUP	? (n=21)	 17 (81%) reported sever severe pain despite analgesia. 4 subjects (19%) had persistent difficulty swallowing at follow-up. 4 subjects (19%) experienced mild bleedings, 5 reported moderate to severe bleedings of which one (5%) required medical attention 	Medium
UPPP		8/130 patients (6.2%) had desaturations <90%. Letter from author saying that there were no death cases, no cardiovascular complications, no infections requiring antibiotic therapy, no post-extubation pulmonary oedema	Low Short follow-up period
UPPP LAUP TCRA	(n=17) (n=15) AFTA (n=17)	Early UPPP: infection 18%, bleeding 6%, post pillar narrowing 23%, wound dehiscence 23%. LAUP: infection 7%, post pillar narrowing 20%. TCRAFTA: infection 6%, velopharyngeal fistula 6%. Days of pain: UPPP 21, LAUP 15, TCRAFTA 6. <u>6 weeks UPPP</u> : globus 23%, voice change 12% pharyngeal reflux 12%, pharyngeal dryness 12%. LAUP: globus 13%, voice change 27%. TCRAFTA: globus 6%, voice change 6%	Medium

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Said et al 2003 [129] USA	1. 39 2. 50 3. 14 (3–26) months	Retrospective on consecutive patients operated April 1998–July 2000. Telephone interview at 3–26 months after operation	1. 10 2. 54.1 (8.6) 3. 28.1 (5.3) 4. 16.9 (17.8) 5. Missing data 6. Missing data
Stuck et al 2003 [256] Germany	1. 322 2. – 3. –	Retrospective on consecutive patients during 1998–2002. Medical charts	1. 20 2. 47.7±10.7 years 3. 27.7±3.6 kg/m ² 4. 20.5±18.5 5. Missing data 6. Missing data
Woodson et al 2003 [48] USA	1. 48 2. 60 3. 3 weeks	RCT Missing data AHI 10–30, BMI <34	1. 20 2. 48±9 years 3. 28±4 kg/m ² 4. 18±9 5. 12±5 6. 100
Jäghagen et al 2004 [117] Sweden	1. 42 2. 46 3. 1 year	Prospective Questionnaire and x-rays	1. 9 2. 46 (27–74) years 3. 26 (21–34) kg/m ² 4. 8 (0–40) 5. Missing data 6. Missing data

I a Die J.JV Continueu	Та	ble	5.3) continued
------------------------	----	-----	-----	--------------------

Kezirian et al	1. 3 130	Prospective	1. 3
2004	2. 3 130		2. 49.8±10.8
[102]	3. 30 days	Department of vete-	3. Missing data
USA		rans affairs register	4. Missing data
			5. Missing data
			6. Missing data

Туре	e of ration	Side effects	Quality
			Comments
TCR	AFTA	Reversible within 1 month after operation. Subjective palatal swelling 72%, choking sen- sation 28%, palatal ulcer 3%, transient voice change 11%, thick mucus 11%, abnormal sen- sation 19%, dysphagia 13%, moderate to severe pain 15%	Medium
TCR	AFTA	2.4% of operations had short term side effects. Ulcerations on tongue or soft palate 1%, severe dysphagia requiring hospital admission 1%, palsy of hypoglossal nerve 0.3%, tongue abscess 0.3%	Low Only charts and no specific questionnaire
TCR Sharr (n=2	AFTA (n=23) n operation 5)	Pain and swallowing increased mildly 1 week after treatment of both the placebo and TCRAFTA groups and remained to baseline by 3 weeks after op with no difference between groups	Medium
UPPI UPP	P (n=20) (n=22)	7/42 patients reported dysphagia before opera- tion one of reported worsening after operation and 2 lesser symptoms. 10/35 (29%) patients acquired dysphagia after the operation. Ie an increase from 17% of dysphagia before opera- tion to 40% one year after the operation. The same with both surgical methods. Preoperative video radiography did not predict dysphagia after operation	High
		Answer from author reporting side effects of UPPP and UPP in separate	
UPPI	P	Serious side effects after one month: Death 0.2% (n=7). Serious non-fatal com- plications including re-intubation, emergency tracheostomy, haemorrhage, cardiovascular complications 1.5% (n=47)	High

Table 5.30 continued

Author Year Reference Country	 Number of patients followed up Eligible Time follow 	1. Design 2. Data collection 3. Inclusion criteria	1. % women 2. Age 3. BMI 4. AHI 5. ESS 6. % with OSA
Larrosa et al 2004 [57] Spain	1. 25 2. 28 3. 3 months	RCT Missing data Snoring, male sex, age 30–60, BMI 25–30, AHI <30	1. 0 2. 44±7 years 3. 27±3 kg/m ² 4. 15±3 5. 11±5 6. Missing data
Madani 2004 [257] USA	1. 5 600? 2. 5 600? 3. ≥2 years	Retrospective on cosec patients from 1993–2003 with snoring or nasal congestion, BMI <30	1. 11 2. 19–76 3. 27 4. Missing data 5. 11.4 6. Missing data
Kim et al 2005 [108] South Korea	1. 90 2. 153 3. –	Retrospective review of 153 patients operated 1997–2003	1. 4 2. 44.3±9.2 3. 27.9±2.9 4. 53.3±27.8 5. Missing data 6. 100

AHI = Aponea-hypoponea index; BMI = Body mass index; ESS = Epworth sleepiness scale; LAUP = Laser-assisted uvulopalatoplasty; ODI = Oxygen desaturation index; OSA = Obstructive sleep apnoea; OSAS = Obstructive sleep apnoea syndrome; TMJ = Temporomandibular joint; UPP = Uvulopalatoplasty; UPPP = Uvulopalatopharyngoplasty; VAS = Visual analogue scale

 Type of operation	Side effects	Quality Comments
LAUP (n=13) Sham operation (n=12)	Postoperative pain in 100% of cases during 8–19 days. Minimal complaints in control group. Minor bleeding in one patient after 24 hour controlled by electrocautery in the office	Medium
 LAUP (including radiofrequency in 40%)	Perioperative bleeding 9.5%, deaths 0%, delayed bleedings 0.2%, local infection following nasal radioablation 12%	Low No sleep apnoea recordings. 1 private centre. 1 author
UPPP	Peri- and postoperative period during 2 weeks from operation. Complications 19 (21%) included bleeding, respiratory complications and postoperative ECG changes. 3 severe bleeding complications	Medium

References

1. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981; 1:862-5.

2. Council SMR. Diagnosis and management of obstructive sleep apnea syndrome. A state of the art document. In; 1994; 1994.

3. Haniffa M, Lasserson TJ, Smith I. Interventions to improve compliance with continuous positive airway pressure for obstructive sleep apnoea. Cochrane Database of Systematic Reviews 2004, Issue 4. Art. No.: CD003531. DOI: 10.1002/14651858. CD003531.pub2.

4. Soll BA, George PT. Treatment of obstructive sleep apnea with a nocturnal airway-patency appliance. N Engl J Med 1985;313:386-7.

5. Marklund M, Franklin KA, Persson M. Orthodontic side-effects of mandibular advancement devices during treatment of snoring and sleep apnoea. Eur J Orthod 2001;23:135-44.

6. Ferguson KA, Heighway K, Ruby RR. A randomized trial of laser-assisted uvulopalatoplasty in the treatment of mild obstructive sleep apnea. Am J Respir Crit Care Med 2003;167:15-9.

7. Walker-Engström ML, Ringqvist I, Vestling O, Wilhelmsson B, Tegelberg A. A prospective randomized study comparing two different degrees of mandibular advancement with a dental appliance in treatment of severe obstructive sleep apnea. Sleep Breath 2003;7:119-30. 8. Tegelberg A, Walker-Engstrom ML, Vestling O, Wilhelmsson B. Two different degrees of mandibular advancement with a dental appliance in treatment of patients with mild to moderate obstructive sleep apnea. Acta Odontol Scand 2003;61:356-62.

9. Fujita S, Conway W, Zorick F, Roth T. Surgical correction of anatomic azbnormalities in obstructive sleep apnea syndrome: uvulopalatopharyngoplasty. Otolaryngol Head Neck Surg 1981;89:923-34.

10. Carlsson-Nordlander B, Larsson H, Svanborg E. [Warning against silent apneas after surgery for snoring]. Läkartidningen 1991;88:1063-5.

11. Larsson H, Carlsson-Nordlander B, Svanborg E. Long-time follow-up after UPPP for obstructive sleep apnea syndrome. Results of sleep apnea recordings and subjective evaluation 6 months and 2 years after surgery. Acta Otolaryngol 1991;111:582-90.

12. Patel SR, White DP, Malhotra A, Stanchina ML, Ayas NT. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch Intern Med 2003;163:565-71.

13. Sher AE, Schechtman KB, Piccirillo JF. The efficacy of surgical modifications of the upper airway in adults with obstructive sleep apnea syndrome. Sleep 1996;19:156-77.

14. Smith I, Lasserson TJ, Wright J. Drug therapy for obstructive sleep apnoea in adults. Cochrane Database of Systematic Reviews 2006, Issue 2. Art. No.:
CD003002. DOI: 10.1002/14651858. CD003002.pub2.

15. Smith IE, Quinnell TG. Pharmacotherapies for obstructive sleep apnoea: where are we now? Drugs 2004;64: 1385-99.

16. Hudgel DW, Thanakitcharu S. Pharmacologic treatment of sleep-disordered breathing. Am J Respir Crit Care Med 1998;158:691-9.

17. Laitinen LA, Anttalainen U, Pietinalho A, Hamalainen P, Koskela K. Sleep apnoea: Finnish National guidelines for prevention and treatment 2002–2012. Respir Med 2003;97:337-65.

18. McMahon JP, Foresman BH, Chisholm RC. The influence of CPAP on the neurobehavioral performance of patients with obstructive sleep apnea hypopnea syndrome: a systematic review. WMJ 2003;102:36-43.

19. Berry RB, Parish JM, Hartse KM. The use of auto-titrating continuous positive airway pressure for treatment of adult obstructive sleep apnea. An American Academy of Sleep Medicine review. Sleep 2002;25:148-73.

20. Wright J, Johns R, Watt I, Melville A, Sheldon T. Health effects of obstructive sleep apnoea and the effectiveness of continuous positive airways pressure: a systematic review of the research evidence. BMJ 1997;314:851-60.

21. Schmidt-Nowara W, Lowe A, Wiegand L, Cartwright R, Perez-Guerra F, Menn S. Oral appliances for the treatment of snoring and obstructive sleep apnea: a review. Sleep 1995;18:501-10. 22. White J, Cates C, Wright J. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database of Systematic Reviews 2006, Issue 3. Art. No.: CD001106. DOI: 10.1002/14651858. CD001106.pub3.

23. Shneerson J, Wright J. Lifestyle modification for obstructive sleep apnoea. Cochrane Database of Systematic Reviews 2001, Issue 1. Art. No.: CD002875. DOI: 10.1002/14651858.CD002875.

24. Perleth M, von der Leyen U, Schmitt H, Dintsios C-M, Felder S, Schwartz FW, et al. Das Schlaf-Apnoe-Syndrom. Systematische Ubersichten zur diagnostik, Threapie und Kosten-Effektivität. Sankt Augustin, Asgard-Verlag; 2003.

25. Scottish Intercollegiate Guidelines Network. Royal College of Physicians. Management of obstructive sleep apnoea/ hypopnoea syndrome in adults – A national clinical guideline. Edinburgh: Royal College of Physicians; 2003.

26. National Health and Medical Research Council. Effectiveness of nasal continuous positive airway pressure (nCPAP) in obstructive sleep apnoea in adults. Canberra: AusInfo; 2000.

27. Hailey D, Jacobs P, Mayers I, Mensinkai S. Auto-titrating nasal continuous positive airway pressure systems in the management of obstructivve sleep apnea. Technology Report No. 39. Ottowa: Canadian Coordinating Office for Health Technology Assessment; 2003.

28. Ayas NT, Patel SR, Malhotra A, Schulzer M, Malhotra M, Jung D, et al. Auto-titrating versus standard continuous positive airway pressure for the treatment of obstructive sleep apnea: results of a meta-analysis. Sleep 2004;27:249-53.

