NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Matchar DB, Thakur ME, Grossman I, et al. Testing for Cytochrome P450 Polymorphisms in Adults With Non-Psychotic Depression Treated With Selective Serotonin Reuptake Inhibitors (SSRIs). Rockville (MD): Agency for Healthcare Research and Quality (US); 2007 Jan. (Evidence Reports/Technology Assessments, No. 146.)

  • This publication is provided for historical reference only and the information may be out of date.

This publication is provided for historical reference only and the information may be out of date.

Cover of Testing for Cytochrome P450 Polymorphisms in Adults With Non-Psychotic Depression Treated With Selective Serotonin Reuptake Inhibitors (SSRIs)

Testing for Cytochrome P450 Polymorphisms in Adults With Non-Psychotic Depression Treated With Selective Serotonin Reuptake Inhibitors (SSRIs).

Show details

References Cited in the Evidence Report

1.
Kessler RC, Berglund P, Demler O. et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R) JAMA. 2003;289(23):3095–105. [PubMed: 12813115]
2.
World Health Organization (WHO). Depression. Available at: www​.who.int/mental_health​/management/depression​/definition/en. Accessed 26 April 2006.
3.
Ustun TB, Ayuso-Mateos JL, Chatterji S. et al. Global burden of depressive disorders in the year 2000. Br J Psychiatry. 2004;184:386–92. [PubMed: 15123501]
4.
Coryell W, Young EA. Clinical predictors of suicide in primary major depressive disorder. J Clin Psychiatry. 2005;66(4):412–7. [PubMed: 15816781]
5.
Solomon DA, Keller MB, Leon AC. et al. Multiple recurrences of major depressive disorder. Am J Psychiatry. 2000;157(2):229–33. [PubMed: 10671391]
6.
Druss BG, Rosenheck RA, Sledge WH. Health and disability costs of depressive illness in a major U.S. corporation. Am J Psychiatry. 2000;157(8):1274–8. [PubMed: 10910790]
7.
Keller MB, Shapiro RW, Lavori PW. et al. Recovery in major depressive disorder: analysis with the life table and regression models. Arch Gen Psychiatry. 1982;39(8):905–10. [PubMed: 7103679]
8.
Trivedi MH, Rush AJ, Wisniewski SR. et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40. [PubMed: 16390886]
9.
Per-Sé Technologies. NDC Pharmaceutical Audit Suite (PHAST), 2005. Available at: www​.ndchealth.com. Accessed 26 April 2006.
10.
Sanchez C, Hyttel J. Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol. 1999;19(4):467–89. [PubMed: 10379421]
11.
Wong DT, Bymaster FP, Reid LR. et al. Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology. 1993;8(4):337–44. [PubMed: 8512621]
12.
MacGillivray S, Arroll B, Hatcher S. et al. Efficacy and tolerability of selective serotonin reuptake inhibitors compared with tricyclic antidepressants in depression treated in primary care: systematic review and meta-analysis. BMJ. 2003;326(7397):1014. [PMC free article: PMC154760] [PubMed: 12742924]
13.
Song F, Freemantle N, Sheldon TA. et al. Selective serotonin reuptake inhibitors: meta-analysis of efficacy and acceptability. BMJ. 1993;306(6879):683–7. [PMC free article: PMC1677099] [PubMed: 8471919]
14.
Dufour H, Bouchacourt M, Thermoz P. et al. Citalopram—a highly selective 5-HT uptake inhibitor—in the treatment of depressed patients. Int Clin Psychopharmacol. 1987;2(3):225–37. [PubMed: 3320186]
15.
Bjerkenstedt L, Flyckt L, Overo KF. et al. Relationship between clinical effects, serum drug concentration and serotonin uptake inhibition in depressed patients treated with citalopram. A double-blind comparison of three dose levels. Eur J Clin Pharmacol. 1985;28(5):553–7. [PubMed: 3899675]
16.
Tasker TC, Kaye CM, Zussman BD. et al. Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatr Scand Suppl. 1989;350:152–5. [PubMed: 2530776]
17.
Laursen AL, Mikkelsen PL, Rasmussen S. et al. Paroxetine in the treatment of depression—a randomized comparison with amitriptyline. Acta Psychiatr Scand. 1985;71(3):249–55. [PubMed: 3157296]
18.
