NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Kufe DW, Pollock RE, Weichselbaum RR, et al., editors. Holland-Frei Cancer Medicine. 6th edition. Hamilton (ON): BC Decker; 2003.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Holland-Frei Cancer Medicine

Holland-Frei Cancer Medicine. 6th edition.

Show details

Chapter 7References

, MD, PhD and , MD.

1.
Broca PP. Etiologie des productions accidentelles.Traite des Tumerus. 1866:p.147–57.
2.
Haaland M. Spontaneous tumors in mice. Sci Rep Invest Imp Cancer Res Fund. 1911;4:1.
3.
Warthin AS. Heredity with reference to carcinoma as shown by the study of the cases examined in the pathological library of the University of Michigan, 1895-1913. Arch Intern Med. 1913;12:546. [PubMed: 3931868]
4.
Boveri T. The origin of malignant tumors. Baltimore: Williams & Wilkins, 1929.
5.
Rous P. A transmissible Avian neoplasn, (sarcoma of the common fowl. J Exp Med. 1910;12:696–705. [PMC free article: PMC2124810] [PubMed: 19867354]
6.
Ephrussi B, Davidson RL, Weiss MC. et al. Malignancy of somatic cell hybrids. Nature. 1969;224:1314–6. [PubMed: 5359298]
7.
Harris H. The analysis of malignancy in cell fusion: the position in 1988. Cancer Res. 1988;48:3302–6. [PubMed: 3370633]
8.
Amundsen SA, Myers TG, Fornace AJ Jr. Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene. 1998;17:3287–99. [PubMed: 9916991]
9.
Versteege I, Sevenet N, Lange J. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6. [PubMed: 9671307]
10.
Stanbridge EJ, Der CJ, Doersen CJ. et al. Human cell hybrids: analysis of transformation and tumorigenicity. Science. 1982;215:252–9. [PubMed: 7053574]
11.
Stanbridge EJ, Cavenee WK. Heritable cancer and tumor-suppressor genes: a tentative connection. In: Weinberg RA, editor. Oncogenes and the molecular origins of cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989. p. 281–306.
12.
Geiser AG, Der CJ, Marshall CJ, Stanbridge EJ. Suppression of tumorigenicity with continued expression of the c-Ha-ras oncogene in EJ bladder carcinoma-human fibroblast hybrid cells. Proc Natl Acad Sci U S A. 1986;83:5209–13. [PMC free article: PMC323920] [PubMed: 3523486]
13.
Saxon PJ, Srivatsan ES, Stanbridge EJ. Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J. 1986;5:3461–6. [PMC free article: PMC1167381] [PubMed: 2881780]
14.
Weissman BE, Saxon PJ, Pasquale SR. et al. Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science. 1987;236:175–80. [PubMed: 3031816]
15.
Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3. [PMC free article: PMC389051] [PubMed: 5279523]
16.
Orye E, Delbeke MJ, Vandenabeele B. Retinoblastoma and long arm deletion of chromosome 13. Attempts to define the deleted segment. Clin Genet. 1974;5:457–64. [PubMed: 4854145]
17.
Francke U. Retinoblastoma and chromosome 13. Cytogenet Cell Genet. 1976;16:131–4. [PubMed: 975871]
18.
Sparkes RS, Sparkes MC, Wilson MG. et al. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science. 1980;208:1042–4. [PubMed: 7375916]
19.
Sparkes RS, Murphree AL, Lingua RW. et al. Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science. 1983;219:971–3. [PubMed: 6823558]
20.
Benedict WF, Murphree AL, Banerjee A. et al. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science. 1983;219:973–5. [PubMed: 6336308]
21.
Knudson AG Jr. Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985;45:1437–43. [PubMed: 2983882]
22.
Cavenee WK, Dryja TP, Phillips RA. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 1983;305:779–84. [PubMed: 6633649]
23.
Cavenee WK, Hansen MF, Nordenskjold M. et al. Genetic origin of mutations predisposing to retinoblastoma. Science. 1985;228:501–3. [PubMed: 3983638]
24.
Hansen MF, Koufos A, Gallie BL. et al. Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci U S A. 1985;82:6216–20. [PMC free article: PMC391023] [PubMed: 2994066]
25.
Hansen MF, Cavenee WK. Genetics of cancer predisposition. Cancer Res. 1987;47:5518–27. [PubMed: 2889524]
26.
Dryja TP, Rapaport JM, Joyce JM, Petersen RA. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A. 1986;83:7391–4. [PMC free article: PMC386723] [PubMed: 2876425]
27.
Friend SH, Bernards R, Rogelj S. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323:643–6. [PubMed: 2877398]
28.
Lee WH, Bookstein R, Hong F. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. 1987;235:1394–9. [PubMed: 3823889]
29.
Fung YK, Murphree AL, T'Ang A. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236:1657–61. [PubMed: 2885916]
30.
Friend SH, Horowitz JM, Gerber MR. et al. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein [published erratum appears in Proc Natl Acad Sci U S A 1988;85:2234] Proc Natl Acad Sci U S A. 1987;84:9059–63. [PMC free article: PMC299691] [PubMed: 3480530]
31.
Dunn JM, Phillips RA, Zhu X. et al. Mutations in the RB1 gene and their effects on transcription. Mol Cell Biol. 1989;9:4596–604. [PMC free article: PMC363605] [PubMed: 2601691]
32.
