Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is the most common fatty acid β-oxidation disorder. Fatty acid β-oxidation fuels hepatic ketogenesis, a major source of energy for peripheral tissues after glycogen stores are depleted during prolonged fasting and periods of higher energy demands.
Suggestive Findings
MCAD deficiency should be suspected in:
Positive Newborn Screening (NBS) Result
NBS for MCAD deficiency is primarily based on the results of a quantitative acylcarnitine profile on dried blood spot (DBS) cards.
Elevations of C8-acylcarnitine with lesser elevations of C6-, and C10-acylcarnitine values above the cutoff reported by the screening laboratory are considered positive and require follow-up biochemical testing. The cut-off values for C8 differ by NBS program and may be combined with elevated secondary markers including C0, C2, and C10:1, and the ratios of C8/C2 and C8/C10 in presumptive positive cases to aid in NBS sensitivity (Mayo Clinic CLIR, accessed 9-7-22).
Follow-up testing includes: plasma acylcarnitine analysis, urine organic acid analysis, and urine acylglycine analysis. If the test results support the likelihood of MCAD deficiency, additional testing is required to establish the diagnosis (see Establishing the Diagnosis).
The American College of Medical Genetics and Genomics ACT Sheet and Diagnostic Algorithm (pdfs) for follow up of an abnormal NBS result suggestive of MCAD deficiency should be reviewed.
The positive predictive value for elevations of C8-acylcarnitines is currently considered to be very high with the use of tandem mass spectrometry (MS/MS). False positives for elevations of C8-acylcarnitines are not common but can be seen in term infants who are appropriate for gestational age and heterozygous for the common c.985A>G pathogenic variant (see Table 1), and premature infants [McCandless et al 2013]. False negatives have been reported in newborns with low free carnitine levels, such as infants born to a mother with low free carnitine levels, including previously undiagnosed mothers with MCAD deficiency, maternal carnitine transporter deficiency, or nutritional carnitine deficiency [Leydiker et al 2011, Aksglaede et al 2015].
Note: A newborn whose blood sample has been submitted for NBS may become symptomatic before the screening results are available. Severe lethal presentations in the first week of life (i.e., before NBS results are available) have been reported [Ensenauer et al 2005, Wilcken et al 2007, Lindner et al 2011, Andresen et al 2012, Lovera et al 2012, Tal et al 2015].
Published reports on NBS outcomes document that individuals identified and treated presymptomatically can be saved from metabolic decompensations and relevant sequelae [Wilcken et al 2007, Lindner et al 2011, Catarzi et al 2013, Tal et al 2015]. However, these reports also show that some individuals with MCAD deficiency present (sometimes fatally) within the first few days of life, making it impossible to obtain NBS results prior to their initial clinical manifestation [McCandless et al 2013] Implementation of NBS has seen improvements in mortality rates from >20% to 3.5%-10% [Nennstiel-Ratzel et al 2005, Grosse et al 2006, Wilcken et al 2007, Feuchtbaum et al 2018].
A Previously Healthy Individual Who Becomes Symptomatic
Symptoms in a previously healthy individual may include:
Hypoketotic hypoglycemia and vomiting that may progress to lethargy, seizures, and coma triggered by a common illness;
Hepatomegaly and acute liver disease (sometimes confused with a diagnosis of Reye syndrome, which is characterized by acute noninflammatory encephalopathy with hyperammonemia, liver dysfunction, and fatty infiltration of the liver).
Historically, prior to NBS, the first acute episode would typically occur before age two years; however, affected individuals may present at any age including adulthood [Raymond et al 1999, Schatz & Ensenauer 2010]. Late-onset presentations have been described in adults after prolonged fasting, including after fasting for surgery, or with alcohol intoxication [Lang 2009].
Rapid clinical deterioration that is disproportionate in the setting of a common and generally benign infection should raise the suspicion of MCAD deficiency or other fatty acid β-oxidation disorders, and should prompt initiation of treatment simultaneously with additional diagnostic testing.
Sudden and Unexpected Death
Most FAO disorders including MCAD deficiency frequently manifest with sudden and unexpected death [Rinaldo et al 2002]. The following information supports the possibility of MCAD deficiency:
Note: Postmortem acylcarnitine analysis for MCAD deficiency may be performed on original NBS DBS cards, which can be stored at 4-8°C for up to at least a decade [Kaku et al 2018].