Danish University Antidepressant Group. Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance, but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affect Disord. 1990;18(4):289–99. [PubMed: 2140382]
19.
Kuhs H, Schlake HP, Rolf LH. et al. Relationship between parameters of serotonin transport and antidepressant plasma levels or therapeutic response in depressive patients treated with paroxetine and amitriptyline. Acta Psychiatr Scand. 1992;85(5):364–9. [PubMed: 1534961]
20.
Kelly MW, Perry PJ, Holstad SG. et al. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit. 1989;11(2):165–70. [PubMed: 2785723]
21.
Beasley CM Jr, Bosomworth JC, Wernicke JF. Fluoxetine: relationships among dose, response, adverse events, and plasma concentrations in the treatment of depression. Psychopharmacol Bull. 1990;26(1):18–24. [PubMed: 2196623]
22.
Montgomery SA, Baldwin D, Shah A. et al. Plasma-level response relationships with fluoxetine and zimelidine. Clin Neuropharmacol. 1990;13(Suppl 1):S71–5. [PubMed: 2143100]
23.
Fichtner CG, Jobe TH, Braun BG. Possible therapeutic window for serotonin reuptake inhibitors. J Clin Psychiatry. 1994;55(1):36–8. [PubMed: 8294393]
24.
Cain JW. Poor response to fluoxetine: underlying depression, serotonergic overstimulation, or a “therapeutic window”? J Clin Psychiatry. 1992;53(8):272–7. [PubMed: 1500403]
25.
Amsterdam JD, Fawcett J, Quitkin FM. et al. Fluoxetine and norfluoxetine plasma concentrations in major depression: a multicenter study. Am J Psychiatry. 1997;154(7):963–9. [PubMed: 9210747]
26.
Rasmussen BB, Brosen K. Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther Drug Monit. 2000;22(2):143–54. [PubMed: 10774624]
27.
Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3(2):229–43. [PubMed: 11972444]
28.
Zackrisson AL, Holmgren P, Gladh AB. et al. Fatal intoxication cases: cytochrome P450 2D6 and 2C19 genotype distributions. Eur J Clin Pharmacol. 2004;60(8):547–52. [PubMed: 15349706]
29.
Brosen K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie. 2004;59(1):5–12. [PubMed: 15199661]
30.
Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005;33(2):262–70. [PubMed: 15547048]
31.
Mandrioli R, Forti GC, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Curr Drug Metab. 2006;7(2):127–33. [PubMed: 16472103]
32.
Olesen OV, Linnet K. Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology. 1999;59(6):298–309. [PubMed: 10575324]
33.
Margolis JM, O'Donnell JP, Mankowski DC. et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000;28(10):1187–91. [PubMed: 10997938]
34.
Llerena A, Edman G, Cobaleda J. et al. Relationship between personality and debrisoquine hydroxylation capacity. Suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand. 1993;87(1):23–8. [PubMed: 8424321]
35.
Harvey AT, Preskorn SH. Cytochrome P450 enzymes: interpretation of their interactions with selective serotonin reuptake inhibitors. Part II. J Clin Psychopharmacol. 1996;16(5):345–55. [PubMed: 8889906]
36.
Gram LF, Hansen MG, Sindrup SH. et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit. 1993;15(1):18–24. [PubMed: 8451775]
37.
Skjelbo E, Brosen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol. 1992;34(3):256–61. [PMC free article: PMC1381397] [PubMed: 1389950]
38.
Rasmussen BB, Maenpaa J, Pelkonen O. et al. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol. 1995;39(2):151–9. [PMC free article: PMC1364952] [PubMed: 7742153]
39.
Piper MA. Special report: genotyping for cytochrome P450 polymorphisms to determine drug-metabolizer status. Blue Cross and Blue Shield Association Technology Evaluation Center Assessment Program. Volume 19, No. 9, December 2004. Available at: www​.bcbs.com/tec/Vol19/19_09.pdf. Accessed 5 July 2006.
40.
Roche Molecular Systems, Inc. U.S. Food and Drug Administration 510(k) Substantial Equivalence Determination Decision Summary for Roche AmpliChip CYP450 microarray for identifying CYP2D6 genotype (510(k) Number k042259). December 2004. Available at: www.fda.gov/cdrh/reviews/k042259.pdf. Accessed 19 April 2006.
