U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-.

Cover of StatPearls

StatPearls [Internet].

Show details

Angiotensin Converting Enzyme Inhibitors (ACEI)

; ; ; .

Author Information

Last Update: May 15, 2022.

Continuing Education Activity

ACE inhibitors are medications used to treat and manage hypertension, which is a significant risk factor for coronary disease, heart failure, stroke, and a host of other cardiovascular conditions. Most cases are primary and not attributable to any specific etiology. This activity reviews the indications, contraindications, activity, adverse events, and other key elements of ACE inhibitor therapy in the clinical setting related to the essential points needed by members of an interprofessional team managing the care of patients with hypertension and its related conditions and sequelae.

Objectives:

  • Identify the mechanism of action of ACE inhibitors.
  • Summarize monitoring/follow-up for patients initiated on ACE inhibitor therapy.
  • Review the dosing parameters adjusting or replacing ACE inhibitor therapy based on adverse events or inadequate therapeutic response.
  • Explain the importance of ACE inhibitor therapy in hypertension management and how it affects therapeutic strategy as it pertains to improving care coordination and communication among the interprofessional team when using these agents to achieve therapeutic outcomes.
Access free multiple choice questions on this topic.

Indications

Angiotensin-converting enzyme inhibitors (ACEIs) are the most commonly indicated medications in the treatment of cardiovascular and renal diseases, including heart failure, acute coronary syndrome, nephrotic syndrome, diabetes, and hypertension.[1]

Hypertension

Angiotensin-converting enzyme inhibitors effectively lower the mean arterial blood pressure as well as systolic and diastolic blood pressure both in hypertensive and normotensive subjects.[2][3] Angiotensin-converting enzyme inhibitors have been evaluated as antihypertensive drugs in multiple randomized controlled trials.[4] In 2014, the Eighth Joint National Commission (JNC8) published evidence-based guidelines for treating high blood pressure in adults, which recommended that ACE inhibitors are one of four drug classes recommended for initial therapy for adults with elevated blood pressure.[5] The other three classes of drugs are calcium channel blockers, thiazide diuretics, and angiotensin receptor blockers, which are useful as initial therapy for the general nonblack population. Only thiazide and calcium channel blockers are recommended as initial therapy for the general black population with elevated blood pressure.[6] Recent guidelines released by the American Heart Association/American College of Cardiology (AHA/ACC) and the European Society of Cardiology (ESC) also recommend ACE inhibitors as first-line antihypertensive therapy, especially in patients with diabetes mellitus and cardiovascular diseases.[7][8] Although ACE inhibitors are generally very effective antihypertensive drugs, they have been proven to be less effective in hypertensive Black race individuals than Whites in clinical practice.[9]

Heart Failure

Angiotensin-converting enzyme inhibitors (ACEIs) improve heart failure by decreasing afterload, preload, and systolic wall stress, which results in increased cardiac output without any increase in heart rate.[10][11] ACE inhibitors play an important role in promoting salt excretion by augmenting the renal blood flow and reducing aldosterone and antidiuretic hormone production. Apart from decreasing the afterload, ACEIs also reduces cardiac myocyte hypertrophy. Since the 1980s, several large, prospective, randomized, placebo-controlled trials have proved that treatment with ACE inhibitors reduces overall mortality, especially in patients with heart failure with reduced ejection fraction (0HFrEF).[12][13][14] These trials demonstrated that ACE inhibitors reduce mortality even in asymptomatic patients with left ventricular dysfunction.[15] Based on the above-mentioned evidence, ACE inhibitors are strongly recommended as first-choice therapy in patients with heart failure.[16][17]

Post Myocardial Infarction

Over the last few decades, several prospective, randomized trials have studied the effect of ACE inhibitors on mortality after myocardial infarction (MI).[18][19] The vast majority of these trials have shown a significant decrease in mortality and a slowing of the progression to congestive heart failure after MI in patients treated with ACE inhibitors.[20] The clinical practice guidelines in the contemporary era recommend that patients with left ventricular dysfunction or heart failure be treated with ACE inhibitors without delay after infarction. It is also recommended that all patients should be treated with ACE inhibitors initially, with a review of the need for continuation later based on left ventricular function assessment.[21]