Goddard AD, Balakier H, Canton M. et al. Infrequent genomic rearrangement and normal expression of the putative RB1 gene in retinoblastoma tumors. Mol Cell Biol. 1988;8:2082–8. [PMC free article: PMC363388] [PubMed: 2898730]
33.
Weichselbaum RR, Beckett M, Diamond A. Some retinoblastomas, osteosarcomas, and soft tissue sarcomas may share a common etiology. Proc Natl Acad Sci U S A. 1988;85:2106–9. [PMC free article: PMC279937] [PubMed: 3162593]
34.
Yandell DW, Campbell TA, Dayton SH. et al. Oncogenic point mutations in the human retinoblastoma gene: their application to genetic counseling. N Engl J Med. 1989;321:1689–95. [PubMed: 2594029]
35.
Lohmann DR. RB1 gene mutations in retinoblastoma. Hum Mutat. 1999;14:283–8. [PubMed: 10502774]
36.
Lohmann DR, Brandt B, Hopping W. et al. The spectrum of RB1 germ-line mutations in hereditary retinoblastoma. Am J Hum Genet. 1996;58:940–9. [PMC free article: PMC1914612] [PubMed: 8651278]
37.
Huang HS, Yee J, Shew J. et al. Suppression of the neoplastic phenotype by replacement of the Rb gene in human cancer cells. Science. 1988;242:1563–6. [PubMed: 3201247]
38.
Bookstein R, Shew J, Chen P. et al. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated Rb gene. Science. 1990;247:712–5. [PubMed: 2300823]
39.
Kaelin WG. Functions of the retinoblastoma protein. Bioessays. 1999;21:950–8. [PubMed: 10517868]
40.
Sellers WR, Kaelin WG Jr. Role of the retinoblastoma protein in the pathogenesis of human cancer. J Clin Oncol. 1997;15:3301–12. [PubMed: 9363859]
41.
Whyte P, Buchkovich KJ, Horowitz JM. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature. 1988;334:124–9. [PubMed: 2968522]
42.
Moran E, Matthews MB. Multiple functional domains in the adenovirus E1A gene. Cell. 1987;48:177–8. [PubMed: 2948653]
43.
Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell. 1989;56:67–75. [PubMed: 2521301]
44.
DeCaprio JA, Ludlow JW, Figge J. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83. [PubMed: 2839300]
45.
Dyson N, Howley P, Munger K, Harlow E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7. [PubMed: 2537532]
46.
Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell. 1989;58:1097–105. [PubMed: 2673543]
47.
Chen PL, Scully P, Shew JY. et al. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989;58:1193–8. [PubMed: 2673546]
48.
Ludlow JW, DeCaprio JA, Huang CM. et al. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell. 1989;56:57–65. [PubMed: 2910497]
49.
Wu L, Timmers C, Maiti B. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature. 2001;414:457–62. [PubMed: 11719808]
50.
Ewen ME, Xing YG, Lawrence JB, Livingston DM. Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell. 1991;66:1155–64. [PubMed: 1833063]
51.
Hannon GJ, Demetrick D, Beach D. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 1993;7:2378–91. [PubMed: 8253384]
52.
Li Y, Graham C, Lacy S. et al. The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev. 1993;7:2366–77. [PubMed: 8253383]
53.
Helin K, Holm K, Niebuhr A. et al. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc Natl Acad Sci U S A. 1997;94:6933–8. [PMC free article: PMC21262] [PubMed: 9192669]
54.
Claudio PP, Howard CM, Fu Y. et al. Mutations in the retinoblastoma-related gene RB2/p130 in primary nasopharyngeal carcinoma. Cancer Res. 2000;60:8–12. [PubMed: 10646842]
55.
Mulligan G, Jacks T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 1998;14:223–9. [PubMed: 9635405]
56.
Lipinski MM, Jacks T. The retinoblastoma gene family in differentiation and development. Oncogene. 1999;18:7873–82. [PubMed: 10630640]
57.
Lane D, Crawford L. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–3. [PubMed: 218111]
58.
Linzer D, Levine A. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52. [PubMed: 222475]
59.
DeLeo AB, Jay G, Appella E. et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A. 1979;76:2420–4. [PMC free article: PMC383613] [PubMed: 221923]
60.
Sarnow P, Ho Y, Williams J, Levine A. Adenovirus E1b-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell. 1982;28:387–94. [PubMed: 6277513]
61.
Crawford LV, Pim DC, Lamb P. The cellular protein p53 in human tumors. Mol Biol Med. 1984;2:261–72. [PubMed: 6544917]
62.
Lane D, Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990;4:1–8. [PubMed: 2137806]
63.
Eliyahu D, Raz A, Gruss P. et al. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature. 1984;312:646–9. [PubMed: 6095116]
64.
Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature. 1984;312:651–4. [PubMed: 6095117]
65.
Parada LF, Land H, Weinberg RA. et al. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature. 1984;312:649–51. [PubMed: 6390217]
66.
Baker S, Fearon ER, Nigro J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244:217–21. [PubMed: 2649981]
67.
Fearon ER, Hamilton S, Vogelstein B. Clonal analysis of human colorectal tumors. Science. 1987;238:193–7. [PubMed: 2889267]
68.