29. Giles TL, Lasserson TJ, Smith BJ, White J, Wright J, Cates CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database of Systematic Reviews 2006, Issue 3. Art. No.: CD001106. DOI: 10.1002/14651858. CD001106.pub3.

30. Lim J, Lasserson TJ, Fleetham J, Wright J. Oral appliances for obstructive sleep apnoea. Cochrane Database of Systematic Reviews 2006, Issue 1. Art. No.: CD004435. DOI: 10.1002/14651858. CD004435.pub3.

31. Sundaram S, Bridgman SA, Lim J, Lasserson TJ. Surgery for obstructive sleep apnoea. Cochrane Database of Systematic Reviews 2005, Issue 4. Art. No.: CD001004. DOI: 10.1002/14651858. CD001004.pub2.

32. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1-12.

33. Engleman HM, Martin SE, Deary IJ, Douglas NJ. Effect of continuous positive airway pressure treatment on daytime function in sleep apnoea/hypopnoea syndrome. Lancet 1994;343:572-5.

34. Engleman HM, Martin SE, Kingshott RN, Mackay TW, Deary IJ, Douglas NJ. Randomised placebo controlled trial of daytime function after continuous positive airway pressure (CPAP) therapy for the sleep apnoea/hypopnoea syndrome. Thorax 1998;53:341-5. 35. Redline S, Adams N, Strauss ME, Roebuck T, Winters M, Rosenberg C. Improvement of mild sleep-disordered breathing with CPAP compared with conservative therapy. Am J Respir Crit Care Med 1998;157:858-65.

36. Ballester E, Badia JR, Hernandez L, Carrasco E, de Pablo J, Fornas C, et al. Evidence of the effectiveness of continuous positive airway pressure in the treatment of sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med 1999;159:495-501.

37. Engleman HM, Kingshott RN, Wraith PK, Mackay TW, Deary IJ, Douglas NJ. Randomized placebo-controlled crossover trial of continuous positive airway pressure for mild sleep Apnea/Hypopnea syndrome. Am J Respir Crit Care Med 1999;159:461-7.

38. Jenkinson C, Davies RJ, Mullins R, Stradling JR. Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet 1999;353:2100-5.

39. Faccenda JF, Mackay TW, Boon NA, Douglas NJ. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med 2001;163:344-8.

40. McArdle N, Douglas NJ. Effect of continuous positive airway pressure on sleep architecture in the sleep apnea-hypopnea syndrome: a randomized controlled trial. Am J Respir Crit Care Med 2001;164:1459-63.

41. Monasterio C, Vidal S, Duran J, Ferrer M, Carmona C, Barbé F, et al. Effectiveness of continuous positive airway pressure in mild sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med 2001;164:939-43.

42. Montserrat JM, Ferrer M, Hernandez L, Farré R, Vilagut G, Navajas D, et al. Effectiveness of CPAP treatment in daytime function in sleep apnea syndrome: a randomized controlled study with an optimized placebo. Am J Respir Crit Care Med 2001;164:608-13.

43. Barbé F, Mayoralas LR, Duran J, Masa JF, Maimó A, Montserrat JM, et al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial. Ann Intern Med 2001;134:1015-23.

44. Barnes M, Houston D, Worsnop CJ, Neill AM, Mykytyn IJ, Kay A, et al. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am J Respir Crit Care Med 2002;165:773-80.

45. Chakravorty I, Cayton RM, Szczepura A. Health utilities in evaluating intervention in the sleep apnoea/hypopnoea syndrome. Eur Respir J 2002;20:1233-8.

46. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, Mullins R, Jenkinson C, Stradling JR, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet 2002;359:204-10.

47. Becker HF, Jerrentrup A, Ploch T, Grote L, Penzel T, Sullivan CE, et al. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation 2003;107:68-73.

48. Woodson BT, Steward DL, Weaver EM, Javaheri S. A randomized trial of temperature-controlled radiofrequency, continuous positive airway pressure, and placebo for obstructive sleep apnea syndrome. Otolaryngol Head Neck Surg 2003;128:848-61.

49. Barnes M, McEvoy RD, Banks S, Tarquinio N, Murray CG, Vowles N, et al. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea. Am J Respir Crit Care Med 2004;170:656-64.

50. Gotsopoulos H, Chen C, Qian J, Cistulli PA. Oral appliance therapy improves symptoms in obstructive sleep apnea: a randomized, controlled trial. Am J Respir Crit Care Med 2002;166:743-8.

51. Johnston CD, Gleadhill IC, Cinnamond MJ, Gabbey J, Burden DJ. Mandibular advancement appliances and obstructive sleep apnoea: a randomized clinical trial. Eur J Orthod 2002;24:251-62.

52. Gotsopoulos H, Kelly JJ, Cistulli PA. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial. Sleep 2004; 27:934-41.

53. Ferguson KA, Ono T, Lowe AA, Keenan SP, Fleetham JA. A randomized crossover study of an oral appliance vs nasal-continuous positive airway pressure in the treatment of mild-moderate obstructive sleep apnea. Chest 1996;109:1269-75.

54. Ferguson KA, Ono T, Lowe AA, al-Majed S, Love LL, Fleetham JA. A

short-term controlled trial of an adjustable oral appliance for the treatment of mild to moderate obstructive sleep apnoea. Thorax 1997;52:362-8.

55. Tan YK, L'Estrange PR, Luo YM, Smith C, Grant HR, Simonds AK, et al. Mandibular advancement splints and continuous positive airway pressure in patients with obstructive sleep apnoea: a randomized cross-over trial. Eur J Orthod 2002;24:239-49.

56. Engleman HM, McDonald JP, Graham D, Lello GE, Kingshott RN, Coleman EL, et al. Randomized crossover trial of two treatments for sleep apnea/ hypopnea syndrome: continuous positive airway pressure and mandibular repositioning splint. Am J Respir Crit Care Med 2002;166:855-9.

57. Larrosa F, Hernandez L, Morello A, Ballester E, Quinto L, Montserrat JM. Laser-assisted uvulopalatoplasty for snoring: does it meet the expectations? Eur Respir J 2004;24:66-70.

58. Wilhelmsson B, Tegelberg Å, Walker-Engström ML, Ringqvist M, Andersson L, Krekmanov L, et al. A prospective randomized study of a dental appliance compared with uvulopalatopharyngoplasty in the treatment of obstructive sleep apnoea. Acta Otolaryngol 1999;119:503-9.

59. Cahali MB, Formigoni GG, Gebrim EM, Miziara ID. Lateral pharyngoplasty versus uvulopalatopharyngoplasty: a clinical, polysomnographic and computed tomography measurement comparison. Sleep 2004;27:942-50.

60. Puhan MA, Suarez A, Lo Cascio C, Zahn A, Heitz M, Braendli O. Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial. BMJ 2006;332:266-70.

61. Pépin JL, Leger P, Veale D, Langevin B, Robert D, Lévy P. Side effects of nasal continuous positive airway pressure in sleep apnea syndrome. Study of 193 patients in two French sleep centers. Chest 1995;107:375-81.

62. Meslier N, Lebrun T, Grillier-Lanoir V, Rolland N, Henderick C, Sailly JC, et al. A French survey of 3,225 patients treated with CPAP for obstructive sleep apnoea: benefits, tolerance, compliance and quality of life. Eur Respir J 1998;12:185-92.

63. McArdle N, Devereux G, Heidarnejad H, Engleman HM, Mackay TW, Douglas NJ. Long-term use of CPAP therapy for sleep apnea/ hypopnea syndrome. Am J Respir Crit Care Med 1999;159:1108-14.

64. Lojander J, Brander PE, Ämmälä K. Nasopharyngeal symptoms and nasal continuous positive airway pressure therapy in obstructive sleep apnoea syndrome. Acta Otolaryngol 1999;119:497-502.

65. Hollandt JH, Mahlerwein M. Nasal breathing and continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA). Sleep Breath 2003;7:87-94.

66. Lacassagne L, Didier A, Doussau S, Murris-Espin M, Birot P, Charlet JP, et al. [Results of 248 patients with sleep apnea syndrome treated by continuous positive pressure ventilation between 1990 and 1995. A study of compliance and outcome of the apnea-hypopnea index]. Rev Mal Respir 2000;17:467-74. 67. Grote L, Hedner J, Grunstein R, Kraiczi H. Therapy with nCPAP: incomplete elimination of Sleep Related Breathing Disorder. Eur Respir J 2000;16:921-7.

68. Popescu G, Latham M, Allgar V, Elliott MW. Continuous positive airway pressure for sleep apnoea/hypopnoea syndrome: usefulness of a 2 week trial to identify factors associated with long term use. Thorax 2001;56:727-33.

69. Noseda A, Jann E, Hoffmann G, Linkowski P, Kerkhofs M. Compliance with nasal continuous positive airway pressure assessed with a pressure monitor: pattern of use and influence of sleep habits. Respir Med 2000;94:76-81.

70. Kalan A, Kenyon GS, Seemungal TA, Wedzicha JA. Adverse effects of nasal continuous positive airway pressure therapy in sleep apnoea syndrome. J Laryngol Otol 1999;113:888-92.

71. Lojander J, Kajaste S, Maasilta P, Partinen M. Cognitive function and treatment of obstructive sleep apnea syndrome. J Sleep Res 1999;8:71-6.

72. Noseda A, Kempenaers C, Hoffmann G, Kerkhofs M, Le Bon O, Linkowski P, et al. [Sleep apnea and nocturnal ventilatory assistance (nCPAP): 5-year experience in the conventional system]. Rev Med Brux 1997;18:64-9.

73. Brander PE, Soirinsuo M, Lohela P. Nasopharyngeal symptoms in patients with obstructive sleep apnea syndrome. Effect of nasal CPAP treatment. Respiration 1999;66:128-35.

74. Engleman HM, Asgari-Jirhandeh N, McLeod AL, Ramsay CF, Deary IJ, Douglas NJ. Self-reported use of CPAP and benefits of CPAP therapy: a patient survey. Chest 1996;109:1470-6.

75. Hui DS, Choy DK, Li TS, Ko FW, Wong KK, Chan JK, et al. Determinants of continuous positive airway pressure compliance in a group of Chinese patients with obstructive sleep apnea. Chest 2001;120:170-6.

76. Masa JF, Jiménez A, Durán J, Capote F, Monasterio C, Mayos M, et al. Alternative methods of titrating continuous positive airway pressure: a large multicenter study. Am J Respir Crit Care Med 2004;170:1218-24.

77. Hohenhaus-Beer A, Gleixner M, Fichter J. [Long-term follow-up of CPAP therapy in patients with obstructive sleep apnea]. Wien Med Wochenschr 1995;145:512-4.

78. Verse T, Lehnhardt E, Pirsig W, Junge-Hülsing B, Kroker B. [What are the sideeffects of nocturnal continuous positive pressure ventilation (nCPAP) in patients with sleep apnea for the head-neck region?]. Laryngorhinootologie 1999;78:491-6.

79. Marrone O, Resta O, Salvaggio A, Giliberti T, Stefano A, Insalaco G. Preference for fixed or automatic CPAP in patients with obstructive sleep apnea syndrome. Sleep Med 2004;5:247-51.

80. Hussain SF, Love L, Burt H, Fleetham JA. A randomized trial of auto-titrating CPAP and fixed CPAP in the treatment of obstructive sleep apnea-hypopnea. Respir Med 2004;98:330-3.

81. Marklund M, Stenlund H, Franklin KA. Mandibular advancement devices in 630 men and women with obstructive sleep apnea and snoring: tolerability and predictors of treatment success. Chest 2004;125:1270-8.

82. Marklund M. Predictors of long-term orthodontic side effects from mandibular advancement devices in patients with snoring and obstructive sleep apnea. Am J Orthod Dentofacial Orthop 2006;129:214-21.

83. Pantin CC, Hillman DR, Tennant M. Dental side effects of an oral device to treat snoring and obstructive sleep apnea. Sleep 1999;22:237-40.

84. Rose E, Staats R, Virchow C, Jonas IE. A comparative study of two mandibular advancement appliances for the treatment of obstructive sleep apnoea. Eur J Orthod 2002;24:191-8.