Diabetes

The Renin-Angiotensin-Aldosterone system and increased glomerular capillary pressure have been reported to increase the progression of renal dysfunction due to diabetes mellitus related nephropathy.[22] A large, prospective, randomized, placebo-controlled has demonstrated that CE inhibitors slow down the progression of nephropathy in patients with insulin-dependent diabetes mellitus and significantly reduce the combined endpoints of dialysis, transplantation, and death.[23] Current recommendations are using ACEi or ARB as first-line therapy for hypertension in patients with a history of diabetes. Also, the use of ACEi in diabetic hypertensive patients with no history of coronary heart disease has been shown to decrease the incidence of myocardial infarction and improved heart function.[24]

Nephrotic Syndrome or Proteinuria

Angiotensin-converting enzyme inhibitors have been reported to decrease glomerular capillary pressure by decreasing arterial pressure and selectively dilating efferent arterioles.[25] It has been shown that the use of ACE inhibitors prevents the progression of microalbuminuria to overt proteinuria.[26] Angiotensin-converting enzyme inhibition provides long-term protection against the development and progression of proteinuria and stabilizes renal function in previously untreated patients with impaired renal function.[26]

Chronic Kidney Disease

ACE inhibitors or ARBs are the first-line drugs in managing chronic kidney disease (CKD) patients. The use of ACEI or ARB has been proven to have a superior effect compared to placebo treatment on decreasing proteinuria and slowing kidney disease progression. The efficacy of ACEI and ARB is comparable.[27]

Glomerular Disease and Post-transplant Glomerulonephritis\

The use of ACE inhibitors or ARB is the mainstay of treatment in patients with glomerular diseases. It slows down the decline in glomerular filtration rate (GFR) and proteinuria.[28] The use of renin-angiotensin-aldosterone inhibitors prolongs graft survival in patients with post-transplant glomerulonephritis.[29]

Mechanism of Action

Angiotensin II causes direct vasoconstriction of precapillary arterioles and postcapillary venules, inhibits the reuptake of norepinephrine, stimulates the release of catecholamines from the adrenal medulla, reduces urinary excretion of sodium and water, stimulates synthesis and release of aldosterone, and stimulates hypertrophy of both vascular smooth muscle cells and cardiac myocytes.[30][31] 

The exact mechanism of ACE inhibitors is not fully known. They interfere with the renin-angiotensin-aldosterone system, but their effect is not directly related to renin levels in the blood. As the name implies, ACE inhibitors block an angiotensin-converting enzyme that converts angiotensin I to angiotensin II. Decreased production of angiotensin II enhances natriuresis, lowers blood pressure, and prevents remodeling of smooth muscle and cardiac myocytes. Lowered arterial and venous pressure reduces preload and afterload.  Also, the hypothesis is that ACE inhibitors interfere with the degradation of bradykinin, a peptide that causes vasodilation.[32]

Angiotensin-converting enzyme regulates the balance between the vasodilatory and natriuretic properties of bradykinin and the vasoconstrictive and salt-retentive properties of Angiotensin II. ACE inhibitors alter this balance by decreasing the formation of Angiotensin II and the degradation of bradykinin. ACE inhibitors also alter the formation and degradation of several other vasoactive substances, such as substance P, but the contribution of these compounds to the therapeutic or adverse effects of ACE inhibitors is uncertain.[33]

Administration

ACE inhibitors differ in their chemical structure, potency, bioavailability, plasma half-life, route of elimination, as well as their distribution and affinity for tissue-bound angiotensin-converting-enzyme.

Depending on the chemical structure, ACE inhibitors are classified into three groups.[34][35]

Sulfhydryl-containing ACE inhibitors

  • Captopril – Hypertension therapy is 25 mg, either BID or TID, with a maximum of 450 mg. Heart failure therapy is 6.25 mg TID, with a maximum of 450 mg.

Dicarboxylic-containing ACE inhibitors: see table.

