NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Tan SL, editor. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk (UK): Horizon Bioscience; 2006.

Cover of Hepatitis C Viruses

Hepatitis C Viruses: Genomes and Molecular Biology.

Show details


, Ph.D.

Author Information

Chronic hepatitis C is a serious public health problem and a disease burden in many parts of the world. The discovery of the causative agent, hepatitis C virus (HCV), in 1989 has initiated an almost unparalleled research activity in academic and pharmaceutical-industry laboratories over the ensuing years. This book aims to provide a state-of-the-art account of recent advances in the molecular and cellular biology, immunology and pathogenesis of HCV. It also aspires to discuss new strategies as well as outstanding issues for future research.

Hepatitis C has been dubbed the “silent epidemic” because it is generally asymptomatic for decades after infection; its victims often are unaware of the infection until it is too late for therapy. What is the genetic makeup and molecular features that make HCV such a “silent” yet deadly assassin? This question, in fact, is the premise by which this monograph was prepared – it was an attempt to decode the secrets of HCV, one viral gene at a time. To that end, we assembled a team of highly regarded experts from different disciplines who have prepared 16 chapters on various aspects of HCV, including the HCV genome and the role(s) of each viral gene product within the context of the viral life cycle, host interactions, and regulation of host antiviral defense and adaptive immunity.

This book can be divided into six main sections. The Introduction sets the stage by providing an overview of the history and the significant hallmarks in the discovery, diagnosis and initial treatments of HCV infection. In the first section, the authors provide an overview of our present understanding of the HCV genome, the structure and replication of these viruses (Chapter 1) and the role of the non-coding regions of HCV in regulating HCV gene expression and RNA replication (Chapter 2). The next two sections include in-depth reviews of the structural (Chapters 3 and 4) and nonstructural (Chapters 510) proteins of HCV. A major drawback in the past has been the lack of a robust cell-culture and small-animal model system for HCV infection and replication. However, substantial scientific progress has been made in recent years (Chapters 1112). Armed with these tools, we are beginning to dissect the molecular mechanisms by which the virus disrupts the host innate and adaptive immune response (Chapters 13 and 14), yielding novel insights into the pathogenicity of HCV.

The final section covers the development of infectious HCV-like particle systems (Chapter 15) and the recently developed robust in vitro HCV infection systems based on the JFH-1strain (Chapter 16), which should greatly expedite our study of the full viral life cycle, and our efforts to construct anti-viral strategies and to develop effective immunization strategies with prophylactic and therapeutic potential. Needless to say, this is the Holy Grail of HCV research considering that there is no vaccine available and current treatments fail in about half of HCV-infected patients.

In the meantime, biotechnology and pharmaceutical companies are making exciting progress in discovery and development of new drugs for HCV therapeutic intervention. These have been the subject of many excellent recent reviews and thus will not be covered in this book. Although it is likely to be several years before any new drug candidate will be available as an anti-HCV agent, the clinical pipeline for hepatitis C is starting to show promise for safer and more effective therapies.

Copyright © 2006, Horizon Bioscience.
Bookshelf ID: NBK1631


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...