85. Izci B, McDonald JP, Coleman EL, Mackay TW, Douglas NJ, Engleman HM. Clinical audit of subjects with snoring & sleep apnoea/hypopnoea syndrome fitted with mandibular repositioning splint. Respir Med 2005;99:337-46.

86. Randerath WJ, Heise M, Hinz R, Ruehle KH. An individually adjustable oral appliance vs continuous positive airway pressure in mild-to-moderate obstructive sleep apnea syndrome. Chest 2002;122:569-75.

87. Fritsch KM, Iseli A, Russi EW, Bloch KE. Side effects of mandibular advancement devices for sleep apnea treatment. Am J Respir Crit Care Med 2001;164:813-8.

88. Fransson A. A mandibular protruding device in obstructive sleep apnea and snoring. Diss; 2003.

89. Bondemark L, Lindman R. Craniomandibular status and function in patients with habitual snoring and obstructive sleep apnoea after nocturnal treatment with a mandibular advancement splint: a 2-year follow-up. Eur J Orthod 2000;22:53-60.

90. Tegelberg Å, Wilhelmsson B, Walker-Engström ML, Ringqvist M, Andersson L, Krekmanov L, et al. Effects and adverse events of a dental appliance for treatment of obstructive sleep apnoea. Swed Dent J 1999;23:117-26.

91. Panula K, Keski-Nisula K. Irreversible alteration in occlusion caused by a mandibular advancement appliance: an unexpected complication of sleep apnea treatment. Int J Adult Orthodon Orthognath Surg 2000;15:192-6.

92. Robertson C, Herbison P, Harkness M. Dental and occlusal changes during mandibular advancement splint therapy in sleep disordered patients. Eur J Orthod 2003;25:371-6.

93. Fransson AM, Tegelberg A, Johansson A, Wenneberg B. Influence on the masticatory system in treatment of obstructive sleep apnea and snoring with a mandibular protruding device: a 2-year follow-up. Am J Orthod Dentofacial Orthop 2004;126:687-93.

94. Almeida FR, Lowe AA, Sung JO, Tsuiki S, Otsuka R. Long-term sequellae of oral appliance therapy in obstructive sleep apnea patients: Part 1. Cephalometric analysis. Am J Orthod Dentofacial Orthop 2006;129:195-204.

95. Battagel JM, Kotecha B. Dental sideeffects of mandibular advancement splint wear in patients who snore. Clin Otolaryngol 2005;30:149-56.

96. Rose EC, Schnegelsberg C, Staats R, Jonas IE. Occlusal side effects caused by a mandibular advancement appliance

in patients with obstructive sleep apnea. Angle Orthod 2001;71:452-60.

97. Esclamado RM, Glenn MG, McCulloch TM, Cummings CW. Perioperative complications and risk factors in the surgical treatment of obstructive sleep apnea syndrome. Laryngoscope 1989;99:1125-9.

 Harmon JD, Morgan W, Chaudhary
B. Sleep apnea: morbidity and mortality of surgical treatment. South Med J 1989;82:161-4.

99. Fairbanks DN. Uvulopalatopharyngoplasty complications and avoidance strategies. Otolaryngol Head Neck Surg 1990;102:239-45.

100. Carenfelt C, Haraldsson PO. Frequency of complications after uvulopalatopharyngoplasty. Lancet 1993;341:437.

101. Haavisto L, Suonpaa J. Complications of uvulopalatopharyngoplasty. Clin Otolaryngol Allied Sci 1994;19:243-7.

102. Kezirian EJ, Weaver EM, Yueh B, Deyo RA, Khuri SF, Daley J, et al. Incidence of serious complications after uvulopalatopharyngoplasty. Laryngoscope 2004;114:450-3.

103. Riley RW, Powell NB, Guilleminault C, Pelayo R, Troell RJ, Li KK. Obstructive sleep apnea surgery: risk management and complications. Otolaryngol Head Neck Surg 1997;117:648-52.

104. Mickelson SA, Hakim I. Is postoperative intensive care monitoring necessary after uvulopalatopharyngoplasty? Otolaryngol Head Neck Surg 1998;119:352-6.

105. Terris DJ, Fincher EF, Hanasono MM, Fee WE, Jr, Adachi K. Conservation of resources: indications for intensive care monitoring after upper airway surgery on patients with obstructive sleep apnea. Laryngoscope 1998;108:784-8.

106. Osman EZ, Osborne JE, Hill PD, Lee BW, Hammad Z. Uvulopalatopharyngoplasty versus laser assisted uvulopalatoplasty for the treatment of snoring: an objective randomised clinical trial. Clin Otolaryngol Allied Sci 2000;25:305-10.

107. Rombaux P, Hamoir M, Bertrand B, Aubert G, Liistro G, Rodenstein D. Postoperative pain and side effects after uvulopalatopharyngoplasty, laser-assisted uvulopalatoplasty, and radiofrequency tissue volume reduction in primary snoring. Laryngoscope 2003;113:2169-73.

108. Kim JA, Lee JJ, Jung HH. Predictive factors of immediate postoperative complications after uvulopalatopharyngoplasty. Laryngoscope 2005;115:1837-40.

109. Remacle M, Betsch C, Lawson G, Jamart J, Eloy P. A new technique for laser-assisted uvulopalatoplasty: decisiontree analysis and results. Laryngoscope 1999;109:763-8.

110. Troell RJ, Powell NB, Riley RW, Li KK, Guilleminault C. Comparison of postoperative pain between laser-assisted uvulopalatoplasty, uvulopalatopharyngoplasty, and radiofrequency volumetric tissue reduction of the palate. Otolaryngol Head Neck Surg 2000;122:402-9.

111. Andsberg U, Jessen M. Eight years of follow-up – uvulopalatopharyngoplasty combined with midline glossectomy as a treatment for obstructive sleep apnoea syndrome. Acta Otolaryngol Suppl 2000;543:175-8. 112. Virtaniemi J, Kokki H, Nikanne E, Aho M. Ketoprofen and fentanyl for pain after uvulopalatopharyngoplasty and tonsillectomy. Laryngoscope 1999;109:1950-4.

113. Eliashar R, Eliachar I. A case of squamous papilloma after uvulopalatopharyngoplasty. Ear Nose Throat J 2000;79:250-1.

114. Grøntved AM, Karup P. Complaints and satisfaction after uvulopalatopharyngoplasty. Acta Otolaryngol Suppl 2000;543:190-2.

115. Hagert B, Wikblad K, Odkvist L, Wahren LK. Side effects after surgical treatment of snoring. ORL J Otorhinolaryngol Relat Spec 2000;62:76-80.

116. Lysdahl M, Haraldsson PO. Uvulopalatopharyngoplasty versus laser uvulopalatoplasty: prospective long-term follow-up of self-reported symptoms. Acta Otolaryngol 2002;122:752-7.

117. Jäghagen EL, Berggren D, Dahlqvist A, Isberg A. Prediction and risk of dysphagia after uvulopalatopharyngoplasty and uvulopalatoplasty. Acta Otolaryngol 2004;124:1197-203.

118. O'Reilly BF, Simpson DC. A comparison of conservative, radical and laser palatal surgery for snoring. J R Coll Surg Edinb 1998;43:194-5.

119. Berger G, Stein G, Ophir D, Finkelstein Y. Is there a better way to do laser-assisted uvulopalatoplasty? Arch Otolaryngol Head Neck Surg 2003;129:447-53.

120. Katsantonis GP, Friedman WH, Krebs FJ, 3rd, Walsh JK. Nasopharyngeal complications following uvulopalatopharyngoplasty. Laryngoscope 1987;97:309-14.

121. Lysdahl M, Haraldsson PO. Longterm survival after uvulopalatopharyngoplasty in nonobese heavy snorers: a 5to 9- year follow-up of 400 consecutive patients. Arch Otolaryngol Head Neck Surg 2000;126:1136-40.

122. Terris DJ, Coker JF, Thomas AJ, Chavoya M. Preliminary findings from a prospective, randomized trial of two palatal operations for sleep-disordered breathing. Otolaryngol Head Neck Surg 2002;127:315-23.

123. Walker RP, Gopalsami C. Laserassisted uvulopalatoplasty: postoperative complications. Laryngoscope 1996;106:834-8.

124. Dickson RI, Mintz DR. Onestage laser-assisted uvulopalatoplasty. J Otolaryngol 1996;25:155-61.

125. Ikeda K, Oshima T, Tanno N, Ogura M, Shimomura A, Suzuki H, et al. Laserassisted uvulopalatoplasty for habitual snoring without sleep apnea: outcome and complications. ORL J Otorhinolaryngol Relat Spec 1997;59:45-9.

126. Hultcrantz E, Johansson K, Bengtson H. The effect of uvulopalatopharyngoplasty without tonsillectomy using local anaesthesia: a prospective long-term follow-up. J Laryngol Otol 1999;113:542-7.

127. Levring-Jäghagen E, Nilsson ME, Isberg A. Persisting dysphagia after uvulopalatoplasty performed with steel scalpel. Laryngoscope 1999;109:86-90.

128. Wareing MJ, Callanan VP, Mitchell DB. Laser assisted uvulopalatoplasty: six and eighteen month results. J Laryngol Otol 1998;112:639-41.

129. Said B, Strome M. Long-term results of radiofrequency volumetric tissue reduction of the palate for snoring. Ann Otol Rhinol Laryngol 2003;112:276-9.

130. Stuck BA, Maurer JT, Verse T, Hormann K. Tongue base reduction with temperature-controlled radiofrequency volumetric tissue reduction for treatment of obstructive sleep apnea syndrome. Acta Otolaryngol 2002;122:531-6.

131. Pazos G, Mair EA. Complications of radiofrequency ablation in the treatment of sleep-disordered breathing. Otolaryngol Head Neck Surg 2001;125:462-6; discussion 466-7.

132. Boudewyns A, Van De Heyning P. Temperature-controlled radiofrequency tissue volume reduction of the soft palate (somnoplasty) in the treatment of habitual snoring: results of a European multicenter trial. Acta Otolaryngol 2000;120:981-5.

133. Haraldsson PO, Karling J, Lysdahl M, Svanborg E. Voice quality after radiofrequency volumetric tissue reduction of the soft palate in habitual snorers. Laryngoscope 2002;112:1260-3.

134. Dimsdale JE, Loredo JS, Profant J. Effect of continuous positive airway pressure on blood pressure : a placebo trial. Hypertension 2000;35:144-7.

135. Henke KG, Grady JJ, Kuna ST. Effect of nasal continuous positive airway pressure on neuropsychological function in sleep apnea-hypopnea syndrome. A randomized, placebo-controlled trial. Am J Respir Crit Care Med 2001;163:911-7.

136. Engleman HM, Gough K, Martin SE, Kingshott RN, Padfield PL, Douglas NJ. Ambulatory blood pressure on and off continuous positive airway pressure therapy for the sleep apnea/hypopnea syndrome: effects in "non-dippers". Sleep 1996;19:378-81.

137. Loredo JS, Ancoli-Israel S, Dimsdale JE. Effect of continuous positive airway pressure vs placebo continuous positive airway pressure on sleep quality in obstructive sleep apnea. Chest 1999;116:1545-9.

138. Profant J, Ancoli-Israel S, Dimsdale JE. A randomized, controlled trial of 1 week of continuous positive airway pressure treatment on quality of life. Heart Lung 2003;32:52-8.

139. Jokic R, Klimaszewski A, Crossley M, Sridhar G, Fitzpatrick MF. Positional treatment vs continuous positive airway pressure in patients with positional obstructive sleep apnea syndrome. Chest 1999;115:771-81.

140. Hans MG, Nelson S, Luks VG, Lorkovich P, Baek SJ. Comparison of two dental devices for treatment of obstructive sleep apnea syndrome (OSAS). Am J Orthod Dentofacial Orthop 1997;111:562-70.

141. Mehta A, Qian J, Petocz P, Darendeliler MA, Cistulli PA. A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med 2001;163:1457-61.

142. Bloch KE, Iseli A, Zhang JN, Xie X, Kaplan V, Stoeckli PW, et al. A randomized, controlled crossover trial of two oral appliances for sleep apnea treatment. Am J Respir Crit Care Med 2000;162:246-51.