Phosphorus-containing ACE inhibitor. 

  • Fosinopril – Hypertension therapy dosing is 10 mg, increasing to a maximum dose of 80 mg. May split into two equal doses during the day to control blood pressure. Heart failure therapy is 5 to 10 mg daily to a maximum dose of 40 mg.

General Dosing Information

All of the ACE inhibitors are prescribed orally, except for enalapril, which can be given intravenously. Enalapril's IV dosage is initially 0.625 to 1.25 mg every 6 hours. Dosage titration up can be to 5 mg IV every 6 hours. Geriatric dosing should definitely initiate at the lower end of the adult dosing regimen.

There should be a dosage decrease in patients with heart failure, salt-depleted patients, and/or renal impairment. 

Lisinopril and captopril are the only ACE inhibitors that do not have to be activated in the body to be effective. All the other ACE inhibitors are prodrugs and require activation. Most reach peak serum levels within 1 hour after ingestion. Since most of the activation occurs in the liver, a non-prodrug form is preferable in patients with underlying liver issues.[36]

Adverse Effects

About 1 to 10% will develop a dry, nonproductive paroxysmal cough, and there is no treatment for the cough.[37][38] Experimental studies have shown that using non-steroidal anti-inflammatory agents (NSAIDs) and intermediate-dose aspirin (500 mg) can help with ACE inhibitors induced cough.[39] ACE inhibitor-induced cough is reported more frequently among women than men.[40] The cough is usually dry, and it often requires cessation of therapy.

Angioedema is the most significant adverse effect of ACEi. It can affect any part of the body, including the intestine, but the most concerning is edema of the tongue, glottis, and/or larynx, causing airway obstruction.[41] Angioedema has a higher rate of incidence in the African-American population. When airway compromise is present, the treatment always secures the airway with an endotracheal tube that allows ventilation until the edema resolves. Multiple treatments have been tried, such as diphenhydramine, methylprednisolone, and epinephrine. Also, fresh frozen plasma and the newer agents, bradykinin blocking agents, have been tried. There are case reports that these bradykinin blocking agents might improve the angioedema, but no literature exists proving that they are better than the other agents.[42] There is an ongoing phase III trial at this time.

Life-threatening anaphylactoid reactions have occurred in patients receiving Hymenoptera venom desensitization treatment and patients receiving dialysis with high-flux membranes. Treatment includes diphenhydramine, epinephrine, and blood pressure support with fluids and catecholamines.[43][44]

Angiotensin-converting enzyme inhibitors have been reported to cause a reversible decline in renal function. Those with heart failure who depend on the renin-angiotensin-aldosterone system may develop changes in renal function with the use of ACE inhibitors.[45] Also, about one-fifth of the patients with renal artery stenosis develop increases in blood urea nitrogen and creatinine.[46] Any patient who already has a renal insufficiency is susceptible to a worsening of renal function. The renal function requires monitoring during treatment for susceptible groups.[47]

As with any medication that lowers blood pressure, hypotension is an adverse reaction. Those at risk for this side effect: heart failure with systolic blood pressure below 100 mmHg, ischemic heart disease, cerebrovascular disease, hyponatremia, high dose diuretic therapy, renal dialysis, or severe volume and/or sodium depletion.[48]

ACE inhibitors may cause hyperkalemia. Those at risk for this side effect: prior history of renal impairment and/or diabetes, simultaneous use of potassium-sparing diuretics, and/or potassium supplements.[49] Treatment depends upon the potassium level, EKG changes, and whether the patient still has kidney function and produces urine.[47] There has been one report of increased sudden death in patients taking ACE inhibitors and co-trimoxazole simultaneously. The mechanism is believed to be hyperkalemia.[50]

Cholestatic jaundice or hepatitis is another rare but serious adverse effect that can progress to hepatic necrosis and sometimes death. The clinician needs to discontinue the drug, and the patient managed appropriately.[51]

Contraindications

ACE inhibitors are contraindicated in patients with a history of angioedema or hypersensitivity related to treatment with an ACE inhibitor and those with hereditary or idiopathic angioedema.[52] 

These drugs should not be given to patients already taking a direct renin inhibitor such as aliskiren.

