NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Biochemistry

Biochemistry. 5th edition.

Show details

Section 3.5Quaternary Structure: Polypeptide Chains Can Assemble Into Multisubunit Structures

Four levels of structure are frequently cited in discussions of protein architecture. So far, we have considered three of them. Primary structure is the amino acid sequence. Secondary structure refers to the spatial arrangement of amino acid residues that are nearby in the sequence. Some of these arrangements are of a regular kind, giving rise to a periodic structure. The α helix and β strand are elements of secondary structure. Tertiary structure refers to the spatial arrangement of amino acid residues that are far apart in the sequence and to the pattern of disulfide bonds. We now turn to proteins containing more than one polypeptide chain. Such proteins exhibit a fourth level of structural organization. Each polypeptide chain in such a protein is called a subunit. Quaternary structure refers to the spatial arrangement of subunits and the nature of their interactions. The simplest sort of quaternary structure is a dimer, consisting of two identical subunits. This organization is present in the DNA-binding protein Cro found in a bacterial virus called λ (Figure 3.48). More complicated quaternary structures also are common. More than one type of subunit can be present, often in variable numbers. For example, human hemoglobin, the oxygen-carrying protein in blood, consists of two subunits of one type (designated α) and two subunits of another type (designated β), as illustrated in Figure 3.49. Thus, the hemoglobin molecule exists as an α2β2 tetramer. Subtle changes in the arrangement of subunits within the hemoglobin molecule allow it to carry oxygen from the lungs to tissues with great efficiency (Section 10.2).

Figure 3.48. Quaternary Structure.

Figure 3.48

Quaternary Structure. Image mouse.jpg The Cro protein of bacteriophage λ is a dimer of identical subunits.

Figure 3.49. The α2β2 Tetramer of Human Hemoglobin.

Figure 3.49

The α2β2 Tetramer of Human Hemoglobin. Image mouse.jpg The structure of the two identical α subunits (red) is similar to but not identical with that of the two identical β subunits (yellow). The molecule contains four heme groups (black (more...)

Viruses make the most of a limited amount of genetic information by forming coats that use the same kind of subunit repetitively in a symmetric array. The coat of rhinovirus, the virus that causes the common cold, includes 60 copies each of four subunits (Figure 3.50). The subunits come together to form a nearly spherical shell that encloses the viral genome.

Figure 3.50. Complex Quaternary Structure.

Figure 3.50

Complex Quaternary Structure. The coat of rhinovirus comprises 60 copies of each of four subunits. (A) A schematic view depicting the three types of subunits (shown in red, blue, and green) visible from outside the virus. (B) An electron micrograph showing (more...)

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2002, W. H. Freeman and Company.
Bookshelf ID: NBK22550

Views

  • Cite this Page
  • Disable Glossary Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...