143. Neill A, Whyman R, Bannan S, Jeffrey O, Campbell A. Mandibular advancement splint improves indices of obstructive sleep apnoea and snoring but side effects are common. N Z Med J 2002;115:289-92.

144. Pitsis AJ, Darendeliler MA, Gotsopoulos H, Petocz P, Cistulli PA. Effect of vertical dimension on efficacy of oral appliance therapy in obstructive sleep apnea. Am J Respir Crit Care Med 2002;166:860-4.

145. Clark GT, Blumenfeld I, Yoffe N, Peled E, Lavie P. A crossover study comparing the efficacy of continuous positive airway pressure with anterior mandibular positioning devices on patients with obstructive sleep apnea. Chest 1996;109:1477-83.

146. Marshall NS, Neill AM, Campbell AJ, Sheppard DS. Randomised controlled crossover trial of humidified continuous positive airway pressure in mild obstructive sleep apnoea. Thorax 2005;60:427-32.

147. Bardwell WA, Ancoli-Israel S, Berry CC, Dimsdale JE. Neuropsychological effects of one-week continuous positive airway pressure treatment in patients with obstructive sleep apnea: a placebo-controlled study. Psychosom Med 2001;63:579-84.

148. Yu BH, Ancoli-Israel S, Dimsdale JE. Effect of CPAP treatment on mood states in patients with sleep apnea. J Psychiatr Res 1999;33:427-32.

149. Ziegler MG, Mills PJ, Loredo JS, Ancoli-Israel S, Dimsdale JE. Effect of continuous positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep apnea. Chest 2001;120:887-93.

150. Nelesen RA, Yu H, Ziegler MG, Mills PJ, Clausen JL, Dimsdale JE. Continuous positive airway pressure normalizes cardiac autonomic and hemodynamic responses to a laboratory stressor in apneic patients. Chest 2001;119:1092-101.

151. Blanco J, Zamarron C, Abeleira Pazos MT, Lamela C, Suarez Quintanilla D. Prospective evaluation of an oral appliance in the treatment of obstructive sleep apnea syndrome. Sleep Breath 2005;9:20-5.

152. Lojander J, Maasilta P, Partinen M, Brander PE, Salmi T, Lehtonen H. Nasal-CPAP, surgery, and conservative management for treatment of obstructive sleep apnea syndrome. A randomized study. Chest 1996;110:114-9.

153. Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal continuous positive airway pressure in stroke patients with sleep apnoea: a randomized treatment study. Eur Respir J 2001;18:630-4.

154. Kajaste S, Brander PE, Telakivi T, Partinen M, Mustajoki P. A cognitivebehavioral weight reduction program in the treatment of obstructive sleep apnea syndrome with or without initial nasal CPAP: a randomized study. Sleep Med 2004;5:125-31.

155. Arias MA, Garcia-Rio F, Alonso-Fernandez A, Mediano O, Martinez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation 2005;112:375-83.

156. Bao X, Nelesen RA, Loredo JS, Dimsdale JE, Ziegler MG. Blood pressure variability in obstructive sleep apnea: role of sympathetic nervous activity and effect of continuous positive airway pressure. Blood Press Monit 2002;7:301-7.

157. Phillips BA, Schmitt FA, Berry DT, Lamb DG, Amin M, Cook YR. Treatment of obstructive sleep apnea. A preliminary report comparing nasal CPAP to nasal oxygen in patients with mild OSA. Chest 1990;98:325-30.

158. Engleman HM, Martin SE, Deary IJ, Douglas NJ. Effect of CPAP therapy on daytime function in patients with mild sleep apnoea/hypopnoea syndrome. Thorax 1997;52:114-9.

159. Ryan CM, Usui K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnoea. Thorax 2005;60:781-5.

160. Lawton HM, Battagel JM, Kotecha B. A comparison of the Twin Block and Herbst mandibular advancement splints in the treatment of patients with obstructive sleep apnoea: a prospective study. Eur J Orthod 2005;27:82-90.

161. Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med 2003;348:1233-41.

162. Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin P, Naughton MT. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med 2004;169:361-6.

163. Ferini-Strambi L, Baietto C, Di Gioia MR, Castaldi P, Castronovo C, Zucconi M, et al. Cognitive dysfunction in patients with obstructive sleep apnea (OSA): partial reversibility after continuous positive airway pressure (CPAP). Brain Res Bull 2003;61:87-92. 164. Flemons WW, Reimer MA. Measurement properties of the calgary sleep apnea quality of life index. Am J Respir Crit Care Med 2002;165:159-64.

165. Munoz A, Mayoralas LR, Barbé F, Pericás J, Agustí AG. Long-term effects of CPAP on daytime functioning in patients with sleep apnoea syndrome. Eur Respir J 2000;15:676-81.

166. Scharf MB, Stover R, McDannold MD, Spinner O, Berkowitz DV, Conrad C. Outcome evaluation of long-term nasal continuous positive airway pressure therapy in obstructive sleep apnea. Am J Ther 1999;6:293-7.

167. Jenkinson C, Stradling J, Petersen S. Comparison of three measures of quality of life outcome in the evaluation of continuous positive airways pressure therapy for sleep apnoea. J Sleep Res 1997;6:199-204.

168. Doherty LS, Kiely JL, Lawless G, McNicholas WT. Impact of nasal continuous positive airway pressure therapy on the quality of life of bed partners of patients with obstructive sleep apnea syndrome. Chest 2003;124:2209-14.

169. Hla KM, Skatrud JB, Finn L, Palta M, Young T. The effect of correction of sleep-disordered breathing on BP in untreated hypertension. Chest 2002;122:1125-32.

170. Garrigue S, Bordier P, Jais P, Shah DC, Hocini M, Raherison C, et al. Benefit of atrial pacing in sleep apnea syndrome. N Engl J Med 2002;346:404-12.

171. Simantirakis EN, Schiza SE, Chrysostomakis SI, Chlouverakis GI, Klapsinos NC, Siafakas NM, et al. Atrial overdrive pacing for the obstructive sleep apnea-hypopnea syndrome. N Engl J Med 2005;353:2568-77.

172. Krahn AD, Yee R, Erickson MK, Markowitz T, Gula LJ, Klein GJ, et al. Physiologic pacing in patients with obstructive sleep apnea: a prospective, randomized crossover trial. J Am Coll Cardiol 2006;47:379-83.

173. Skinner MA, Kingshott RN, Jones DR, Homan SD, Taylor DR. Elevated posture for the management of obstructive sleep apnea. Sleep Breath 2004;8:193-200.

174. Luthje L, Unterberg-Buchwald C, Dajani D, Vollmann D, Hasenfuss G, Andreas S. Atrial overdrive pacing in patients with sleep apnea with implanted pacemaker. Am J Respir Crit Care Med 2005;172:118-22.

175. Unterberg C, Luthje L, Szych J, Vollmann D, Hasenfuss G, Andreas S. Atrial overdrive pacing compared to CPAP in patients with obstructive sleep apnoea syndrome. Eur Heart J 2005;26:2568-75.

176. Collop NA. Medroxyprogesterone acetate and ethanol-induced exacerbation of obstructive sleep apnea. Chest 1994;106:792-9.

177. Cook WR, Benich JJ, Wooten SA. Indices of severity of obstructive sleep apnea syndrome do not change during medroxyprogesterone acetate therapy. Chest 1989;96:262-6.

178. Keefe DL, Watson R, Naftolin F. Hormone replacement therapy may alleviate sleep apnea in menopausal women: a pilot study. Menopause 1999;6:196-200. 179. Liu PY, Yee B, Wishart SM, Jimenez M, Jung DG, Grunstein RR, et al. The short-term effects of high-dose testosterone on sleep, breathing, and function in older men. J Clin Endocrinol Metab 2003;88:3605-13.

180. Espinoza H, Antic R, Thornton AT, McEvoy RD. The effects of aminophylline on sleep and sleep-disordered breathing in patients with obstructive sleep apnea syndrome. Am Rev Respir Dis 1987;136:80-4.

181. Mulloy E, McNicholas WT. Theophylline in obstructive sleep apnea. A double-blind evaluation. Chest 1992; 101:753-7.

182. Oberndorfer S, Saletu B, Gruber G, Anderer P, Saletu M, Mandl M, et al. Theophylline in snoring and sleep-related breathing disorders: sleep laboratory investigations on subjective and objective sleep and awakening quality. Methods Find Exp Clin Pharmacol 2000;22:237-45.

183. Hein H, Behnke G, Jorres RA, Magnussen H. The therapeutic effect of theophylline in mild obstructive sleep Apnea/Hypopnea syndrome: results of repeated measurements with portable recording devices at home. Eur J Med Res 2000;5:391-9.

184. Guilleminault C, Hayes B. Naloxone, theophylline, bromocriptine, and obstructive sleep apnea. Negative results. Bull Eur Physiopathol Respir 1983;19:632-4.

185. Brownell LG, West P, Sweatman P, Acres JC, Kryger MH. Protriptyline in obstructive sleep apnea: a double-blind trial. N Engl J Med 1982;307:1037-42.

186. Brownell LG, Perez-Padilla R, West P, Kryger MH. The role of protriptyline in obstructive sleep apnea. Bull Eur Physiopathol Respir 1983;19:621-4.

187. Stepanski EJ, Conway WA, Young DK, Zorick FJ, Wittig RM, Roth T. A double-blind trial of protriptyline in the treatment of sleep apnea syndrome. Henry Ford Hosp Med J 1988;36:5-8.

188. Whyte KF, Gould GA, Airlie MA, Shapiro CM, Douglas NJ. Role of protriptyline and acetazolamide in the sleep apnea/hypopnea syndrome. Sleep 1988;11:463-72.

189. Hanzel DA, Proia NG, Hudgel DW. Response of obstructive sleep apnea to fluoxetine and protriptyline. Chest 1991;100:416-21.

190. Berry RB, Yamaura EM, Gill K, Reist C. Acute effects of paroxetine on genioglossus activity in obstructive sleep apnea. Sleep 1999;22:1087-92.

191. Kraiczi H, Hedner J, Dahlof P, Ejnell H, Carlson J. Effect of serotonin uptake inhibition on breathing during sleep and daytime symptoms in obstructive sleep apnea. Sleep 1999;22:61-7.

192. Mendelson WB, Maczaj M, Holt J. Buspirone administration to sleep apnea patients. J Clin Psychopharmacol 1991;11:71-2.

193. Berry RB, Kouchi K, Bower J, Prosise G, Light RW. Triazolam in patients with obstructive sleep apnea. Am J Respir Crit Care Med 1995;151:450-4.

194. Camacho ME, Morin CM. The effect of temazepam on respiration in elderly insomniacs with mild sleep apnea. Sleep 1995;18:644-5. 195. Cirignotta F, Mondini S, Zucconi M, Gerardi R, Farolfi A, Lugaresi E. Zolpidem-polysomnographic study of the effect of a new hypnotic drug in sleep apnea syndrome. Pharmacol Biochem Behav 1988;29:807-9.

196. Hoijer U, Hedner J, Ejnell H, Grunstein R, Odelberg E, Elam M. Nitrazepam in patients with sleep apnoea: a double-blind placebo-controlled study. Eur Respir J 1994;7:2011-5.

197. Craig TJ, Teets S, Lehman EB, Chinchilli VM, Zwillich C. Nasal congestion secondary to allergic rhinitis as a cause of sleep disturbance and daytime fatigue and the response to topical nasal corticosteroids. J Allergy Clin Immunol 1998;101:633-7.

198. Kiely JL, Nolan P, McNicholas WT. Intranasal corticosteroid therapy for obstructive sleep apnoea in patients with co-existing rhinitis. Thorax 2004;59:50-5.

199. Vgontzas AN, Zoumakis E, Lin HM, Bixler ED, Trakada D, Chrousos GP. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-alpha antagonist. J Clin Endocrinal Metab 2004;89:4409-13.

200. Mayer J, Weichler U, Herres-Mayer B, Schneider H, Marx U, Peter JH. Influence of metoprolol and cilazapril on blood pressure and on sleep apnea activity. J Cardiovasc Pharmacol 1990;16:952-61.