ACE inhibitors should not be given in pregnancy. They were Category D in pregnancy under the old FDA system because it is known to cause skull hypoplasia, anuria, hypotension, renal failure, lung hypoplasia, skeletal deformations, oligohydramnios, and death.[53]

The combination therapy of ACEi and ARBs does not reduce mortality in patients with heart failure compared to monotherapy. In fact, the combination therapy can worsen renal indices and cause life-threatening hyperkalemia.[54]

Monitoring

Renal function and electrolytes need to be checked regularly due to the effects of the drug on the renin-angiotensin-aldosterone system.  For patients with increasing potassium, drop-in GFR, or increasing creatinine, the drug needs to be adjusted accordingly or discontinued.[55]

Toxicity

Excessive doses of ACE inhibitors are usually well-tolerated, but they can cause hypotension, drop-in GFR, and electrolyte derangements. In addition, since ACE inhibitors block aldosterone, they can cause hyperkalemia and hyponatremia.[56][57]

If the patient presents within 1 hour of ingestion and is awake and able to protect their airway, activated charcoal can be given. If they remain asymptomatic for 6 hours of observation, they can be considered medically stable for either discharge or referral to psychiatry.[58]

For those with hypotension, fluids should be the first line of therapy. There is no antidote for ACE inhibitor poisoning. Naloxone has been used in captopril overdoses in the past with some success and can be a choice if intravenous fluids are not successful. Also, vasopressors are an option for the treatment of hypotension.[59]

Enhancing Healthcare Team Outcomes

ACE inhibitors are one of the most widely used drugs for hypertension and heart failure, but their popularity does not mean they do not require the management of an interprofessional team. Besides nephrologists and cardiologists, these drugs are widely prescribed by nurse practitioners and primary care providers. While ACE inhibitors are relatively safe, a pharmacist should examine the patient's medication record to verify dosing and check for drug-drug interactions. Nursing can provide patient counsel, monitor for interactions and adverse events, and report any issues to the prescriber. It is important to monitor renal function and levels of electrolytes regularly.[60] Because many ACE inhibitors are currently available, it is important to keep up with the guidelines and recommendations, and the pharmacist can help the prescriber in this area.[61] An interprofessional team approach will optimize ACE inhibitor therapy resulting in improved patient outcomes. [Level 5]