Vogelstein B, Fearon ER, Hamilton S. et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32. [PubMed: 2841597]
69.
Nigro JM, Baker SJ, Preisinger AC. et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342:705–8. [PubMed: 2531845]
70.
Takahashi T, Nau MM, Chibu I. et al. p53, a frequent target for genetic abnormalities in lung cancer. Science. 1989;246:491–4. [PubMed: 2554494]
71.
Wolf D, Admon S, Oren M, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A. 1984;82:790–4. [PMC free article: PMC397132] [PubMed: 2858093]
72.
Mowat M, Cheng A, Kimura N. et al. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature. 1985;314:633–6. [PubMed: 3990796]
73.
Masuda H, Miller C, Koeffler HP. et al. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci U S A. 1987;84:7716–9. [PMC free article: PMC299371] [PubMed: 2823272]
74.
Ahuja H, Bar-Eli M, Advani SH. et al. Alterations of the p53 gene and the clonal evolution of the blast crises of chronic myelogenous leukemia. Proc Natl Acad Sci U S A. 1989;86:6783–7. [PMC free article: PMC297930] [PubMed: 2771957]
75.
Eliyahu D, Goldfinger N, Pinhasi-Kimhi O. et al. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene. 1988;3:313–21. [PubMed: 3060794]
76.
Eliyahu D, Michalovitz D, Eliyahu S. et al. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A. 1989;86:8763–7. [PMC free article: PMC298370] [PubMed: 2530586]
77.
Finlay C, Hinds P, Levine A. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989;57:1083–93. [PubMed: 2525423]
78.
Hinds PW, Finlay C, Levin AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol. 1989;63:739–46. [PMC free article: PMC247745] [PubMed: 2642977]
79.
Baker S, Markowitz S, Fearon ER. et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–5. [PubMed: 2144057]
80.
Hollstein M, Hergenhahn M, Yang Q. et al. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res. 1999;31:199–209. [PubMed: 10635987]
81.
Malkin D, Li FP, Strong LC. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8. [PubMed: 1978757]
82.
Srivastava S, Zou Z, Pirollo K. et al. Germ-line transmission of a mutated p53 gene in cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–9. [PubMed: 2259385]
83.
Birch JM, Hartley AL, Tricker KJ. et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54:1298–304. [PubMed: 8118819]
84.
Malkin D. p53 and the Li-Fraumeni syndrome. Biochim Biophys Acta. 1994;1198:197–213. [PubMed: 7819275]
85.
Bartek J, Falck J, Lukas J. CHK2 kinase—a busy messenger. Nat Rev Mol Cell Biol. 2001;2:877–86. [PubMed: 11733767]
86.
Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70:523–6. [PubMed: 1505019]
87.
Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9. [PubMed: 2157286]
88.
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505. [PubMed: 8221889]
89.
Scheffner M, Münger K, Byrne JC, Howley PM. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci U S A. 1991;88:5523–7. [PMC free article: PMC51909] [PubMed: 1648218]
90.
Kessis T, Slebos R, Han S. et al. p53 gene mutations and mdm2 amplification are uncommon in primary carcinomas of the uterine cervix. Am J Pathol. 1993;143:1398–405. [PMC free article: PMC1887168] [PubMed: 8238255]
91.
Crook T, Vousden KH. Properties of p53 mutations detected in primary and secondary cervical cancers suggest mechanisms of metastasis and involvement of environmental carcinogens. EMBO J. 1992;11:3935–40. [PMC free article: PMC556904] [PubMed: 1327751]
92.
Oliner JD, Kinzler KW, Meltzer PS. et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3. [PubMed: 1614537]
93.
Momand J, Zambetti GP, Olson DC. et al. The MDM2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;691:1237–45. [PubMed: 1535557]
94.
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9. [PubMed: 9153395]
95.
Juven-Gershon T, Oren M. Mdm2: the ups and downs. Mol Med. 1999;5:71–83. [PMC free article: PMC2230410] [PubMed: 10203572]
96.
Leach FS, Tokino T, Meltzer P. et al. p53 mutations and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993;53:2231–4. [PubMed: 8387391]
97.
Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–6. [PubMed: 7477326]
98.
Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10. [PubMed: 11099028]
99.
el-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol. 1998;8:345–57. [PubMed: 10101800]
100.
el-Deiry WS, Tokino T, Velculescu VE. et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25. [PubMed: 8242752]
101.
Kastan M, Zhan Q, El-Diery W. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–98. [PubMed: 1423616]
102.
Hermeking H, Lengauer C, Polyak K. et al. 14-3-3 Sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11. [PubMed: 9659898]
103.
Nakano K, Vousden KH. Puma, a novel pro-apoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94. [PubMed: 11463392]
104.
Yu J, Zhang L, Hwang P. et al. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673–82. [PubMed: 11463391]
105.
Polyak K, Xia Y, Zweier JL. et al. A model for p53-induced apoptosis. Nature. 1997;389:300–5. [PubMed: 9305847]
106.
Murphy M, Hinman A, Levine AJ. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 1996;10:2971–80. [PubMed: 8956998]
107.
Wang Q, Beck WT. Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Res. 1998;58:5762–9. [PubMed: 9865734]
108.
Ahn J, Murphy M, Kratowicz S. et al. Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene. 1999;18:5954–8. [PubMed: 10557083]
109.