201. Issa FG. Effect of clonidine in obstructive sleep apnea. Am Rev Respir Dis 1992;145:435-9.

202. Suratt PM, Wilhoit SC, Brown ED, Findley LJ. Effect of doxapram on obstruc-

tive sleep apnea. Bull Eur Physiopathol Respir 1986;22:127-31.

203. Hedner J, Grunstein R, Eriksson B, Ejnell H. A double-blind, randomized trial of sabeluzole – a putative glutamate antagonist – in obstructive sleep apnea. Sleep 1996;19:287-9.

204. Stradling J, Smith D, Radulovacki M, Carley D. Effect of ondansetron on moderate obstructive sleep apnoea, a single night, placebo-controlled trial. J Sleep Res 2003;12:169-70.

205. Rasche K, Duchna HW, Orth M, Bauer TT, Lauer J, Podbregar D, et al. [Effect of salmeterol in obstructive sleep apnea syndrome]. Pneumologie 1998;52:11-3.

206. Torvaldsson S, Grote L, Peker Y, Basun H, Hedner J. A randomized placebo-controlled trial of an NMDA receptor antagonist in sleep-disordered breathing. J Sleep Res 2005;14:149-55.

207. Zevin S, Swed E, Cahan C. Clinical effects of locally delivered nicotine in obstructive sleep apnea syndrome. Am J Ther 2003;10:170-5.

208. Mason WE. Localized gingival recession caused by a C-PAP mask: a case report. J Mich Dent Assoc 2002;84:38-41.

209. Chervin RD, Theut S, Bassetti C, Aldrich MS. Compliance with nasal CPAP can be improved by simple interventions. Sleep 1997;20:284-9.

210. Pieters T, Collard P, Aubert G, Dury M, Delguste P, Rodenstein DO. Acceptance and long-term compliance with nCPAP in patients with obstructive sleep apnoea syndrome. Eur Respir J 1996;9:939-44. 211. Kingshott RN, Vennelle M, Hoy CJ, Engleman HM, Deary IJ, Douglas NJ. Predictors of improvements in daytime function outcomes with CPAP therapy. Am J Respir Crit Care Med 2000;161:866-71.

212. Drake CL, Day R, Hudgel D, Stefadu Y, Parks M, Syron ML, et al. Sleep during titration predicts continuous positive airway pressure compliance. Sleep 2003;26:308-11.

213. Aloia MS, Di Dio L, Ilniczky N, Perlis ML, Greenblatt DW, Giles DE. Improving compliance with nasal CPAP and vigilance in older adults with OAHS. Sleep Breath 2001;5:13-21.

214. Russo-Magno P, O'Brien A, Panciera T, Rounds S. Compliance with CPAP therapy in older men with obstructive sleep apnea. J Am Geriatr Soc 2001;49:1205-11.

215. Kaplan V, Bingisser R, Li Y, Hess T, Russi EW, Bloch KE. [Compliance with nasal positive pressure (CPAP) in obstructive sleep apnea syndrome]. Schweiz Med Wochenschr 1996;126:15-21.

216. Broderick A, Christl M, Kolbeck A, Spiessl H. [Compliance with nCPAP therapy: is prediction possible?]. Wien Med Wochenschr 1995;145:504-5.

217. Kuhl S, Hollandt JH, Siegert R. [Therapy with nasal CPAP (continuous positive airway pressure) in patients with obstructive sleep apnea syndrome (OSAS). II: Side-effects of nCPAP therapy. Effect on long-term acceptance]. Laryngorhinootologie 1997;76:608-13.

218. Hollandt JH, Kuhl S, Siegert R. [Therapy with nasal CPAP (continuous positive airway pressure) in patients with obstructive sleep apnea syndrome (OSAS). I: Long-term acceptance of nasal CPAP]. Laryngorhinootologie 1997;76:550-3.

219. Beecroft J, Zanon S, Lukic D, Hanly P. Oral continuous positive airway pressure for sleep apnea: effectiveness, patient preference, and adherence. Chest 2003;124:2200-8.

220. Orth M, Rasche K, Ullrich HU, Duchna HW, Schultze-Werninghaus G. [Long-term acceptance of n-CPAP therapy by patients with sleep related respiratory disorders]. Pneumologie 1995;49 Suppl 1:212-5.

221. Teran Santos J, Quintana Gonzalez JI, Morato Arnaiz A, Lazaro Asegurado L, Garcia Arroyo I. [Level of compliance in the treatment of sleep obstructive apnea syndrome with nasal continuous positive pressure]. Rev Clin Esp 1996;196:509-14.

222. Márquez-Báez C, Paniagua-Soto J, Castilla-Garrido JM. [Treatment of sleep apnea syndrome with CPAP: compliance with treatment, its efficacy and secondary effects]. Rev Neurol 1998;26:375-80.

223. Stepnowsky CJ, Jr., Bardwell WA, Moore PJ, Ancoli-Israel S, Dimsdale JE. Psychologic correlates of compliance with continuous positive airway pressure. Sleep 2002;25:758-62.

224. Pépin JL, Krieger J, Rodenstein D, Cornette A, Sforza E, Delguste P, et al. Effective compliance during the first 3 months of continuous positive airway pressure. A European prospective study of 121 patients. Am J Respir Crit Care Med 1999;160:1124-9.

225. Noseda A, Kempenaers C, Kerkhofs M, Braun S, Linkowski P, Jann E. Constant vs auto-continuous positive airway pressure in patients with sleep apnea hypopnea syndrome and a high variability in pressure requirement. Chest 2004;126:31-7.

226. Sin DD, Mayers I, Man GC, Pawluk L. Long-term compliance rates to continuous positive airway pressure in obstructive sleep apnea: a population-based study. Chest 2002;121:430-5.

227. Hoy CJ, Vennelle M, Kingshott RN, Engleman HM, Douglas NJ. Can intensive support improve continuous positive airway pressure use in patients with the sleep apnea/hypopnea syndrome? Am J Respir Crit Care Med 1999;159:1096-100.

228. Jenkinson C, Davies RJ, Mullins R, Stradling JR. Long-term benefits in selfreported health status of nasal continuous positive airway pressure therapy for obstructive sleep apnoea. QJM 2001;94:95-9.

229. Schäfer H, Ewig S, Hasper E, Lüderitz B. Failure of CPAP therapy in obstructive sleep apnoea syndrome: predictive factors and treatment with bilevelpositive airway pressure. Respir Med 1998;92:208-15.

230. Likar LL, Panciera TM, Erickson AD, Rounds S. Group education sessions and compliance with nasal CPAP therapy. Chest 1997;111:1273-7.

231. Desfonds P, Planés C, Fuhrman C, Foucher A, Raffestin B. Nasal resistance in snorers with or without sleep apnea: effect of posture and nasal ventilation with continuous positive airway pressure. Sleep 1998;21:625-32.

232. Weaver TE. Outcome measurement in sleep medicine practice and research. Part 1: assessment of symptoms, subjective and objective daytime sleepiness, healthrelated quality of life and functional status. Sleep Med Rev 2001;5:103-128.

233. Aloia MS, Ilniczky N, Di Dio P, Perlis ML, Greenblatt DW, Giles DE. Neuropsychological changes and treatment compliance in older adults with sleep apnea. J Psychosom Res 2003;54:71-6.

234. Janson C, Nöges E, Svedberg-Randt S, Lindberg E. What characterizes patients who are unable to tolerate continuous positive airway pressure (CPAP) treatment? Respir Med 2000;94:145-9.

235. Veale D, Chailleux E, Hoorelbeke-Ramon A, Reybet-Degas O, Humeau-Chapuis MP, Alluin-Aigouy F, et al. Mortality of sleep apnoea patients treated by nasal continuous positive airway pressure registered in the ANTADIR observatory. Association Nationale pour le Traitement A Domicile de l'Insuffisance Respiratoire chronique. Eur Respir J 2000;15:326-31.

236. Karrer W, Rothe TB, Ryckx A, Keller U. [Nasal CPAP therapy in obstructive sleep apnea syndrome: patient compliance]. Schweiz Med Wochenschr 2000;130:1291-7.

237. Fleury B, Rakotonanahary D, Hausser-Hauw C, Lebeau B, Guilleminault C. A laboratory validation study of the diagnostic mode of the Autoset system for sleep-related respiratory disorders. Sleep 1996;19:502-5.

238. Krieger J, Kurtz D, Petiau C, Sforza E, Trautmann D. Long-term compliance with CPAP therapy in obstructive sleep apnea patients and in snorers. Sleep 1996;19:S136-43. 239. Rose E, Staats R, Schulte-Mönting J, Ridder GJ, Jonas IE. [Long term compliance with an oral protrusive appliance in patients with obstructive sleep apnoea]. Dtsch Med Wochenschr 2002;127:1245-9.

240. Fransson AM, Tegelberg A, Leissner L, Wenneberg B, Isacsson G. Effects of a mandibular protruding device on the sleep of patients with obstructive sleep apnea and snoring problems: a 2-year follow-up. Sleep Breath 2003;7:131-41.

241. Eskafi M, Ekberg E, Cline C, Israelsson B, Nilner M. Use of a mandibular advancement device in patients with congestive heart failure and sleep apnoea. Gerodontology 2004;21:100-7.

242. Fransson AM, Svenson BA, Isacsson G. The effect of posture and a mandibular protruding device on pharyngeal dimensions: a cephalometric study. Sleep Breath 2002;6:55-68.

243. Fransson AM, Tegelberg A, Svenson BA, Lennartsson B, Isacsson G. Influence of mandibular protruding device on airway passages and dentofacial characteristics in obstructive sleep apnea and snoring. Am J Orthod Dentofacial Orthop 2002;122:371-9.

244. Lowe AA, Sjöholm TT, Ryan CF, Fleetham JA, Ferguson KA, Remmers JE. Treatment, airway and compliance effects of a titratable oral appliance. Sleep 2000; 23 Suppl 4:S172-8.

245. Ringqvist M, Walker-Engström ML, Tegelberg Å, Ringqvist I. Dental and skeletal changes after 4 years of obstructive sleep apnea treatment with a mandibular advancement device: a prospective, randomized study. Am J Orthod Dentofacial Orthop 2003;124:53-60.

246. Schönhofer B, Stoohs RA, Rager H, Wenzel M, Wenzel G, Köhler D. A new tongue advancement technique for sleep-disordered breathing: side effects and efficacy. Am J Respir Crit Care Med 1997;155:732-8.

247. Zohar Y, Finkelstein Y, Talmi YP, Bar-Ilan Y. Uvulopalatopharyngoplasty: evaluation of postoperative complications, sequelae, and results. Laryngoscope 1991;101:775-9.

248. Grontved A, Jorgensen K, Petersen SV. Results of uvulopalatopharyngoplasty in snoring. Acta Otolaryngol Suppl 1992;492:11-4.

249. Stepnick DW. Management of total nasopharyngeal stenosis following UPPP. Ear Nose Throat J 1993;72:86-90.

250. Isberg A, Levring-Jäghagen E, Dahlström M, Dahlqvist Å. Persistent dysphagia after laser uvulopalatoplasty: a videoradiographic study of pharyngeal function. Acta Otolaryngol 1998;118:870-4.

251. Pinczower EF. Globus sensation after laser-assisted uvulopalatoplasty. Am J Otolaryngol 1998;19:107-8.

252. Brosch S, Matthes C, Pirsig W, Verse T. Uvulopalatopharyngoplasty changes fundamental frequency of the voice – a prospective study. J Laryngol Otol 2000;114:113-8. 253. Bäck L, Palomaki M, Piilonen A, Ylikoski J. Sleep-disordered breathing: radiofrequency thermal ablation is a promising new treatment possibility. Laryngoscope 2001;111:464-71.

254. Walker-Engstrom ML, Tegelberg A, Wilhelmsson B, Ringqvist I. 4-year followup of treatment with dental appliance or uvulopalatopharyngoplasty in patients with obstructive sleep apnea: a randomized study. Chest 2002;121:739-46.

255. Gessler EM, Bondy PC. Respiratory complications following tonsillectomy/ UPPP: is step-down monitoring necessary? Ear Nose Throat J 2003; 82:628-32.

256. Stuck BA, Starzak K, Verse T, Hormann K, Maurer JT. Complications of temperature-controlled radiofrequency volumetric tissue reduction for sleep-disordered breathing. Acta Otolaryngol 2003;123:532-5.