Review Questions

Dicarboxyl-containing ACE inhibitors and doses

Figure

Dicarboxyl-containing ACE inhibitors and doses. Contributed by Linda L Herman

References

1.
Nasution SA. The use of ACE inhibitor in cardiovascular disease. Acta Med Indones. 2006 Jan-Mar;38(1):60-4. [PubMed: 16479034]
2.
Vidt DG, Bravo EL, Fouad FM. Medical intelligence drug therapy: captopril. N Engl J Med. 1982 Jan 28;306(4):214-9. [PubMed: 7033784]
3.
Todd PA, Heel RC. Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs. 1986 Mar;31(3):198-248. [PubMed: 3011386]
4.
Messerli FH, Bangalore S, Bavishi C, Rimoldi SF. Angiotensin-Converting Enzyme Inhibitors in Hypertension: To Use or Not to Use? J Am Coll Cardiol. 2018 Apr 03;71(13):1474-1482. [PubMed: 29598869]
5.
James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC, Svetkey LP, Taler SJ, Townsend RR, Wright JT, Narva AS, Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014 Feb 05;311(5):507-20. [PubMed: 24352797]
6.
Page MR. The JNC 8 hypertension guidelines: an in-depth guide. Am J Manag Care. 2014 Jan;20(1 Spec No.):E8. [PubMed: 25618230]
7.
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018 May 15;71(19):e127-e248. [PubMed: 29146535]
8.
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I., ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep 01;39(33):3021-3104. [PubMed: 30165516]
9.
Racial differences in response to low-dose captopril are abolished by the addition of hydrochlorothiazide. Br J Clin Pharmacol. 1982;14 Suppl 2:97S-101S. [PMC free article: PMC1427530] [PubMed: 6753911]
10.
Gavras H, Faxon DP, Berkoben J, Brunner HR, Ryan TJ. Angiotensin converting enzyme inhibition in patients with congestive heart failure. Circulation. 1978 Nov;58(5):770-6. [PubMed: 699246]
11.
Dzau VJ, Colucci WS, Williams GH, Curfman G, Meggs L, Hollenberg NK. Sustained effectiveness of converting-enzyme inhibition in patients with severe congestive heart failure. N Engl J Med. 1980 Jun 19;302(25):1373-9. [PubMed: 6246425]
12.
CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987 Jun 04;316(23):1429-35. [PubMed: 2883575]
13.
SOLVD Investigators. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991 Aug 01;325(5):293-302. [PubMed: 2057034]
14.
Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993 Oct 02;342(8875):821-8. [PubMed: 8104270]
15.
Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992 Sep 03;327(10):669-77. [PubMed: 1386652]
16.
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017 Aug 08;136(6):e137-e161. [PubMed: 28455343]
17.
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P., ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016 Jul 14;37(27):2129-2200. [PubMed: 27206819]
18.
Swedberg K, Held P, Kjekshus J, Rasmussen K, Rydén L, Wedel H. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med. 1992 Sep 03;327(10):678-84. [PubMed: 1495520]
19.
Ambrosioni E, Borghi C, Magnani B. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. The Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators. N Engl J Med. 1995 Jan 12;332(2):80-5. [PubMed: 7990904]
20.
Pfeffer MA. Left ventricular remodeling after acute myocardial infarction. Annu Rev Med. 1995;46:455-66. [PubMed: 7598478]
21.
O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW., American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013 Jan 29;127(4):e362-425. [PubMed: 23247304]
22.
Ichikawa I, Brenner BM. Glomerular actions of angiotensin II. Am J Med. 1984 May 31;76(5B):43-9. [PubMed: 6203406]
23.
Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993 Nov 11;329(20):1456-62. [PubMed: 8413456]
24.
Zhang Y, Ding X, Hua B, Liu Q, Chen H, Zhao XQ, Li W, Li H. Real-world use of ACEI/ARB in diabetic hypertensive patients before the initial diagnosis of obstructive coronary artery disease: patient characteristics and long-term follow-up outcome. J Transl Med. 2020 Apr 01;18(1):150. [PMC free article: PMC7114815] [PubMed: 32238168]
25.
Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest. 1986 Jun;77(6):1993-2000. [PMC free article: PMC370560] [PubMed: 3011863]
26.
Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med. 1996 Feb 12;156(3):286-9. [PubMed: 8572838]
27.
Silvariño R, Rios P, Baldovinos G, Chichet MA, Perg N, Sola L, Saona G, De Souza N, Lamadrid V, Gadola L. Is Chronic Kidney Disease Progression Influenced by the Type of Renin-Angiotensin-System Blocker Used? Nephron. 2019;143(2):100-107. [PubMed: 31203280]
28.
Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990 Oct;86(4):1343-6. [PMC free article: PMC296868] [PubMed: 1976655]
29.
Pazik J, Ostrowska J, Lewandowski Z, Mróz A, Perkowska-Ptasińska A, Baczkowska T, Durlik M. Renin-Angiotensin-Aldosterone system inhibitors and statins prolong graft survival in post-transplant glomerulonephritis. Ann Transplant. 2008;13(4):41-5. [PubMed: 19034222]
30.
FOLKOW B, JOHANSSON B, MELLANDER S. The comparative effects of angiotensin and noradrenaline on consecutive vascular sections. Acta Physiol Scand. 1961 Oct;53:99-104. [PubMed: 13893844]
31.
Bell L, Madri JA. Influence of the angiotensin system on endothelial and smooth muscle cell migration. Am J Pathol. 1990 Jul;137(1):7-12. [PMC free article: PMC1877705] [PubMed: 2164777]
32.
Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993 Jun;45(2):205-51. [PubMed: 8372104]
33.
Cascieri MA, Bull HG, Mumford RA, Patchett AA, Thornberry NA, Liang T. Carboxyl-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmacol. 1984 Mar;25(2):287-93. [PubMed: 6199659]
34.
Spyroulias GA, Galanis AS, Pairas G, Manessi-Zoupa E, Cordopatis P. Structural features of angiotensin-I converting enzyme catalytic sites: conformational studies in solution, homology models and comparison with other zinc metallopeptidases. Curr Top Med Chem. 2004;4(4):403-29. [PubMed: 14965309]
35.
Regulski M, Regulska K, Stanisz BJ, Murias M, Gieremek P, Wzgarda A, Niznik B. Chemistry and pharmacology of Angiotensin-converting enzyme inhibitors. Curr Pharm Des. 2015;21(13):1764-75. [PubMed: 25388457]
36.
Williams B. Drug discovery in renin-angiotensin system intervention: past and future. Ther Adv Cardiovasc Dis. 2016 Jun;10(3):118-25. [PMC free article: PMC5933671] [PubMed: 27126389]
37.
Pinargote P, Guillen D, Guarderas JC. ACE inhibitors: upper respiratory symptoms. BMJ Case Rep. 2014 Jul 17;2014 [PMC free article: PMC4112303] [PubMed: 25035451]
38.
Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med. 1992 Aug 01;117(3):234-42. [PubMed: 1616218]
39.
Tenenbaum A, Grossman E, Shemesh J, Fisman EZ, Nosrati I, Motro M. Intermediate but not low doses of aspirin can suppress angiotensin-converting enzyme inhibitor-induced cough. Am J Hypertens. 2000 Jul;13(7):776-82. [PubMed: 10933569]
40.
Os I, Bratland B, Dahlöf B, Gisholt K, Syvertsen JO, Tretli S. Female sex as an important determinant of lisinopril-induced cough. Lancet. 1992 Feb 08;339(8789):372. [PubMed: 1346451]
41.
Slater EE, Merrill DD, Guess HA, Roylance PJ, Cooper WD, Inman WH, Ewan PW. Clinical profile of angioedema associated with angiotensin converting-enzyme inhibition. JAMA. 1988 Aug 19;260(7):967-70. [PubMed: 2840522]
42.
Korzeniowska K, Cielewiczi A, Pawlaczyk M, Motowidlo K, Andrys-Wawrzyniak I, Jablecka A. ANGIOEDEMA AFTER ANGIOTENSIN-CONVERTING ENZYME INHIBITORS. Acta Pol Pharm. 2017 May;74(3):983-986. [PubMed: 29513968]
43.
Tunon-de-Lara JM, Villanueva P, Marcos M, Taytard A. ACE inhibitors and anaphylactoid reactions during venom immunotherapy. Lancet. 1992 Oct 10;340(8824):908. [PubMed: 1357311]
44.
Rousaud Baron F, Garcia JM, Camps EM, Cubells TD, Comamala MR. ACE inhibitors and anaphylactoid reactions to high-flux membrane dialysis (AN69): clinical aspects. Nephron. 1992;60(4):487. [PubMed: 1584327]
45.
Murphy BF, Whitworth JA, Kincaid-Smith P. Renal insufficiency with combinations of angiotensin converting enzyme inhibitors and diuretics. Br Med J (Clin Res Ed). 1984 Mar 17;288(6420):844-5. [PMC free article: PMC1441650] [PubMed: 6322905]