41.
Roche Molecular Systems, Inc. U.S. Food and Drug Administration 510(k) Substantial Equivalence Determination Decision Summary for Roche AmpliChip CYP450 microarray for identifying CYP2C19 genotype (510(k) Number k043576). January 2005. Available at: www.fda.gov/cdrh/reviews/k043576.pdf. Accessed 19 April 2006.
42.
Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci. 1999;20(8):342–9. [PubMed: 10431214]
43.
Wang JH, Liu ZQ, Wang W. et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;70(1):42–7. [PubMed: 11452243]
44.
Hamilton M. A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry. 1960;23:56–62. [PMC free article: PMC495331] [PubMed: 14399272]
45.
Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9. [PubMed: 444788]
46.
Ware JE Jr,, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83. [PubMed: 1593914]
47.
Sheehan DV. Sheehan Disability Scale (1983). In: American Psychiatric Association Task Force for the Handbook of Psychiatric Measures. Handbook of psychiatric measures. Washington, DC: American Psychiatric Association; 2000. p. 113–5.
48.
Endicott J, Nee J, Harrison W. et al. Quality of Life Enjoyment and Satisfaction Questionnaire: a new measure. Psychopharmacol Bull. 1993;29(2):321–6. [PubMed: 8290681]
49.
Kotz S, Johnson NL, Read C, et al. Encyclopedia of statistical sciences. Vol. 4, Icing the tails-limit theorems. New York: John Wiley and Sons; 1983. p. 352–4.
50.
Kirchheiner J, Nickchen K, Bauer M. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9(5):442–73. [PubMed: 15037866]
51.
Wang C, Chung M, Lichtenstein A, et al. Effects of Omega-3 Fatty Acids on Cardiovascular Disease. Evidence Report/Technology Assessment No. 94 (Prepared by Tufts-New England Medical Center Evidence-based Practice Center, under Contract No. 290-02-0022). AHRQ Publication No. 04-E009-2. Rockville, MD: Agency for Healthcare Research and Quality. March 2004. Available at: www.ahcpr.gov/clinic/tp/o3cardtp.htm. Accessed 5 July 2006.
52.
Phillips B, Ball C, Sackett D, et al. Oxford Centre for Evidence-based Medicine Levels of Evidence (May 2001). Available at: www​.cebm.net/levels_of_evidence​.asp#levels. Accessed 21 April 2006.
53.
Neville M, Selzer R, Aizenstein B, et al. Characterization of cytochrome P450 2D6 alleles using the Invader system. Biotechniques 2002;Suppl:34–8, 40–3. [PubMed: 12083395]
54.
Eriksson S, Berg LM, Wadelius M. et al. Cytochrome p450 genotyping by multiplexed real-time DNA sequencing with pyrosequencing technology. Assay Drug Dev Technol. 2002;1(1 Pt 1):49–59. [PubMed: 15090156]
55.
Hersberger M, Marti-Jaun J, Rentsch K. et al. Rapid detection of the CYP2D6*3, CYP2D6*4, and CYP2D6*6 alleles by tetra-primer PCR and of the CYP2D6*5 allele by multiplex long PCR. Clin Chem. 2000;46(8 Pt 1):1072–7. [PubMed: 10926885]
56.
Muller B, Zopf K, Bachofer J. et al. Optimized strategy for rapid cytochrome P450 2D6 genotyping by real-time long PCR. Clin Chem. 2003;49(10):1624–31. [PubMed: 14500587]
57.
Schaeffeler E, Schwab M, Eichelbaum M. et al. CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR. Hum Mutat. 2003;22(6):476–85. [PubMed: 14635107]
58.
Soderback E, Zackrisson AL, Lindblom B. et al. Determination of CYP2D6 gene copy number by pyrosequencing. Clin Chem. 2005;51(3):522–31. [PubMed: 15650034]
59.
Stamer UM, Bayerer B, Wolf S. et al. Rapid and reliable method for cytochrome P450 2D6 genotyping. Clin Chem. 2002;48(9):1412–7. [PubMed: 12194916]
60.
Chou WH, Yan FX, Robbins-Weilert DK. et al. Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships. Clin Chem. 2003;49(4):542–51. [PubMed: 12651805]
61.
Mizugaki M, Hiratsuka M, Agatsuma Y. et al. Rapid detection of CYP2C18 genotypes by real-time fluorescence polymerase chain reaction. J Pharm Pharmacol. 2000;52(2):199–205. [PubMed: 10714950]
62.
Muthiah YD, Lee WL, Teh LK. et al. A simple multiplex PCR method for the concurrent detection of three CYP2C8 variants. Clin Chim Acta. 2004;349(12):191–8. [PubMed: 15469873]