Establishing the Diagnosis
The diagnosis of MCAD deficiency is established in a proband with Suggestive Findings (see above) by confirmatory biochemical testing and identification of biallelic pathogenic variants in ACADM on molecular genetic testing (see Table 1). Biochemical and molecular diagnostic methods for MCAD deficiency are sensitive enough to identify asymptomatic affected individuals without using provocative tests. Assays to determine residual enzyme activity are possible but not routinely necessary and not clinically available in many regions.
Note: Confirmatory postmortem testing is possible in the individual with sudden and unexpected death if MCAD deficiency is suspected.
Biochemical Testing
Testing should include plasma acylcarnitine analysis with proper interpretation. Urine organic acid analysis and urine acylglycine analysis may provide supporting evidence and have been used for diagnosis prior to the advent of widely available molecular testing, or when molecular testing is not readily available.
Plasma acylcarnitine analysis. The acylcarnitine profile of individuals with MCAD deficiency is characterized by the prominent accumulation of C8- (octanoylcarnitine), with lesser elevations of C6-, C10-, and C10:1-acylcarnitines [Millington et al 1990, Chace et al 1997, Smith et al 2010]. Secondary decreased levels of free carnitine (C0) and acetylcarnitine (C2) may be seen with carnitine deficiency. The C8/C2 and C8/C10 ratios have also been used for interpretation of primary elevations of C8.
Sole reliance on plasma acylcarnitine analysis may not be sufficient, and either urine organic acids or acylglycines (ideally collected during an acute episode of metabolic decompensation as these, as well as acylcarnitines, could normalize when the individual is not under metabolic stress) should be analyzed to reach a correct biochemical diagnosis.
Note: When clinical suspicion of MCAD deficiency remains high and plasma acylcarnitine testing is not diagnostic, low free carnitine levels should be considered during the evaluation. Secondary carnitine deficiency may cause lower elevations of C8-, C6-, and C10 -acylcarnitines, or even normal acylcarnitine profiles [Clayton et al 1998; Leydiker et al 2011]. Some laboratories report acylcarnitine profiles with low C0 and C2-acylcarnitines, and while nonspecific, these findings may indicate an underlying metabolic disorder such as maternal MCAD deficiency, maternal carnitine transporter deficiency, or nutritional carnitine deficiency [Aksglaede et al 2015; Leydiker et al 2011].
Urine organic acid analysis. In symptomatic individuals, medium-chain dicarboxylic acids are elevated with a characteristic pattern – hexanoylglycine (C6) > octanoylglycine (C8) > decanoylglycine (C10) – while ketones are inappropriately low. During acute episodes, suberylglycine and dicarboxylic acids (adipic, suberic, sebacic, dodecanedioic, and tetradecanedioic) may be elevated, and represent additional biochemical markers of MCAD deficiency [Niwa 1995, Rinaldo et al 1998].
Standard urine organic acid profiles are often uninformative in individuals with MCAD deficiency who are clinically stable and not fasting [
Rinaldo et al 2001]. Under these conditions, the urinary excretion of the three acylglycines is often <10 mmol/mol creatinine – levels not readily detectable by routine organic acid analysis.
Individuals receiving medium-chain triglyceride (MCT) oil supplements or MCT-containing foods (e.g., MCT-supplemented infant formulas, coconut oil) may demonstrate elevated concentrations of octanoic acid and decanoic acid, but have normal
cis-4 decenoic acid and should not be interpreted as possibly having MCAD deficiency.
Urine acylglycine analysis will detect urinary n-hexanoylglycine, 3-phenylpropionylglycine, and suberylglycine. This test is more sensitive and specific for the identification of asymptomatic individuals and those with mild or intermittent biochemical phenotypes that may be missed by organic acid analysis alone [Rinaldo et al 1988, Rinaldo et al 2001].
During acute episodes, large amounts of hexanoylglycine and suberylglycine are present (which are also readily detectable by urine organic acid analysis).
Acylglycine analysis is informative in newborns and is the preferred test in persons who are clinically asymptomatic or who have mild or intermittent biochemical phenotypes.
The test, requiring only a random urine sample from asymptomatic individuals and no provocative tests, is informative immediately after birth [
Bennett et al 1991].