46.
Khosla S, Ahmed A, Siddiqui M, Trivedi A, Benatar D, Salem Y, Elbzour M, Vidyarthi V, Lubell D. Safety of angiotensin-converting enzyme inhibitors in patients with bilateral renal artery stenosis following successful renal artery stent revascularization. Am J Ther. 2006 Jul-Aug;13(4):306-8. [PubMed: 16858164]
47.
Rosano GMC, Tamargo J, Kjeldsen KP, Lainscak M, Agewall S, Anker SD, Ceconi C, Coats AJS, Drexel H, Filippatos G, Kaski JC, Lund L, Niessner A, Ponikowski P, Savarese G, Schmidt TA, Seferovic P, Wassmann S, Walther T, Lewis BS. Expert consensus document on the management of hyperkalaemia in patients with cardiovascular disease treated with renin angiotensin aldosterone system inhibitors: coordinated by the Working Group on Cardiovascular Pharmacotherapy of the European Society of Cardiology. Eur Heart J Cardiovasc Pharmacother. 2018 Jul 01;4(3):180-188. [PubMed: 29726985]
48.
Hodsman GP, Isles CG, Murray GD, Usherwood TP, Webb DJ, Robertson JI. Factors related to first dose hypotensive effect of captopril: prediction and treatment. Br Med J (Clin Res Ed). 1983 Mar 12;286(6368):832-4. [PMC free article: PMC1547159] [PubMed: 6403103]
49.
Burnakis TG, Mioduch HJ. Combined therapy with captopril and potassium supplementation. A potential for hyperkalemia. Arch Intern Med. 1984 Dec;144(12):2371-2. [PubMed: 6391404]
50.
Perazella MA. Hyperkalemia and trimethoprim-sulfamethoxazole: a new problem emerges 25 years later. Conn Med. 1997 Aug;61(8):451-8. [PubMed: 9309892]
51.
Rahmat J, Gelfand RL, Gelfand MC, Winchester JF, Schreiner GE, Zimmerman HJ. Captopril-associated cholestatic jaundice. Ann Intern Med. 1985 Jan;102(1):56-8. [PubMed: 3881069]
52.
Brown NJ, Ray WA, Snowden M, Griffin MR. Black Americans have an increased rate of angiotensin converting enzyme inhibitor-associated angioedema. Clin Pharmacol Ther. 1996 Jul;60(1):8-13. [PubMed: 8689816]
53.
Quan A. Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev. 2006 Jan;82(1):23-8. [PubMed: 16427219]
54.
Kuenzli A, Bucher HC, Anand I, Arutiunov G, Kum LC, McKelvie R, Afzal R, White M, Nordmann AJ. Meta-analysis of combined therapy with angiotensin receptor antagonists versus ACE inhibitors alone in patients with heart failure. PLoS One. 2010 Apr 01;5(4):e9946. [PMC free article: PMC2848587] [PubMed: 20376345]
55.
Lucas C, Christie GA, Waring WS. Rapid onset of haemodynamic effects after angiotensin converting enzyme-inhibitor overdose: implications for initial patient triage. Emerg Med J. 2006 Nov;23(11):854-7. [PMC free article: PMC2464381] [PubMed: 17057137]
56.
Sorodoc V, Sorodoc L, Lionte C, Gazzi E, Jaba IM, Mungiu OC. [Intentional poisoning with ACE inhibitors. Emergeny Hospital Iaşi]. Rev Med Chir Soc Med Nat Iasi. 2010 Apr-Jun;114(2):359-62. [PubMed: 20700967]
57.
Varughese A, Taylor AA, Nelson EB. Consequences of angiotensin-converting enzyme inhibitor overdose. Am J Hypertens. 1989 May;2(5 Pt 1):355-7. [PubMed: 2541742]
58.
Jackson T, Corke C, Agar J. Enalapril overdose treated with angiotensin infusion. Lancet. 1993 Mar 13;341(8846):703. [PubMed: 8095618]
59.
Lip GY, Ferner RE. Poisoning with anti-hypertensive drugs: angiotensin converting enzyme inhibitors. J Hum Hypertens. 1995 Sep;9(9):711-5. [PubMed: 8551483]
60.
Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation. 1998 Apr 14;97(14):1411-20. [PubMed: 9577953]
61.
Pongpanich P, Pitakpaiboonkul P, Takkavatakarn K, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. The benefits of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers combined with calcium channel blockers on metabolic, renal, and cardiovascular outcomes in hypertensive patients: a meta-analysis. Int Urol Nephrol. 2018 Dec;50(12):2261-2278. [PubMed: 30324578]
Copyright © 2022, StatPearls Publishing LLC.

This book is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license, and any changes made are indicated.

Bookshelf ID: NBK431051PMID: 28613705

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...