Cho YJ, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor DNA complex—understanding tumorigenic mutations. Science. 1994;265:346–55. [PubMed: 8023157]
110.
Bunz F, Dutriaux A, Lengauer C. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–501. [PubMed: 9822382]
111.
Chan TA, Hermeking H, Lengauer C. et al. 14-3-3 Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401:616–20. [PubMed: 10524633]
112.
Kastan MB, Onyekwere O, Sidransky D. et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51:6304–11. [PubMed: 1933891]
113.
Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–67. [PubMed: 8402885]
114.
Lowe SW, Bodis S, McClatchey A. et al. p53 status and the efficacy of cancer therapy in vivo. Science. 1994;266:807–10. [PubMed: 7973635]
115.
de Vries A, Flores ER, Miranda B. et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA. 2002;99:2948–53. [PMC free article: PMC122453] [PubMed: 11867759]
116.
Bunz F, Hwang PM, Torrance C. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999;104:263–9. [PMC free article: PMC408422] [PubMed: 10430607]
117.
Graeber TG, Osmanian C, Jacks T. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91. [PubMed: 8538748]
118.
Wahl GM, Linke SP, Paulson TG, Huang LC. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv. 1997;29:183–219. [PubMed: 9338102]
119.
Merlo A, Gabrielson E, Askin F, Sidransky D. Frequent loss of chromosome 9 in human primary non-small cell lung cancer. Cancer Res. 1994;54:640–2. [PubMed: 8306323]
120.
Olumi AF, Skinner EC, Tsai YC, Jones PA. Molecular analysis of human bladder cancer. Semin Urol. 1990;8:270–7. [PubMed: 1980959]
121.
Sidransky D, Messing E. Molecular genetics and biochemical mechanisms in bladder cancer: oncogenes, tumor-suppressor genes, and growth factors. Urol Clin North Am. 1992;19:629–39. [PubMed: 1441021]
122.
van der Riet P, Nawroz H, Hruban RH. et al. Frequent loss of chromosome 9p21–22 early in head and neck cancer progression. Cancer Res. 1994;54:1156–8. [PubMed: 8118798]
123.
Diaz MO, Rubin CM, Harden A. et al. Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med. 1990;322:77–82. [PubMed: 2294436]
124.
Fountain JW, Karayiorgou M, Taruscio D. et al. Genetic and physical map of the interferon region on chromosome 9p. Genomics. 1992;14:105–12. [PubMed: 1385297]
125.
Olopade OI, Jenkins RB, Ransom DT. et al. Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res. 1992;52:2523–9. [PubMed: 1568221]
126.
Goldstein AM, Tucker MA. Genetic epidemiology of familial melanoma [review] Dermatol Clin. 1995;13:605–12. [PubMed: 7554508]
127.
Kamb A, Gruis NA, Weaver-Feldhaus J. et al. A cell-cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–40. [PubMed: 8153634]
128.
Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7. [PubMed: 8259215]
129.
Haber DA. Splicing into senescence: the curious case of p16 and p19ARF. Cell. 1997;91:555–8. [PubMed: 9393847]
130.
Sherr CJ. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 1998;12:2984–91. [PubMed: 9765200]
131.
Hussussian CJ, Struewing JP, Goldstein AM. et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8:15–21. [PubMed: 7987387]
132.
Kamb A, Shattuck-Eidens D, Eeles R. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8:23–26. [PubMed: 7987388]
133.
Wainwright B. Familial melanoma and p16—a hung jury. Nat Genet. 1994;8:3–5. [PubMed: 7987389]
134.
Whelan AJ, Bartsch D, Goodfellow PJ. A familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med. 1995;333:975–7. [PubMed: 7666917]
135.
Walker GJ, Flores JF, Glendening JM. et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer. 1998;22:157–63. [PubMed: 9598804]
136.
Cairns P, Polascik TJ, Eby Y. et al. Frequency of homozygous deletion at P16/CDKN2 in primary human tumours. Nat Genet. 1995;11:210–2. [PubMed: 7550353]
137.
Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4A tumor suppressor gene encode two unrelated proteins capable of inducing cell-cycle arrest. Cell. 1995;83:993–1000. [PubMed: 8521522]
138.
Herman JG, Merlo A, Mao L. et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30. [PubMed: 7553621]
139.
Merlo A, Herman JG, Mao L. et al. 5′ CPG island methylation is associated with transcriptional silencing of the tumour suppressor P16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92. [PubMed: 7585152]
140.
Jacobs JJ, Kieboom K, Marine S. et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the INK4a locus. Nature. 1999;397:164–8. [PubMed: 9923679]
141.
Kamijo T, Zindy F, Roussel MF. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91:649–59. [PubMed: 9393858]
142.
Sharpless NE, Bardeesy N, Lee KH. et al. Loss of p16INK4a with retention of p19ARF predisposes mice to tumorigenesis. Nature. 2001;413:86–91. [PubMed: 11544531]
143.
Krimpenfort P, Quon KC, Mooi WJ. et al. Loss pf p16INK4a confers susceptibility to metastatic melanoma in mice. Nature. 2001;413:83–6. [PubMed: 11544530]
144.
Herrera L, Kakati S, Gibas L. et al. Brief clinical report: Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet. 1986;25:473–6. [PubMed: 3789010]
145.