Note: Integrated analysis, post-analytic interpretation, and differential diagnosis of acylcarnitine and acylglycine results deemed to be abnormal could be aided by tools developed through the Collaborative Laboratory Integrated Reports (CLIR) project.
Molecular Genetic Testing
Molecular genetic testing approaches, which are determined by the clinical findings, can include a combination of gene-targeted testing (single-gene testing, multigene panel) and comprehensive
genomic testing (typically exome sequencing and exome array).
Gene-targeted testing requires that the clinician determine which gene(s) are likely involved, whereas genomic testing does not. Infants with positive NBS and confirmatory follow-up testing are likely to be diagnosed using gene-targeted testing (see Option 1), whereas symptomatic individuals with nonspecific supportive clinical and laboratory findings (who had not undergone NBS or had normal NBS results in the past) in whom the diagnosis of MCAD deficiency has not been considered are more likely to be diagnosed using comprehensive genomic testing (see Option 2).
Option 1
When NBS results and other laboratory findings suggest the diagnosis of MCAD deficiency, molecular genetic testing approaches can include single-gene testing or use of a multigene panel.
Single-gene testing. Sequence analysis of ACADM detects small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon-level or whole-gene deletions/duplications are not detected. Perform sequence analysis first. If only one or no pathogenic variant is found perform gene-targeted deletion/duplication analysis to detect intragenic deletions or duplications.
A multigene panel that includes ACADM and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.
For this disorder a multigene panel that also includes deletion/duplication analysis is recommended (see Table 1).
For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.
Option 2
When the diagnosis of MCAD deficiency has not been considered, comprehensive
genomic testing (which does not require the clinician to determine which gene[s] are likely involved) is the best option. Exome sequencing is most commonly used; genome sequencing is also possible.
If exome sequencing is not diagnostic, exome array (when clinically available) may be considered to detect (multi)exon deletions or duplications that cannot be detected by sequence analysis.
For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.
Table 1.
Molecular Genetic Testing Used in Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency
View in own window
Gene 1 | Method | Proportion of Probands with Pathogenic Variants 2 Detectable by Method |
---|
ACADM
| Targeted analysis | 56%-91% 3 |
Sequence analysis 4 | 98% 5 |
Gene-targeted deletion/duplication analysis 6 | 4 reported 7 |
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include a range of techniques such as quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.
- 7.
Enzyme Activity Analysis
Analysis of fatty acid β-oxidation in cultured fibroblasts involves acylcarnitine analysis of culture medium or a mix of culture medium and disrupted cells following the incubation of fibroblast cultures with labeled or non-labeled palmitic acid and non-labeled L-carnitine [Schmidt-Sommerfeld et al 1998]. The accumulation of C6-C10 acylcarnitines as described for plasma analysis confirms the diagnosis [Matern 2014].
Noninvasive testing using palmitate in individuals with suspected fatty-acid oxidation defects. Identification of disease-specific acylcarnitine patterns can help establish the diagnosis [Janzen et al 2017].
Measurement of MCAD enzyme activity (currently not available in the United States) in cultured fibroblasts or other tissues (leukocytes, liver, heart, skeletal muscle, or amniocytes) by the ETF reduction assay reveals that individuals with MCAD deficiency usually exhibit MCAD enzymatic activity that is <10% of normal [Hale et al 1990]. Similar enzyme deficiency was seen in a different assay using an HPLC method [Wanders et al 2010]. Another study investigating enzyme activity in fibroblasts found <35% activity in individuals with MCAD deficiency [Bouvier et al 2017].
Confirmatory Postmortem Testing
Collect postmortem blood [Chace et al 2001] and bile [Rashed et al 1995] spots on filter paper cards of the type used for NBS for subsequent acylcarnitine analysis. Collection of both specimens provides a better chance of detecting affected individuals and independently confirming the diagnosis.
Molecular genetic testing of ACADM using the postmortem blood spot or NBS blood spot retrieved from the screening laboratory can help confirm the diagnosis. Note: States store leftover dried blood spot samples for variable lengths of time following NBS testing. These samples may be retrievable with parent/patient consent for retrospective biochemical or molecular genetic testing.
Note: Although postmortem biochemical and/or molecular genetic testing of tissues and cultured skin fibroblasts is possible [Rinaldo et al 2002], it is logistically impractical and thus rarely performed.