63.
Weise A, Grundler S, Zaumsegel D. et al. Development and evaluation of a rapid and reliable method for cytochrome P450 2C8 genotyping. Clin Lab. 2004;50(34):141–8. [PubMed: 15074466]
64.
Wu X, Zhou Y, Xu S. Detection of CYP I A1 polymorphisms with a colorimetric method based on mismatch hybridization. Clin Chim Acta. 2002;323(12):103–9. [PubMed: 12135810]
65.
Liu ZQ, Cheng ZN, Huang SL. et al. Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol. 2001;52(1):96–9. [PMC free article: PMC2014504] [PubMed: 11453896]
66.
Ozdemir V, Tyndale RF, Reed K. et al. Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol. 1999;19(5):472–5. [PubMed: 10505591]
67.
Yu BN, Chen GL, He N. et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos. 2003;31(10):1255–9. [PubMed: 12975335]
68.
Yoon YR, Cha IJ, Shon JH. et al. Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects. Clin Pharmacol Ther. 2000;67(5):567–76. [PubMed: 10824636]
69.
Berle JO, Steen VM, Aamo TO. et al. Breastfeeding during maternal antidepressant treatment with serotonin reuptake inhibitors: infant exposure, clinical symptoms, and cytochrome p450 genotypes. J Clin Psychiatry. 2004;65(9):1228–34. [PubMed: 15367050]
70.
Charlier C, Broly F, Lhermitte M. et al. Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit. 2003;25(6):738–42. [PubMed: 14639062]
71.
Eap CB, Bondolfi G, Zullino D. et al. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol. 2001;21(3):330–4. [PubMed: 11386497]
72.
Grasmader K, Verwohlt PL, Rietschel M. et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol. 2004;60(5):329–36. [PubMed: 15168101]
73.
LLerena A, Dorado P, Berecz R. et al. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol. 2004;59(12):869–73. [PubMed: 14726986]
74.
Murphy GM Jr, Kremer C, Rodrigues HE. et al. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry. 2003;160(10):1830–5. [PubMed: 14514498]
75.
Ohara K, Tanabu S, Ishibashi K. et al. CYP2D6*10 alleles do not determine plasma fluvoxamine concentration/dose ratio in Japanese subjects. Eur J Clin Pharmacol. 2003;58(10):659–61. [PubMed: 12610741]
76.
Sawamura K, Suzuki Y, Someya T. Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol. 2004;60(8):553–7. [PubMed: 15349705]
77.
Stedman CA, Begg EJ, Kennedy MA. et al. Cytochrome P450 2D6 genotype does not predict SSRI (fluoxetine or paroxetine) induced hyponatraemia. Hum Psychopharmacol. 2002;17(4):187–90. [PubMed: 12404686]
78.
Scordo MG, Spina E, Dahl ML. et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol. 2005;97(5):296–301. [PubMed: 16236141]
79.
Ueda M, Hirokane G, Morita S. et al. The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(3):486–91. [PubMed: 16423440]
80.
Sackett D, Richardson WS, Rosenberg W, et al. Evidence-based medicine: how to practice and teach EBM. New York: Churchill Livingstone; 1997. p. 232.
81.
Venkatakrishnan K, Greenblatt DJ, von Moltke LL. et al. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol. 1998;38(2):112–21. [PubMed: 9549641]
82.
Sindrup SH, Brosen K, Gram LF. et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther. 1992;51(3):278–87. [PubMed: 1531950]
83.
Gerstenberg G, Aoshima T, Fukasawa T. et al. Relationship between clinical effects of fluvoxamine and the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients. Psychopharmacology (Berl) 2003;167(4):443–8. [PubMed: 12682708]
84.
Rau T, Wohlleben G, Wuttke H. et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther. 2004;75(5):386–93. [PubMed: 15116051]
85.
Kawanishi C, Lundgren S, Agren H. et al. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol. 2004;59(11):803–7. [PubMed: 14652703]
86.
Cravchik A, Goldman D. Neurochemical individuality: genetic diversity among human dopamine and serotonin receptors and transporters. Arch Gen Psychiatry. 2000;57(12):1105–14. [PubMed: 11115324]
87.
Allgulander C, Nilsson B. A prospective study of 86 new patients with social anxiety disorder. Acta Psychiatr Scand. 2001;103(6):447–52. [PubMed: 11401659]