257. Madani M. Complications of laserassisted uvulopalatopharyngoplasty (LAUPPP) and radiofrequency treatments of snoring and chronic nasal congestion: a 10-year review of 5,600 patients. J Oral Maxillofac Surg 2004;62:1351-62.

258. Hedner J, Kraiczi H, Peker Y, Murphy P. Reduction of sleep-disordered breathing after physostigmine. Am J Respir Crit Care Med 2003;168:1246-51.

6. Ethical Aspects

Conclusions

This chapter deals with ethical questions in a general sense. A systematic literature review has not been performed. Ethical issues arise in discussing diagnostic questions, treatment alternatives and research on obstructive sleep apnoea syndrome (OSAS). This is no different from other conditions. Ethical questions can be raised from different points of view. The patient, the professional, the healthcare system (including the financier) and the community all have different agendas. They may both raise and value the issue differently. The principles of respect for autonomy, beneficence, nonmaleficience and fairness or justice – which are often applied when addressing ethical questions in health care – are highly relevant to OSAS as well.

Diagnostic issues

Because OSAS consists of a combination of subjective symptoms and objective findings, diagnostic accuracy may vary depending on the perspective. There is an obvious risk of a slippery slope when diagnosing. From the patient's perspective, it may be reasonable to be rather generous with a diagnosis as long as there is an effective treatment method that is not accompanied by frequent or severe adverse effects and does not consume excessive patient or community resources. From a professional perspective, there may be financial gains to be had by diagnosing a patient with OSAS, given that it can lead to a demand for professional help in the form of surgery, a device or continuous follow-up and advice. Because OSAS is often associated with snoring, a bed partner's perspective may influence willingness to obtain a diagnosis and suggestions for therapy. The frequent apnoeas that the partner may observe can also induce fear and anxiety, motivating the patient to obtain a diagnosis. In these cases as well, the patient's perspective and outcome are the most important.

From a community point of view, it is important that the same criteria are used so that the opportunity for equal, high-quality treatment can be assured throughout the healthcare system. The community is also interested in proper resource allocation. Thus, Bayesian reasoning should be used when allocating resources for diagnostic measures, given that treatment is justified only for relieving symptoms or improving the prognosis. The principle of justice is relevant when discussing resource allocation. The concept of nonmaleficience also comes into play. A diagnostic tool for OSAS needs to have a likelihood ratio (low LR–) that indicates true disease, considering that some of the treatment alternatives either are associated with poor efficacy and high risk or are cumbersome and have adverse effects.

Treatment issues

The risk/benefit ratio is the most important treatment issue. There is no justification from any perspective for using a method that has questionable efficacy and high risk. Only in patients who face a high risk without treatment is a therapy associated with severe adverse effects indicated. Such patients have to be properly informed so that they can genuinely consent to a procedure, such as surgery, over which they have no control. To treat certain patient groups with perceived risk factors or to treat OSAS in order to reduce the risk of other conditions, such as hypertension or coronary heart disease, must also be based on evidence of the effect on patient outcome, not simply on co-variations. Modalities vary in terms of the demands they place on the patient, the medical profession and the community. Lifestyle changes require the patient to be fully cooperative, whereas practitioners must have the required skills and be able to communicate. The community is normally not subject to specific demands with respect to lifestyle changes, but the risk of traffic accidents in subjects with nocturnal apnoeas regardless of daytime sleepiness may oppose the interests of the patient against those of the community [1]. The interests of the community may differ among various patient categories. Professional drivers or pilots may face stricter standards than those who operate vehicles on personal business only. But because any driver is in a position to injure other people, the argument can be made that the same rules should apply to everyone.

The use of medication, oral appliances or CPAP devices demands cooperation by the patient, correct prescription by the practitioner and sometimes professional follow-up. When it comes to OSAS, countries vary in terms of financial coverage for these treatment modalities. Norwegian patients pay for mandibular advancement devices, whereas the other Nordic countries subsidise the devices by 35–85%. CPAP devices are distributed free of charge in Denmark, Finland and Norway and 50% of Sweden's counties, whereas Icelandic patients have to pay either for the device or a monthly fee. Such differences may explain some of the observed variations in practice. The criteria for a diagnosis of OSAS and a free oral appliance also vary from country to country. The normal values for the apnoea-hypopnoea index (AHI) are probably lower in women than men. Thus, a diagnosis of OSAS based on equal AHI criteria may lead to discriminatory fees.

There is no evidence that surgery has any effect on OSAS. Uvulopalatopharyngoplasty and uvulopalatoplasty are associated with severe risks and demands on county finances. Nevertheless, such surgery is covered by the counties, and patients are treated outside a protocol or registry.

From a community point of view, cost-effectiveness is a major issue. Treatments that are inherently inefficacious have low cost-effectiveness even if inexpensive. It is difficult to compare treatment effects on OSAS and those associated with other conditions and therapies. In order to detect small differences, large samples have to be studied. OSAS studies are generally small in sample size. Only when the effect is truly patientrelated, is based on symptom changes and has a high level of significance can it be argued that the effect is clinically relevant.

Research

Studies on any condition are most often designed to answer questions of efficacy rather than adverse effects. Even if adverse effects are generally defined and quantified, their frequency is too low for the study to provide definite answers. The exception is studies that are stopped prematurely due to risks. But there has been no registry so far covering all studies that have been started in a certain area, and there has been no obligation to report to any authority concerning an unfavourable study on a surgical method or device. Furthermore, studies with an expected or actual unfavourable outcome are not published to the same extent as those with favourable outcomes. It is probable that there are studies on OSAS that remain unpublished. Because most studies concerning obstructive sleep apnoea are exclusively or overwhelmingly on men, it is difficult to draw any conclusions about women.

One of the research problems in the area of OSAS has been the question of blindness of the evaluator [2]. Only two studies on sham operations have been performed, and one oral appliance has been studied using blind evaluators and focusing specifically on adverse effects. This review found no evidence of the efficacy of surgery but concluded that – like all such procedures – it is associated with risks, including death. Careful consideration may have to be given to both the selection of subjects and surgical techniques when discussing or planning studies on surgery in OSAS patients.

Surrogate endpoints are often the main outcome measure for all treatment modalities. Surrogate endpoints carry a risk of false interpretation. The best example is studies on antiarrhythmic treatment after acute myocardial infarction, for which the use of the surrogate endpoint (reduction of the number of PVCs) was associated with increased mortality rates. Reduction of the AHI is often used in OSAS instead of hard endpoints, such as morbidity, mortality or symptoms relevant to the patient.

While it may be unlikely that CPAP devices or oral appliances are associated with severe complications, they can certainly cause adverse effects. It is uncertain whether the studies have been of sufficient duration and completeness of follow-up to properly answer such questions.

Most RCTs have been approved by ethics committees, but few studies have included a discussion of the ethical aspects of the studied treatment or diagnostic tool.

References

1. McNicholas WT. Sleep apnoea and driving risk. European Respiratory Society Task Force on "Public Health and Medicolegal Implications of Sleep Apnoea". Eur Respir J 1999;13:1225-7. 2. Karlawish JH, Pack AI. Addressing the ethical problems of randomised and placebo-controlled trials of CPAP. Am J Respir Crit Care Med 2001;163: 809-10.

7. Future Research

Treatment of sleep apnoea started in 1981, but there were no randomised controlled trials until 1994. A huge number of patients worldwide have been treated for obstructive sleep apnoea using CPAP, a number of different oral appliances, a variety of surgical procedures, recommendations of lifestyle changes, weight loss, sleeping in the lateral position, etc. Nevertheless, there is limited or insufficient evidence for many of the above treatment modalities. We strongly suggest that treatment trials be performed before a particular modality is prescribed for a patient. The CPAP equipment, oral appliances and surgical modalities used in such studies need to be standardised.

In the Nordic countries, we identified only one centre at which a randomised controlled trial that met the present inclusion criteria had been performed. Multicenter randomised controlled trials will be needed to achieve adequate power. The Nordic joint project may be a starting point for such studies. That will make it easier to better generalise the findings.

When it comes to CPAP treatment, there is a need for large, long-term studies with the endpoints of traffic accidents, cardiovascular morbidity and mortality. Studies that include patients with cardiovascular disease and hypertension are of interest. Studies on the best regimen for followup are important for examining optimal resource utilisation. There is also a need for studies on quality of life and health economics. Whether CPAP treatment influences pulmonary function in patients with OSAS accompanied or unaccompanied by pulmonary disease may also be of interest.

Although there were only a few randomised controlled studies on mandibular advancement appliances, it is probably the most common treatment modality – at least in Sweden. The plethora of different devices, protrusions, openings and follow-up programmes also poses a problem. Large randomised controlled trials with patient-related outcomes are needed, as well as studies concerning the effect on traffic accidents, morbidity and mortality.

If surgery for obstructive sleep apnoea or snoring is to be considered in the future, controlled trials on efficacy and long-term follow-up for adverse effects are necessary. Large tonsils are also considered to be a risk factor for sleep apnoea, but no controlled trial on tonsillectomy was identified. Nasal surgery is common among sleep apnoea patients. Some researchers argue that it is not possible to perform sham surgery. However, we suggest conservative treatment and delayed surgery in a control group. A registry with an adequate follow-up date would also improve our knowledge about the effect of such procedures.

Overweight and smoking are possible risk factors for sleep apnoea, but no randomised controlled trials concerning weight reduction programmes, bariatric surgery or smoking cessation were identified. The effects of lifestyle changes, including weight reduction and smoking cessation, in randomised controlled trials are therefore important.

The co-variation between cardiovascular disease and obstructive sleep apnoea syndromes need to be further studied. The pathophysiologic mechanisms still remain unclear, and there is a need for pathophysiologic studies on both obstructive and central sleep apnoea in relation to cardiovascular disease.

Sleep apnoea was identified as a traffic risk regardless of daytime sleepiness. That was based on only a few case-control studies, and no prospective study was identified concerning traffic accidents. Many drivers, including professionals, have risk factors for sleep apnoea. Traffic accidents are a huge problem for the community worldwide and there is an urgent need for studies in this field. Thousands of patients are investigated each year in the Nordic countries. Nevertheless, we identified no study that validated simplified sleep apnoea recordings against home polysomnography. There is also a need for large studies on the day-to-day variability of polysomnography and measures of daytime sleepiness. Normal values for the apnoea-hypopnoea index are needed, as well as the identification of such values adjusted for age and gender.

On diagnosing and managing obstructive sleep apnoea syndrome in the Nordic Countries

The assessment project included a survey of primary and specialist care clinical practices in the Nordic countries in 2003. The survey was conducted as a postal questionnaire and focused on adults.

Questionnaires

A Nordic working group designed five different one-page questionnaires (sections A–E), which were specifically planned so that answering them would take as little time as possible. The original English questions were translated into the Nordic languages, except in Norway, where English questionnaires were sent to specialist clinics.

The questionnaire on diagnosing OSAS (section A) considered the numbers of evaluations, which assessments were included in a primary evaluation, and how many evaluations were made at home. The diagnostic centres were also asked to approximate the percentage of evaluated patients that were referred for diverse treatments.

The questionnaire sections B, C and D surveyed three treatment options: nasal continuous positive airway pressure (CPAP), surgery and mandibular advancement devices. The surgical options were divided into uvulopalatopharyngoplasty (UPPP), uvulopalatoplasty and laser-assisted uvulopalatoplasty (UPP, LAUP), radiosurgery of soft palate/tongue base (RFTA), nasal surgery or other (to be specified). In addition to evaluating the numbers of patients treated, the questions dealt with indications, contra-indications, outcome and cost of treatment and patient follow-up.

The questionnaire for primary care physicians (section E) evaluated the numbers of patients seen for snoring and OSAS and how many had been

referred for specialist care. The primary care physicians were also asked whether they would consider reporting patients with OSAS and subsequent daytime sleepiness for evaluation and possible withdrawal of their driving license and whether they believed that OSAS plays a role in the onset of a number of mainly cardiovascular diseases eg hypertension.

Sampling of data

The questionnaires were sent out in each country to 200 (in Iceland 68) randomly selected primary care physicians and to all specialist centres which were thought to treat patients with OSAS in 2003. In Finland the survey was conducted in October 2004 and supplemented by telephone calls in January–February in 2005.