Bodmer W, Bailey C, Bodmer J. et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–9. [PubMed: 3039373]
146.
Leppert M, Dobbs M, Scambler P. et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science. 1987;238:1411–3. [PubMed: 3479843]
147.
Groden J, Thliveris A, Samowitz W. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600. [PubMed: 1651174]
148.
Joslyn G, Carlson M, Thliveris A. et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell. 1991;66:601–13. [PubMed: 1678319]
149.
Kinzler K, Nilbert M, Su L. et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5. [PubMed: 1651562]
150.
Nishisho I, Nakamura Y, Miyoshi Y. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9. [PubMed: 1651563]
151.
Miyoshi Y, Ando H, Nagase H. et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci U S A. 1992;89:4452–6. [PMC free article: PMC49100] [PubMed: 1316610]
152.
Nagase H, Miyoshi Y, Horii A. et al. Correlation between the location of germ-line mutations in the APC gene and the number of colorectal polyps in familial adenomatous polyposis patients. Cancer Res. 1992;52:4055–7. [PubMed: 1319838]
153.
Powell SM, Petersen GM, Krush AJ. et al. Molecular diagnosis of familial adenomatous polyposis. N Engl J Med. 1993;329:1982–7. [PubMed: 8247073]
154.
Levy DB, Smith KJ, Beazer-Barclay Y. et al. Inactivation of both APC alleles in human and mouse tumors. Cancer Res. 1994;54:5953–8. [PubMed: 7954428]
155.
Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70. [PubMed: 8861899]
156.
Spirio L, Olschwang S, Groden J. et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell. 1993;75:951–7. [PubMed: 8252630]
157.
Gruber SB, Petersen GM, Kinzler KW, Vogelstein B. Cancer, crash sites, and the new genetics of neoplasia. Gastroenterology. 1999;116:210–2. [PubMed: 9869620]
158.
Powell SM, Zilz N, Beazer-Barclay Y. et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359:235–7. [PubMed: 1528264]
159.
Solomon E, Voss R, Hall V. et al. Chromosome 5 allele loss in human colorectal carcinomas. Nature. 1987;328:616–9. [PubMed: 2886919]
160.
Smith KJ, Johnson KA, Bryan TM. et al. The APC gene product in normal and tumor cells. Proc Natl Acad Sci U S A. 1993;90:2846–50. [PMC free article: PMC46193] [PubMed: 8385345]
161.
Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A. 1996;93:7950–4. [PMC free article: PMC38855] [PubMed: 8755583]
162.
Bienz M. APC: the plot thickens. Curr Opin Genet Dev. 1999;9:595–603. [PubMed: 10508699]
163.
Willert K, Nusse R. Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev. 1998;8:95–102. [PubMed: 9529612]
164.
Morin PJ, Sparks AB, Korinek V. et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90. [PubMed: 9065402]
165.
Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130–4. [PubMed: 9515795]
166.
Iwao K, Nakamori S, Kameyama M. et al. Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 1998;58:1021–6. [PubMed: 9500465]
167.
Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev. 1999;9:15–21. [PubMed: 10072352]
168.
Crawford HC, Fingleton BM, Rudolph-Owen LA. et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18:2883–91. [PubMed: 10362259]
169.
He TC, Sparks AB, Rago C. et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12. [PubMed: 9727977]
170.
Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6. [PubMed: 10201372]
171.
Shtutman M, Zhurinsky J, Simcha I. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7. [PMC free article: PMC21892] [PubMed: 10318916]
172.
Park BH, Vogelstein B, Kinzler K. Genetic disruption of PPAR delta decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci U S A 2002;2598–603. [PMC free article: PMC30184] [PubMed: 11226285]
173.
Hall JM, Lee MK, Newman B. et al. Linkage of early onset familial breast cancer to chromosome 17q21. Science. 1990;250:1684–9. [PubMed: 2270482]
174.
Easton DF, Bishop DT, Ford D, Crockford GP. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1993;52:678–701. [PMC free article: PMC1682082] [PubMed: 8460634]
175.
Narod SA, Feunteun J, Lynch HT. et al. Familial breast-ovarian cancer locus on chromosome 17q12–q23. Lancet. 1991;338:82–3. [PubMed: 1676470]
176.
Futreal PA, Liu QY, Shattuck-Eidens D. et al. BRCA1 mutation in primary breast and ovarian carcinomas. Science. 1994;266:120–2. [PubMed: 7939630]
177.
Miki Y, Swensen J, Shattuck-Eidens D. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71. [PubMed: 7545954]
178.
Collins FS. BRCA1—lots of mutations, lots of dilemmas [editorial; comment; see comments] N Engl J Med. 1996;334:186–8. [PubMed: 8531977]
179.
Couch FJ, Weber BL. Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene. Breast Cancer Information Core. Hum Mutat. 1996;8:8–18. [PubMed: 8807330]
180.
Couch FJ, Weber BL. Breast cancer. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 1998. p. 537–64.
181.
Szabo CI, King MC. Inherited breast and ovarian cancer. Hum Mol Genet. 1995;4:1811–7. [PubMed: 8541881]
182.
Merajver SD, Pham TM, Caduff RF. et al. Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet. 1995;9:439–43. [PubMed: 7795652]
183.
Wooster R, Neuhausen SL, Mangion J. et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science. 1994;265:2088–90. [PubMed: 8091231]
184.
