In the last decade of the 20th century, computer science and biology both emerged as fields capable of remarkable and rapid change. Moreover, they evolved as fields of inquiry in ways that draw attention to their areas of intersection. The continuing advancements in technology and the pace of scientific research present the means for computing to help answer fundamental questions in the biological sciences and for biology to demonstrate that new approaches to computing are possible.

Advances in the power and ease of use of computing and communications systems have fueled computational biology (e.g., genomics) and bioinformatics (e.g., database development and analysis). Modeling and simulation of biological entities such as cells have joined biologists and computer scientists (and mathematicians, physicists, and statisticians too) to work together on activities from pharmaceutical design to environmental analysis.

On the other side, computer scientists have pondered the significance of biology for their field. For example, computer scientists have explored the use of DNA as a substrate for new computing hardware and the use of biological approaches in solving hard computing problems. Exploration of biological computation suggests a potential for insight into the nature of and alternative processes for computation, and it also gives rise to questions about hybrid systems that achieve some kind of synergy of biological and computational systems. And there is also the fact that biological systems exhibit characteristics such as adaptability, self-healing, evolution, and learning that would be desirable in the information technologies that humans use.

Making the most of the research opportunities at the interface of computing and biology—what we are calling the BioComp interface—requires illuminating what they are and effectively engaging people from both computing and biology. As in other contexts, the challenges of interdisciplinary education and of collaboration are significant, and each will require attention, together with substantive work from both policy makers and researchers. At the start of the 1990s, attempts were made to stimulate mutual interest and collaboration among young researchers in computing and biology. Those early efforts yielded nontrivial successes, but in retrospect represented a Version 1.0 prototype for the potential in bringing the two fields together. Circumstances today seem much more favorable for progress. New research teams and training programs have been formed as individual investigators from the respective communities, government agencies, and private foundations have become increasingly engaged. Similarly, some larger groups of investigators from different backgrounds have been able to obtain funding to work together to address cross-disciplinary research problems. It is against this background that the committee sees a Version 2.0 of the BioComp interface emerging that will yield unprecedented progress and advance.

The range of possible activities at the BioComp interface is broad, and accordingly so is the range of interested agencies, which include the Defense Advanced Research Projects Agency (DARPA), the National Science Foundation (NSF), the Department of Energy (DOE), and the National Institutes of Health (NIH). These agencies have, to varying degrees, recognized that truly cross-disciplinary work would build on both computing and biology, and they have sought to advance activities at the interface.

This report by the Committee on Frontiers at the Interface of Computing and Biology seeks to establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biologists and computer scientists. That is, while some universities are increasingly favorable to research at the intersection, life science researchers at other universities are strongly impeded in their efforts to collaborate. This report addresses these impediments and describes some strategies for overcoming them.

In addition, this report provides a wealth of well-documented examples. As a rule, these examples have generally been selected to illustrate the breadth of the topic in question, rather than to identify the most important areas of activity. That is, the appropriate spirit in which to view these examples is “let a thousand flowers bloom,” rather than one of “finding the prettiest flowers.” It is hoped that these examples will encourage students in the life sciences to start or to continue study in computer science that will enable them to be more effective users of computing in their future biological studies. In the opposite direction, the report seeks to describe a rich and diverse domain—biology—within which computer scientists can find worthy problems that challenge current knowledge in computing. It is hoped that this awareness will motivate interested computer scientists to learn about biological phenomena, data, experimentation, and the like—so that they can engage biologists more effectively.

To gather information on such a broad area, the committee took input from a wide variety of sources. The committee convened two workshops in March 2001 and May 2001, and committee members or staff attended relevant workshops sponsored by other groups. The committee mined the published literature extensively. It solicited input from other scientists known to be active in BioComp research. An early draft of the report was examined by a number of reviewers far larger than usual for National Research Council (NRC) reports, and the draft was modified in accordance with their extensive input, which helped the committee to sharpen its message and strengthen its presentation.

The result of these efforts is the first comprehensive NRC study that suggests a high-level intellectual structure for federal agencies for supporting work at the BioComp interface. Although workshop reports have been supported by individual agencies on the subject of computing applied to various aspects of biological inquiry, the NRC has not until now undertaken a study whose intent was to be inclusive.

Within the NRC, the lead unit on this project was the Computer Science and Telecommunications Board (CSTB), and Marjory Blumenthal and Elizabeth Grossman launched the project. The committee also acknowledges with gratitude the contribution of the Board on Biology—Robin Schoen continued work on the project after Elizabeth Grossman's departure. Geoff Cohen and Mitch Waldrop, consultants to CSTB, made major substantive contributions to this report. A variety of project assistants, including D.C. Drake, Jennifer Bishop, Gloria Westbrook, and Margaret Huynh, provided research and administrative support. Finally, grateful thanks are offered to DARPA, NIH, NSF, and DOE for their financial support for this project as well as their patience in awaiting the final report. No single agency can respond to the challenges and opportunities at the interface, and the committee hopes that its analysis will facilitate agency efforts to define their own priorities, set their own path, and participate in what will be a continuing adventure along the frontier at this exciting and promising interface, which will continue to develop throughout the 21st century.

A Personal Note from the Chair

The committee found the scope of the study and the need to achieve an adequate level of balance in both directions around the BioComp interface to be a challenge. This challenge, I hope, has been met, but this was only possible due to the recruitment of an outstanding physicist turned computer science policy expert from the NRC. Specifically, after the original series of meetings, Herb Lin from the CSTB side of the NRC joined the effort, and most notably, followed up on the committee's earlier analyses by interviewing numerous individuals engaged in both biocomputing (applications of biology to computing) and computational biology (applications of computing to biology). This was invaluable, as was Herb's never ending enthusiasm, insight into the nature of the interdisciplinary discussions that are growing, and his willingness to engage in learning a lot about biology. The report could never have been completed without his persistence. His expertise in editing and analytical treatment of policy and technical material allowed us to sustain a broad vision. (Even with the length and breadth of this study, we were able to cover only selected areas at the interface.) The committee's efforts were sustained and accelerated by Herb's determination that we stay the course despite the size of the task, and by his insightful comments, criticisms, and suggestions on every aspect of the study and the report.

John Wooley, Chair

Committee on Frontiers at the Interface of Computing and Biology