Several experts were consulted in each country to assure that all specialist centres were found. In Denmark the questionnaires were sent to all specialist clinics and private hospitals according to a hospital classification system ("Sygehusklassifikationssystem"). In Finland the special clinics were identified from the web pages of all central and university hospitals. In Iceland all clinics treating sleep apnoea patients were contacted and they all responded. In Norway all medical, ear, nose and throat (ENT) and neurological departments and all neurophysiology laboratories were contacted. Pulmonary departments do not exist in Norway any more, as pulmonary medicine has been integrated to internal medicine. Three large hospitals did not respond posing a probable data loss of a few hundred patients in Norway. In Sweden, all specialist centres were contacted and all responded.

The dentists were selected from a register ("Bevægelsesregistret") in Denmark. In Finland the dentist's questionnaire and also the questionnaire section C was sent to all mouth and teeth clinics in central and university hospitals after consulting three dental specialists. In Iceland there is only one dentist with a contract, and he responded. In Norway all specialists in mandibular surgery and all dentists specialised in mandibular orthopaedics were contacted. Sweden used a stratified sample and contacted only clinics that make 10 or more mandibular advancement devices per year. All these clinics responded. The general practitioners were selected from a register ("Bevægelsesregistret") in Denmark. In Finland 200 general practitioners were randomly selected from the health centre and occupational health practitioner's address register in The Finnish Medical Association. In Iceland the sample of general practitioners was created as follows: Half of all primary health care centres were chosen randomly from a telephone catalogue. The doctor on duty was contacted and asked to present the questions to his colleges who were working that week and the number of doctors was recorded (n = 68). Then the questionnaires were sent by fax and 52 GPs responded. In Sweden, 200 questionnaires were sent to randomly selected GPs and 105 of these responded.

In all countries, at least one reminder to those not responding was sent out a few weeks later. Local HTA agencies carried out the surveys except in Island (no HTA agency) where the university hospital took care of the task.

Results

The response rates for specialist clinics and private hospitals for the sent questionnaires are shown in Table 1.

Diagnostic evaluations

The centres performing diagnostic tests in the Nordic countries were most often hospital-based specialist departments ranging from ENT clinics to various laboratory specialities (clinical physiology, clinical neurophysiology) (Table 2). In Denmark the greatest numbers of diagnostic tests were done by ENT, neurology, anaesthesia, and clinical physiology departments. In the other countries ENT, pulmonary, and laboratory specialists did most of the diagnostic recordings.

According to the survey 5041 diagnostic evaluations for sleep apnoea were performed in Denmark (33 centres) in 2003 (Table 3). The corresponding numbers for Finland (55 centres), Iceland (5 centres), Norway (39 centres) and, Sweden (51 centres) were 13 589, 973, 13 554, and 33 685 respectively. There were 35 centres in the Nordic countries which reported doing less than 52 diagnostic evaluations in 2003.

In most countries in the mean 70% or more of the reported diagnostic tests were primary evaluations (Table 3). In Sweden this percentage was 62%. Fifty-three to eighty-eight percent of diagnostic recording were simplified sleep apnoea evaluations (Table 4). In Iceland all diagnostic recording were overnight polysomnographies with EEG. In both Norway and Sweden some centres used pulse oximetry alone as a diagnostic test. In Denmark and Finland pulse oximetry alone was hardly used at all. Of the simplified recordings most clinics included air flow and respiratory movements in addition to oximetry, but only few clinics used static charge sensitive bed recordings (Table 5). About half of the recordings also included other measurements, most commonly position and snoring signals.

All centres in Iceland regularly used questionnaires when diagnosing OSAS (Table 6). In Finland and Sweden 90% and in Norway and Denmark 60–70% used questionnaires. About half of diagnostic recordings were performed in the patient's home in Iceland and Norway. Most home recordings were done in Denmark (83%) and Sweden (69%), and least in Finland (36%). Seventy to 100% of those undergoing a primary evaluation for sleep apnoea also met a physician who asked about symptoms and 70 to 100% received mouth and throat examination.

A great deal of variation was found regarding patients with OSAS were referred to following the primary evaluation regardless of the number of patients being treated in the clinic (Tables 7A, 7B and 7C). Nasal CPAP seemed to be the most popular treatment in all countries and in all clinic sizes, but after that Finland and Norway favoured surgery and Sweden mandibular advancement devices. In Sweden the second most favourite treatment choice was dental treatment.

CPAP treatment

Varying specialist departments started CPAP treatments (Table 8). The most striking difference between medical specialities was seen in Denmark, where mainly neurology and anaesthesia departments took care of CPAP and Finland, where pulmonary specialists took care of almost all patients. In Iceland one centre took care of all CPAP treatments, but in Denmark, Finland, Norway, and Sweden 28, 31, 29, and 43 centres did so. The prevalence and incidence of CPAP treatments in 2003 are shown in Table 9. Altogether there were 38 centres which reported less than 55 CPAP treatments. Except for Sweden and Iceland, patients received CPAP devices, masks etc free of charge (Table 10). In Iceland a moderate monthly fee was charged. In Sweden the clinics reported 2 698 patients paying for either CPAP devices, masks/nasal inserts or a monthly fee or a combination of these.

Both symptoms and AHI were most often used as indications when deciding to treat patients with CPAP, except in Iceland where indications were decided on a case-by-case basis (Table 11). There were no differences in indications for CPAP treatment when we compared departments starting either less than 100 or more than 100 CPAP treatments in 2003. In the mean half of all the centres starting CPAP treatments did not have any contraindications for this therapy (Table 12). Most of the contraindications, when present, were related to the patient's non-compliance or other illnesses. The appropriate CPAP pressure was most often titrated during the night with an automatic device (Table 13). In Denmark 11, in Sweden 5 and in Norway 9 centres only gave their patients automatic CPAP devices and thus no titration was needed. Most centres routinely called patients for follow-up visits, after a couple of months following initiation of therapy and thereafter yearly (Table 14).

Surgery

There were a total of 108 centres reporting that they operated on OSAS and snoring in the Nordic countries in 2003 (Table 15). The most common operating specialities were divided between the countries as follows:

In Denmark (13 centres) anaesthesia, ENT, maxillofacial surgery and; in Finland (41 centres) ENT, maxillofacial surgery; in Iceland (3 centre) ENT; in Norway (20 centres) mostly ENT; and in Sweden (31 centres) ENT departments. According to the survey in Denmark 188 patients were operated on OSAS and snoring, and the corresponding numbers for Finland, Iceland, Norway, and Sweden were 1 785, 237, 2 760 and 745 (Table 16). Not all of these operations were preceded by a sleep apnoea investigation, but it is not possible to decide whether these were just nasal operations on snoring.

In 2003 only one fifth of the centres in the Nordic countries reported that they performed more than 55 operations on OSAS and snoring. The most common surgical procedure differed between the countries and within the countries when surgery was performed in clinics with different patient volumes (Tables 17A and 17B). In Iceland the biggest proportion of operations were nasal, with some palatal operations. In Denmark the greatest percentage of the operations were palatal, nasal operations being in the minority. In Finland and particularly in Norway radiosurgery or soft palate/tongue base was used. In Sweden, with few operations, uvulopalatopharyngoplasty was still common. Maxillofacial surgery for OSAS and snoring was performed either in small numbers (63 in Finland) or not at all.

Symptoms together with AHI were the most common indications used to make the operative decision (Table 18). In many centres, particularly in Finland, no fixed indications were used and the decision was always made case-by-case. In Sweden, one third of centres reported that they had no contra-indications to surgery, in the other countries this was the case only in a few centres (Table 19). In Norway most centres used AHI (upper limit, from 15 to 40/hour) as a contra-indication. In the Nordic countries the other most common contra-indications were a high body mass index (>30–32 kg/m²) or the patient not being a good surgical candidate.

Most clinics performed less than 52 operations in 2003, except ten clinics in Norway and seven clinics in Finland (Tables 20A and 20B). In all clinics in Finland and Iceland only one third of operations were followedup by a sleep study, but in Sweden the number was 82%, and in the two other countries it varied from 40 to 50%. Circa one third of all operations did not result in an optimal or desired outcome in 2003. Except for Denmark, all countries reported that there had been deaths in connection with sleep apnoea operations (Table 21).

Mandibular advancement devices

A lot of variation between the countries was reported in offering mandibular advancement devices (MAD) for sleep apnoea (Table 22). In Iceland 1, in Denmark 2, in Norway 3, in Finland 15, and in Sweden 51 dentists or dental departments reported that they installed MADs for OSAS or snoring. Correspondingly the numbers of devices installed varied: Denmark 52, Finland 517, Iceland 93, and Norway 12. According to official Swedish statistics 6 775 MADs were installed in Sweden. Assuming that 53% of the MADs were subsided the total number of MADs in use is 12 800. Almost all decisions to prescribe MADs for snoring were preceded by a sleep apnoea study (Table 23). All dentists used individually designed MADs. In Norway, the total cost for the device is paid by the patient, while in the other Nordic countries approximately 35 to 66% of the MADs were paid or subsidized by public funds. The treatment costs varied greatly (160–700 euros), if the patients paid outof-pocket (Table 24).

In Denmark and Sweden the majority of patients, and in Norway all patients receiving MADS were followed up by a sleep apnoea evaluation. In Finland and Iceland the corresponding numbers were 55% and 20%. Except for a few dentists, all regularly checked patients after a MAD had been prescribed (Table 24). In Finland two thirds of dentists reported that they had the main medical responsibility for the patient after dental treatment, in the other countries the referring department was responsible in the minority of cases (Table 25). In the mean the treatment outcome was reported not to be optimal in 18–50% of cases with this form of therapy (Table 24).

Primary care physicians

The response rate varied from 56% in Norway to 76% in Iceland. The number of OSA patients seen per year by the Nordic general practitioners varied. In all Nordic countries, majority of the general practitioners had seen 1–4 or 5–9 sleep apnoea or snoring patients in 2003 (Table 26). In practice all GPs had an opportunity to refer patients when they suspected sleep apnoea (Table 27) and most had referred 1–4 patients (Table 28).

The Nordic countries have restrictions on motor vehicle driving for these persons, while in Finland the physicians are obligated to declare on this due to a new legislation in 2004. Physicians are set to administer these restrictions. The general practitioners' willingness to report persons with sleepy OSA patients to the relevant authorities for possible withdrawal of their driving license varied greatly between the countries (Table 29). While only about one third of the Norwegian doctors said they would report their patients, nearly all Finnish doctors would do so, the other countries taking intermediate positions. A variation was detected also their ideas whether OSA played a possible role in traffic accidents, onset of hypertension and cardiovascular complications (Table 30).

	Denmark	Finland	Iceland	Norway	Sweden
Anaesthesiology and other	89	-	-	-	_
Clinical physiology and neurophysiology	64	97	100	_	100
Ear, nose and throat	93	71	100	86	100
Mouth and teeth	80	81	-	-	-
Neurology	85	100	-	69	_
Pulmonary	100	92	100	97	100
Private	100	75	100	_	100

Table 1 Response rates (%) of all sent questionnaires (A – diagnosis, B – CPAP treatment and C – surgical treatment) by specialist clinics and private hospitals.
A. Diagnosing OSAS

	Denmark	Finland	Iceland	Norway	Sweden
Anaesthesiology	16	_	_	_	_
Clinical physiology and neurophysiology	1	13	_	_	21
Ear, nose and throat	3	9	-	14	21
Mouth and teeth	4	_	_	_	_
Neurology	9	4	_	6	_
Pulmonary	0	26	3	16	8
Private	0	3	2	3	1
Total	33	55	5	39	51
Number of clinics doing more than 52 evaluations in 2003	25	43	3	31	45

Table 2 Number and type of departments offering diagnostic evaluations of sleep apnoea.

Table 3 Diagnostic sleep apnoea evaluations in 2003.

	Denmark	Finland	Iceland	Norway	Sweden
Total number of evaluations	5 041	13 589	973	13 554	33 685
Primary evaluations (% of all evaluations)	79	71	87	71	62
Primary evaluations per 10 000 inhabitants	9.1	22.6	38.4	26.6	29.1

Table 4 Type of primary evaluation methods (number of cases).