Wooster R, Bignell G, Lancaster J. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92. [PubMed: 8524414]
185.
Sharan SK, Morimatsu M, Albrecht U. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking BRCA2. Nature. 1997;386:804–10. [PubMed: 9126738]
186.
Welcsh PL, Schubert EL, King MC. Inherited breast cancer: an emerging picture. Clin Genet. 1998;54:447–58. [PubMed: 9894790]
187.
Feunteun J. Breast cancer and genetic instability: the molecules behind the scenes. Mol Med Today. 1998;4:263–7. [PubMed: 9679245]
188.
Chen J, Silver DP, Walpita D. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998;2:317–28. [PubMed: 9774970]
189.
Gowen LC, Avrutskaya AV, Latour AM. et al. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 1998;281:1009–12. [PubMed: 9703501]
190.
Scully R, Chen J, Plug A. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997;88:265–75. [PubMed: 9008167]
191.
Scully R, Chen J, Ochs RL. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997;90:425–35. [PubMed: 9267023]
192.
Marmorstein LY, Ouchi T, Aaronson SA. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc Natl Acad Sci U S A. 1998;95:13869–74. [PMC free article: PMC24938] [PubMed: 9811893]
193.
Scully R, Anderson SF, Chao DM. et al. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A. 1997;94:5605–10. [PMC free article: PMC20825] [PubMed: 9159119]
194.
Fan S, Wang JA, Yuan R. et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science. 1999;284:1354–6. [PubMed: 10334989]
195.
Coppes MJ, Haber DA, Grundy PE. Genetic events in the development of Wilms' tumor. N Engl J Med. 1994;331:586–90. [PubMed: 8047084]
196.
Knudson AG, Strong LC. Mutation and cancer: a model for Wilms' tumor of the kidney. J Natl Cancer Inst. 1972;48:313–24. [PubMed: 4347033]
197.
Miller RW, Faumeni JF Jr, Manning MD. Association of Wilms' tumor with aniridia, hemihypertrophy, and other congenital abnormalities. N Engl J Med. 1964;270:922–7. [PubMed: 14114111]
198.
Riccardi VM, Hittner HM, Francke U. et al. The aniridia-Wilms' tumor association: the clinical role of chromosome band 11p13. Cancer Genet Cytogenet. 1980;2:131–7.
199.
Kaneko Y, Egues MC, Rowley JD. Interstitial deletion of short arm of chromosome 11 limited to Wilms' tumor cells in a patient without aniridia. Cancer Res. 1981;41:4577–8. [PubMed: 6272980]
200.
Slater RM, de Kraker J. Chromosome number 11 and Wilms' tumor. Cancer Genet Cytogenet. 1982;5:237–45. [PubMed: 6279277]
201.
Fearon ER, Vogelstein B, Feinberg AP. Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature. 1984;309:176–8. [PubMed: 6325939]
202.
Koufos A, Hansen MF, Lampkin BC. et al. Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumor. Nature. 1984;309:170–2. [PubMed: 6325936]
203.
Orkin SH, Goldman DS, Sallan SE. Development of homozygosity for chromosome 11p markers in Wilms' tumor. Nature. 1984;309:172–4. [PubMed: 6325937]
204.
Reeve AE, Housiaux PJ, Gardner R. et al. Loss of a Harvey RAS allele in sporadic Wilms' tumor. Nature. 1984;309:174–6. [PubMed: 6325938]
205.
Call K, Glaser T, Ito C. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell. 1990;60:509–20. [PubMed: 2154335]
206.
Haber DA, Sohn RL, Buckler AJ. et al. Alternative splicing and genomic structure of the Wilms' tumor gene WT1. Proc Natl Acad Sci U S A. 1991;88:9618–22. [PMC free article: PMC52769] [PubMed: 1658787]
207.
Larsson SH, Charlieu JP, Miyagawa K. et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell. 1995;81:391–401. [PubMed: 7736591]
208.
Reddy JC, Licht JD. The WT1 Wilms' tumor suppressor gene: how much do we really know? Biochim Biophys Acta. 1996;1287:1–28. [PubMed: 8639704]
209.
Rauscher FJ. The WT1 Wilms' tumor gene product—a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor. FASEB J. 1993;7:896–903. [PubMed: 8393820]
210.
Englert C, Hou X, Maheswaran S. et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J. 1995;14:4662–75. [PMC free article: PMC394563] [PubMed: 7588596]
211.
Hosono S, Gross I, English MA. et al. E-cadherin is a WT1 target gene. J Biol Chem. 2000;275:10943–53. [PubMed: 10753894]
212.
Lee SB, Huang K, Palmer R. et al. The Wilms' tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell. 1999;98:663–73. [PubMed: 10490105]
213.
Hammes A, Guo JK, Lutsch G. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106:319–29. [PubMed: 11509181]
214.
Haber DA, Housman DE. The genetics of Wilms' tumor. Adv Cancer Res. 1992;59:41–68. [PubMed: 1325734]
215.
Mannens M, Slater RM, Heyting C. et al. Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms' tumors. Hum Genet. 1988;81:41–8. [PubMed: 2848758]
216.
Reeve AE, Sih SA, Raizis AM, Feinberg AP. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms' tumor cells. Mol Cell Biol. 1989;9:1799–1803. [PMC free article: PMC362601] [PubMed: 2542777]
217.