88.
Chen S, Chou WH, Blouin RA. et al. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther. 1996;60(5):522–34. [PubMed: 8941025]
89.
Roberts RL, Mulder RT, Joyce PR. et al. No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol. 2004;19(1):17–23. [PubMed: 14716707]
90.
Suzuki Y, Sawamura K, Someya T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochromeP4502d6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology. 2006;31(4):825–31. [PubMed: 16205777]
91.
Kobayashi K, Ishizuka T, Shimada N. et al. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metab Dispos. 1999;27(7):763–6. [PubMed: 10383917]
92.
Bennett K, Torrance G, Boyle M. et al. Development and testing of a utility measure for major, unipolar depression. Qual Life Res. 2000;9(1):109–20. [PubMed: 10981211]
93.
Rossini D, Serretti A, Franchini L. et al. Sertraline versus fluvoxamine in the treatment of elderly patients with major depression: a double-blind, randomized trial. J Clin Psychopharmacol. 2005;25(5):471–5. [PubMed: 16160624]
94.
Anonymous. Pricing information on Prozac/fluoxetine. Available at: www.costco.com/Pharmacy. 2006. Accessed September 11, 2006.
95.
Anonymous. Pricing information on Zoloft/sertraline. 2006. Available at: www.costco.com/Pharmacy. Accessed September 11, 2006.
96.
Palylyk-Colwell E. CYP450 genotyping for determining drug metabolizer status. [Issues in emerging health technologies issue 81]. Ottawa: Candadian Coordinating Office for Health Technology Assessment; 2006. Available at: www​.cadth.ca/media/pdf​/375_armplichip_cetap_e.pdf. Accessed September 9, 2006. [PubMed: 16544445]
97.
Serretti A, Artioli P, Quartesan R. Pharmacogenetics in the treatment of depression: pharmacodynamic studies. Pharmacogenetics & Genomics. 2005;15(2):61–7. [PubMed: 15861029]
98.
Serretti A, Cusin C, Rossini D. et al. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet B Neuropsychiatr Genet. 2004;129(1):36–40. [PubMed: 15274037]
99.
Smits KM, Smits LJ, Schouten JS. et al. Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol Psychiatry. 2004;9(5):433–41. [PubMed: 15037864]
100.
Pollock BG, Ferrell RE, Mulsant BH. et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology. 2000;23(5):587–90. [PubMed: 11027924]
101.
Smeraldi E, Zanardi R, Benedetti F. et al. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry. 1998;3(6):508–11. [PubMed: 9857976]
102.
Kim DK, Lim SW, Lee S. et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport. 2000;11(1):215–9. [PubMed: 10683861]
103.
Kato M, Ikenaga Y, Wakeno M. et al. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int Clin Psychopharmacol. 2005;20(3):151–6. [PubMed: 15812265]
104.
Yoshida K, Takahashi H, Higuchi H. et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry. 2004;161(9):1575–80. [PubMed: 15337646]
105.
Serretti A, Zanardi R, Rossini D. et al. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry. 2001;6(5):586–92. [PubMed: 11526473]
106.
Ham BJ, Lee MS, Lee HJ. et al. No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressant response in a Korean population. Psychiatr Genet. 2005;15(4):299–301. [PubMed: 16314762]
107.
Peters EJ, Slager SL, McGrath PJ. et al. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry. 2004;9(9):879–89. [PubMed: 15052272]
108.
Serretti A, Artioli P. The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenomics J. 2004;4(4):233–44. [PubMed: 15111987]
109.
McMahon FJ, Buervenich S, Charney D. et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet. 2006;78(5):804–14. [PMC free article: PMC1474035] [PubMed: 16642436]
110.
Zourkova A. Clinical significance of CYP 2D6 during treatment with recent antidepressants [Czech] Ceska a Slovenska Psychiatrie. 2002;98(5):273–7.
111.
Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003;290(12):1624–32. [PubMed: 14506122]

Views

  • PubReader
  • Print View
  • Cite this Page

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...