	Denmark	Finland	Iceland	Norway	Sweden
Primary evaluations	3 997	9 651	848	9 668	21 316
Polysomnography with EEG (night)	433	762	0	2 383	478
Polysomnography with EEG (day)	72	2	0	22	18
Simplified sleep apnoea evaluation	2 934	8 847	848	630	18 904
Pulse oximetry alone	40	40	0	618	1 915

Table 5 Type of recordings included in a simplified evaluation of those using simplified recordings (number of clinics).

	Denmark n=23	Finland n=51	lceland n=5	Norway n=24	Sweden n=47
Air flow	20	45	5	23	46
Respiratory movements	20	48	5	21	20
Oximetry	21	50	5	24	47
Static charge sensitive bed	5	20	_	4	6

Table 6 Details of diagnostic evaluation practices (mean percentages).

	Denmark n=33	Finland n=53	lceland n=5	Norway n=37	Sweden n=50
Clinics using questionnaires	70	89	100	63	90
Home evaluations	83	36	50	52	69
Patients undergoing primary evaluations for sleep apnoea meeting a physician who asked about the symptoms	97	73	100	87	84
Patients receiving mouth and throat examinations	92	82	100	77	74

Table 7A Patients evaluated in 2003 referred for the following treatment/s, if any (mean percentages). Clinics performing less than 100 evaluations.

	Denmark n=9	Finland n=10	lceland n=2	Norway n=12	Sweden n=4
CPAP	57	46	40	53	41
Surgery	7	25	1	16	3
Dental/orthodontic treatment	2	3	1	7	20
Other treatments (diet, etc)	20	5	58	30	16

	Denmark n=30	Finland n=37	lceland n=5	Norway n=36	Sweden n=39
CPAP	57	37	37	47	34
Surgery	7	16	2	25	6
Dental/orthodontic treat- ment	3	6	7	6	26
Other treatments (diet, etc)	16	12	53	23	6

Table 7B Patients evaluated in 2003 referred for the following treatment/s, if any (mean percentages). Clinics performing 100–500 evaluations.

Table 7C Patients evaluated in 2003 referred for the following treatment/s, if any (mean percentages). Clinics performing more than 500 evaluations.

	Denmark n=2	Finland n=6	lceland n=0	Norway n=2	Sweden n=8
CPAP	43	41	-	35	35
Surgery	10	8	_	33	5
Dental/orthodontic treatment	8	7	-	2	5
Other treatments (diet, etc)	15	27	_	20	43

B. Treatment with CPAP

Table 8 Number and type of departments offering CPAP treatments for sleep apnoea.

	Denmark	Finland	Iceland	Norway	Sweden
Anaesthesiology	14	-	-	-	_
Clinical physiology and neurophysiology	0	-	-	1	12
Ear, nose and throat	3	1	_	10	14
Mouth and teeth	3	-	_	_	_
Neurology	8	1	_	2	_
Pulmonary	0	28	1	16	17
Private	0	1	_	_	_
Total	29	31	1	28	43

Table 9 Number	of patients	receiving CPAP	or BiPAP fo	r snoring/sleep
apnoea syndrome	in 2003.			

	Denmark	Finland	Iceland	Norway	Sweden
Number of new CPAP treatments started	No data	About 1 900	448	4 031	5 730
Total number of patients on CPAP	2 328	10 572	1658	No data	17 700
Number of clinics treating more than 52 patients in 2003 with CPAP	16	27	1	13	34

Table 10 Direct costs of the CPAP treatment to the patient, if any (number of clinics).

	Denmark	Finland	Iceland	Norway	Sweden
Patients receive CPAP devices, masks, etc free of charge	28	30	0	27	25
Patients pay for CPAP devices	1	1	0	0	10
Patients pay for masks/ nasal inserts	1	1	0	0	10
Patients pay a monthly/ annual fee	0	1	1	0	9

 Table 11 Indications for CPAP treatment (number of clinics).

	Denmark	Finland	Iceland	Norway	Sweden
No fixed indications, deter- mined on a case-by-case basis	0	2	1	1	6
Mainly AHI	2	4	0	0	5
Symptoms and AHI	19	25	0	27	2
Mainly symptoms	1	0	0	0	3
Other, including clinics reporting several indications	7	0	0	0	1

	Denmark	Finland	Iceland	Norway	Sweden
No contraindications	17	16	1	15	22
AHI limits (lower or upper)	1	3	0	3	10
Other	10	12	0	4	10

Table 12 Contraindications for CPAP treatment (number of clinics).

Table 13 Titration of appropriate CPAP pressure (number of clinics).

	Denmark	Finland	Iceland	Norway	Sweden
Pressure adjustment during the night	1	1	1	4	3
Daytime titration followed by night checks	2	0	0	0	5
Patients receive usual CPAP after titration of suitable pressure by AutoCPAP	9	27	0	13	6
Titration not needed, patients are prescribed AutoCPAP	11	0	0	5	9
Other method	2	3	0	0	0
Several of the above mentioned options	4	0	0	5	20

Table 14 Follow-up of CPAP patients (number of clinics).

	Denmark	Finland	Iceland	Norway	Sweden
No routine follow-up	2	0	0	0	2
First follow-up visit taking place within 1 week to 6 months	25	30	1	27	29
Patients are also called for annual check-ups	14	22	0	0	26

C. Surgical treatment

Table 15 Number and type of departments offering surgical treatments for sleep apnoea.

	Denmark	Finland	Iceland	Norway	Sweden
Anaesthesiology	8	_	_	_	_
Clinical physiology and neurophysiology	0	_	_	_	4
Ear, nose and throat	1	27	3	17	24
Mouth and teeth	2	12	0	_	_
Neurology	2	_	_	_	_
Pulmonary	0	_	_	_	3
Private	_	2	_	3	_
Total	13	41	3	20	31

Table 16 Operations during 2003 for snoring or sleep apnoea.

	Denmark	Finland	Iceland	Norway	Sweden
Total number of operations reported	188	1 785	237	2 760	745
Operations per 10 000 inhabitants >15 years old	0.4	4.2	10.7	7.6	1.0
Mean percentage of operations performed <u>without</u> a preceding sleep apnoea investigation	0	9	18	6	1

Table 17A Different types of operations performed in clinics performing more than 52 operations in 2003 (mean percentages).

	Denmark n=1	Finland n=7	lceland n=3	Norway n=10	Sweden n=1
Uvulopalatopharyngoplasty	50	14	3	19	34
Uvulopalatoplasty or laser- assisted uvuloplasty	0	16	38	13	50
Radiosurgery of soft palate/ tongue base	20	37	0	56	13
Nasal surgery	10	20	58	13	2
Other	20	13	0	3	1

Table 17B Different types of operations performed in clinics performing less than 52 operations in 2003 (mean percentages). Thirty-eight percentages of clinics performed less than 10 operations.

	Denmark	Finland	Iceland	Norway	Sweden
	32	17	-	6	39
Uvulopalatoplasty or laser- assisted uvuloplasty	15	16	_	29	21
Radiosurgery of soft palate/ tongue base	14	12	-	32	9
Nasal surgery	15	16	_	24	17
Other	14	34	_	1	11

Table 18 Indications for surgical treatment (number of clinics).

	Denmark	Finland	Iceland	Norway	Sweden
No fixed indications, determined on a case-by-case basis	1	14	3	4	7
Mainly AHI	0	0	0	0	0
Symptoms and AHI	6	14	0	12	14
Mainly symptoms	0	4	0	4	6
Other, including clinics reporting several indications	4	8	0	0	4

Table 19 Contraindications for surgical treatment (number of clinics).

	Denmark	Finland	Iceland	Norway	Sweden
No contraindications	1	3	1	2	9
Only AHI limits (lower or upper)	1	1	0	14	3
Other	8	35	2	5	18

	Denmark n=10	Finland n=34	lceland n=0	Norway n=8	Sweden n=30
Mean percentage of patients followed up after surgical treatment	44	34	0	39	82
Mean percentage of operations not yielding the intended/optimum result based on the physicians' judgement	33	27	0	33	33

Table 20A Details of surgical treatment practices. Clinics performing less than 52 operations.

Table 20B Details of surgical treatment practices. Clinics performing more than 52 operations.

	Denmark n=1	Finland n=7	lceland n=3	Norway n=10	Sweden n=1
Mean percentage of patients followed up after surgical treatment	100	6	32	40	80
Mean percentage of operations not yielding the intended/optimum result based on the physicians' judgement	10	20	13	21	20

Table 21 Clinics reporting deaths.

	Denmark	Finland	Iceland	Norway	Sweden
Number of clinics reporting deaths have ever been associated with surgery for sleep apnoea	0	3	1	1	2

D. Mandibular advancement devices

Table 22 Response rate and number of dental clinics offering mandibular advancement devices.

	Denmark	Finland	Iceland	Norway	Sweden
Response rate	86	81	100	23	100*
Number of dental clinics treating OSAS patients	2	15	1	3	51*

* Sweden used a stratified sample of clinics that made 10 or more mandibular advancement devices per year.

Table 23 Details of mandibular advancement devices prescribed for snoring or sleep apnoea patients during 2003.

	Denmark	Finland	Iceland	Norway	Sweden
Total number of mand- ibular advancement devices prescribed	52	517	93	12	12 800**
Mandibular advancement devices prescribed per 10 000 inhabitants >15 years old	0.11	1.2	4.2	0.03	17.5
Mean percentage of mand- ibular advancement devices installed performed without a preceding sleep apnoea investigation	5.8	3.4	0	1	1
Number of clinics treating more than 52 patients in 2003 with mandibular advancement devices	0	2	1	0	21

** An estimate based on official statistics assuming that 53% of devices were subsided of a total amount of 6 775 devices in 2003.

Table 24 Details of	mandibular advancement	device practices	for OSAS
and snoring patients	(mean þercentages).		

	Denmark	Finland	Iceland	Norway	Sweden
Devices were subsidized by public funds	47	35	66	0	53
"Out-of-pocket" costs for patients without public subsidies (€)	292	160	100	534	700
Patients receiving devices followed up by sleep apnoea evaluation	95	55	20	100	73
Prescribed devices not yield- ing the intended/optimum result based on the dentists' judgement	39	30	?	50	18

Table 25 Follow-up practices with mandibular advancement devices.

	Denmark	Finland	lceland	Norway	Sweden
	n=2	n=15	n=1	n=3	n=51
Number of dental clinics which have the main respons- ibility of the mandibular advancement device treat- ment	1	10	0	0	5

E. General practitioners (n = 200, except for Iceland n = 68)

Table 26 Number of consultations for snoring or sleep apnoea in 2003 (percentage).

Response rate (%)	Denmark 56*	Finland 64	lceland 76	Norway 56	Sweden 61
No patients	4	5	8	1	2
1–4 patients	52	26	29	24	45
5–9 patients	38	39	37	41	35
10–19 patients	5	20	17	24	13
More than 19 patients	2	11	10	10	4

* In Denmark 28 GPs responded that they did not treat sleep apnoea patients.

	Denmark	Finland	Iceland	Norway	Sweden
Yes	97	100	100	99	98

Table 27 Potentiality to refer patients with suspected sleep apnoea (percentage).

Table 28 Number of referrals for snoring or sleep apnoea in 2003 (percentage).

	Denmark	Finland	Iceland	Norway	Sweden
No patients	7	8	14	2	5
1–4 patients	80	63	64	50	70
5–9 patients	11	20	17	36	19
10–19 patients	2	6	4	8	6
More than 19 patients	0	3	2	3	0

Table 29 Willingness to report for evaluation and possible drivers' license withdrawal for patients with sleep apnoea and subsequent daytime sleepiness (percentage).

	Denmark	Finland	Iceland	Norway	Sweden
Yes	65	91	54	30	63

Table 30 Do you believe that sleep apnoea syndrome plays a role in the onset of the following conditions (percentage yes).

	Denmark	Finland	Iceland	Norway	Sweden
Hypertension	69	85	89	72	91
Stroke	71	88	75	66	81
Angina pectoris	57	86	75	52	79
Myocardial infarction	56	81	73	57	84
Cardiac arrhythmia during sleep	78	93	90	74	91
Traffic accidents	84	94	89	77	95