Koufos A, Grundy P, Morgan K. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms' tumor locus both map to 11p15.5. Am J Hum Genet. 1989;44:711–9. [PMC free article: PMC1715635] [PubMed: 2539717]
218.
Ping AJ, Reeve AE, Law DJ. et al. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet. 1989;44:720–3. [PMC free article: PMC1715646] [PubMed: 2565083]
219.
Grundy P, Koufos A, Morgan K. et al. Familial predisposition to Wilms' tumour does not map to the short arm of chromosome 11. Nature. 1988;336:374–6. [PubMed: 2848199]
220.
Huff V, Compton DA, Chao LY. et al. Lack of linkage of familial Wilms' tumour to chromosomal band 11p13. Nature. 1988;336:377–8. [PubMed: 2848200]
221.
Ponder B. Neurofibromatosis gene cloned. Nature. 1990;346:703–4. [PubMed: 2117711]
222.
Shen MH, Harper PS, Upadhyaya M. Molecular genetics of neurofibromatosis type 1 (NF1) J Med Genet. 1996;33:2–17. [PMC free article: PMC1051805] [PubMed: 8825042]
223.
Gutman DH, Collins FS. Neurofibromatosis type 1. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 1998. p. 423–42.
224.
Barker D, Wright E, Nguyen K. et al. Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science. 1987;236:1100–2. [PubMed: 3107130]
225.
Seizinger BR, Rouleau GA, Ozelius LJ. et al. Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell. 1987;49:589–94. [PubMed: 2884037]
226.
Fountain JW, Wallace MR, Bruce MA. et al. Physical mapping of a translocation breakpoint in neurofibromatosis. Science. 1989;244:1085–7. [PubMed: 2543076]
227.
O'Connell P, Leach R, Cawthon RM. et al. Two von Recklinghausen neurofibromatosis translocations map within a 600 kb region of 17q11.2. Science. 1989;244:1087–8. [PubMed: 2543077]
228.
Cawthon RM, Weiss R, Xu GF. et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations [published erratum appears in Cell 1990;62:608] Cell. 1990;62:193–201. [PubMed: 2114220]
229.
Viskochil D, Buchberg A, Xu G. et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 1990;62:187–92. [PubMed: 1694727]
230.
Wallace MR, Marchuk DA, Andersen LB. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. 1990;249:181–6. [PubMed: 2134734]
231.
Viskochil D, White R, Cawthon R. The neurofibromatosis type 1 gene. Annu Rev Neurosci. 1993;16:183–205. [PubMed: 8460890]
232.
Park VM, Pivnick EK. Neurofibromatosis type 1 (NF1): a protein truncation assay yielding identification of mutations in 73% of patients. J Med Genet. 1998;35:813–20. [PMC free article: PMC1051455] [PubMed: 9783703]
233.
Johnson MR, Look AT, DeClue JE. et al. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP.Ras. Proc Natl Acad Sci U S A. 1993;90:5539–43. [PMC free article: PMC46756] [PubMed: 8516298]
234.
Seizinger BR. NF1: a prevalent cause of tumorigenesis in human cancers? Nat Genet. 1993;3:97–9. [PubMed: 7848376]
235.
The I, Murthy AE, Hannigan GE. et al. Neurofibromatosis type 1 gene mutations in neuroblastoma. Nat Genet. 1993;3:62–6. [PubMed: 8490657]
236.
Shannon KM, O'Connell P, Martin GA. et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330:597–601. [PubMed: 8302341]
237.
DeClue JE, Papageorge AG, Fletcher JA. et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992;69:265–73. [PubMed: 1568246]
238.
Wigler MH. Oncoproteins: GAPs in understanding Ras. Nature. 1990;346:696–7. [PubMed: 2201920]
239.
Xu GF, O'Connell P, Viskochil D. et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990;62:599–608. [PubMed: 2116237]
240.
Vogel KS, Klesse LJ, Valasco-Miguel S. et al. Mouse tumor model for neurofibromatosis type 1. Science. 1999;286:2176–9. [PMC free article: PMC3079436] [PubMed: 10591653]
241.
Cichowski K, Shih TS, Schmitt E. et al. Mouse models of tumor development in neurofibromatosis type 1. Science. 1999;286:2172–6. [PubMed: 10591652]
242.
MacCollin M, Gusella J. Neurofibromatosis type 2. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. , New York: McGraw-Hill; 1998. p. 443–54.
243.
Evans DG, Huson SM, Donnai D. et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet. 1992;29:841–6. [PMC free article: PMC1016198] [PubMed: 1479598]
244.
Seizinger BR, Martuza RL, Gusella JF. Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature. 1986;322:644–7. [PubMed: 3092103]
245.
Seizinger BR, de la Monte S, Atkins L. et al. Molecular genetic approach to human meningioma: loss of genes on chromosome 22. Proc Natl Acad Sci U S A. 1987;84:5419–23. [PMC free article: PMC298869] [PubMed: 3037550]
246.
Seizinger BR, Rouleau G, Ozelius LJ. et al. Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science. 1987;236:317–39. [PubMed: 3105060]
247.
Rouleau GA, Merel P, Lutchman M. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature. 1993;363:515–21. [PubMed: 8379998]
248.
Trofatter JA, MacCollin MM, Rutter JL. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993;72:791–800. [PubMed: 8453669]
249.
Bianchi AB, Mitsunaga SI, Cheng JQ. et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A. 1995;92:10854–8. [PMC free article: PMC40529] [PubMed: 7479897]
250.
Giovannini M, Robanus-Maandag E, van der Valk M. et al. Conditional biallelic NF2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 2000;14:1617–30. [PMC free article: PMC316733] [PubMed: 10887156]
251.
Maher ER, Webster AR, Moore AT. Clinical features and molecular genetics of von Hippel-Lindau disease [review] Ophthal Paediatr Genet. 1995;16:79–84. [PubMed: 8556282]
252.
Gnarra JR, Duan DR, Weng Y. et al. Molecular cloning of the von Hippel-Lindau tumor suppressor gene and its role in renal carcinoma. Biochim Biophys Acta. 1996;1242:201–10. [PubMed: 8603073]
253.
Linehan WM, Klausner R. Renal carcinoma. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 1998. p. 455–74.
254.
Seizinger BR, Rouleau GA, Ozelius LJ. et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988;332:268–9. [PubMed: 2894613]
255.
Latif F, Tory K, Gnarra J. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317–20. [PubMed: 8493574]
256.
Herman JG, Latif F, Weng Y. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–4. [PMC free article: PMC44884] [PubMed: 7937876]
257.
Duan DR, Pause A, Burgess WH. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269:1402–6. [PubMed: 7660122]
258.
Aso T, Lane WS, Conaway JW, Conaway RC. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science. 1995;269:1439–43. [PubMed: 7660129]
259.
Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995;269:1444–6. [PubMed: 7660130]
260.
Kaelin WG Jr, Maher ER. The VHL tumour-suppressor gene paradigm. Trends Genet. 1998;14:423–6. [PubMed: 9820032]
261.
Ohh M, Kaelin WG Jr. The von Hippel-Lindau tumour suppressor protein: new perspectives. Mol Med Today. 1999;5:257–63. [PubMed: 10366821]
262.
Ivan M, Kondo K, Yang H. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8. [PubMed: 11292862]
263.
Jaakkola P, Mole DR, Tian YM. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitination complex by O2-regulated prolylhydroxylation. Science. 2001;292:468–72. [PubMed: 11292861]
264.
Gatti RA. Ataxia-telangiectasia. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 1998. p. 275–300.
265.
Lynch HT, Smyrk TC, Watson P. et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology. 1993;104:1535–49. [PubMed: 8482467]
266.
Park JG, Vasen HF, Park KJ. et al. Suspected hereditary nonpolyposis colorectal cancer: International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC) criteria and results of genetic diagnosis. Dis Colon Rectum. 1999;42:710–5. [PubMed: 10378593]
267.
Boland CR. Hereditary nonpolyposis colorectal cancer. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 1998. p. 333–46.
268.
Lynch HT, de La Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet. 1999;36:801–18. [PMC free article: PMC1734258] [PubMed: 10544223]
269.
Aaltonen LA. Hereditary intestinal cancer. Semin Cancer Biol. 2000;10:289–98. [PubMed: 10966851]
270.
Yan H, Papadopoulos N, Marra G. et al. Conversion of diploidy to haploidy. Nature. 2000;403:723–4. [PubMed: 10693791]
271.
Muller A, Fishel R. Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC) Cancer Invest. 2002;20(1):102–9. [PubMed: 11852992]
272.
Ionov Y, Peinado MA, Malkhosyan S. et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61. [PubMed: 8505985]
273.
Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9. [PubMed: 8484122]
274.
Aaltonen LA, Peltomaki P, Sistonen P. et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–6. [PubMed: 8484121]
275.
Liu B, Nicolaides NC, Markowitz S. et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995;9:48–55. [PubMed: 7704024]
276.
Kane MF, Loda M, Gaida GM. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–11. [PubMed: 9041175]
277.
Herman JG, Umar A, Polyak K. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95:6870–5. [PMC free article: PMC22665] [PubMed: 9618505]
278.
Markowitz S, Wang J, Myeroff L. et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–8. [PubMed: 7761852]
279.
Parsons R, Myeroff LL, Liu B. et al. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res. 1995;55:5548–50. [PubMed: 7585632]
280.
Lu SL, Kawabata M, Imamura T. et al. HNPCC associated with germline mutation in the TGF-beta type II receptor gene [letter] Nat Genet. 1998;19:17–8. [PubMed: 9590282]
281.
Hahn SA, Schutte M, Hoque AT. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3. [PubMed: 8553070]
282.
Moskaluk CA, Kern SE. Cancer gets Mad: DPC4 and other TGFβ pathway genes in human cancer. Biochim Biophys Acta. 1996;1288:M31–3. [PubMed: 9011179]
283.
Thiagalingam S, Lengauer C, Leach FS. et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 1996;13:343–6. [PubMed: 8673134]
284.
Howe JR, Roth S, Ringold JC. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998;280:1086–8. [PubMed: 9582123]
285.
Rampino N, Yamamoto H, Ionov Y. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275:967–9. [PubMed: 9020077]
286.
Mirabelli-Primdahl L, Gryfe R, Kim H. et al. Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res. 1999;59:3346–51. [PubMed: 10416591]

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2003, BC Decker Inc.
Bookshelf ID: NBK13621

Views

  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...